
COMPSCI 514: Midterm Review

1 Concepts to Study

Foundational Probability Concepts + Concentration Bounds

• Linearity of expectation and variance.

• Markov’s inequality, Chebyshev’s inequality (should know from memory).

• Union bound (should know from memory).

• General idea of higher moment inequalities.

• Chernoff and Bernstein bounds (don’t need to memorize the exact bounds, but should be
able to apply if given).

• General idea of law of large numbers and central limit theorem.

• Technique of breaking random variables into sums of indicator random variables.

• Averaging to reduce error.

• Median trick.

Random Hashing and Related Algorithms

• Random hash functions.

• Definitions of 2-universal and pairwise independent hash functions (should have memorized).

• Application of random hashing to load balancing.

• Hashing for Distinct Elements. Understand the ‘idealized’ algorithm where we hash to real
numbers. Don’t need to understand details of HyperLogLog

• Bloom Filters. Don’t need to have formulas memorized.

• MinHash for Jaccard similarity.

• Idea of locality sensitive hashing. How it is used for similarity search (with hash signatures
and repeated tables). Idea of s-curve tuning (don’t need to memorize formula).

Other

• Frequent elements problem definition and setup.

• High level idea of Boyer-Moore and Misra-Gries, but don’t need to know in detail.

• Count-min sketch and analysis.

• The Johnson-Lindenstrauss Lemma. Don’t need to memorize, but should understand and be
able to apply if given.

• Do not need to be able to recreate the JL proof, but should understand the ideas behind it.
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2 Practice Questions

Work in progress. Check back to see if more questions have been added.

Probability, Expectation, Variance:

1. Exercises 2.1, 2.3, 2.4, 2.28, 2.41 of Foundations of Data Science (https://www.cs.cornell.
edu/jeh/book.pdf)

2. Show that for any X, E[X2] ≥ E[X]2.

3. Show that for independent X and Y, E[X ·Y] = E[X] · E[Y].

4. Show that for independent X and Y with E[X] = E[Y] = 0, V ar[X ·Y] = V ar[X] · V ar[Y].
Hint: use part (3).

5. For the statements below, indicate if they are always true, sometimes true, or never
true. Give a sentence explaining why.

(a) Pr[X = s ∩Y = t] > Pr[X = s]. ALWAYS SOMETIMES NEVER

(b) Pr[X = s ∪Y = t] ≤ Pr[X = s] + Pr[Y = t]. ALWAYS SOMETIMES NEVER

(c) Pr[X = s ∩Y = t] = Pr[X = s] · Pr[Y = t]. ALWAYS SOMETIMES 4 NEVER

Concentration Inequalities:

1. Let X1, . . . ,Xn be the number of visitors to a website on n consecutive days. These are
independent and identically distributed random variables. We have E[Xi] = 20, 000 and
V ar[Xi] = 100, 000, 000.

(a) Give an upper bound on the probability that on day i, more than 40, 000 visitors hit the
website.

(b) Let X̄ = 1
n

∑n
i=1 Xi be the average number of visitors over n days. What are E[X̄] and

V ar[X̄]?

(c) Give an upper bound on the probability that X̄ ≥ 25, 000, for n = 100.

2. Assume there are 1000 registered users on your site u1, . . . , u1000, and in a given day, each user
visits the site with some probability pi. The event that any user visits the site is independent
of what the other users do. Assume that

∑1000
i=1 pi = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X].

(b) Apply a Chernoff bound to show that Pr[X ≥ 600] ≤ .01.

Random Hashing Algorithms:

1. Exercises 6.1, 6.2, 6.6, 6.7, 6.10, 6.19, 6.22, 6.23 of Foundations of Data Science

2. Consider a hash function mapping m-bit strings to a single bit – h : {0, 1}m → {0, 1}. We
generate h by selecting a random position i from 1, . . . ,m. Then let h(x) = x(i), the value
of x at position i. Note that after i is chosen, it remains fixed, when we apply h to different
inputs.

(a) Given x, y ∈ {0, 1}m with hamming distance ‖x − y‖0 (i.e., x and y have different bit
values in ‖x− y‖0 positions), what is Pr[h(x) = h(y)].
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(b) Is h a locality sensitive hash function?

(c) Let m be the number of all possible 5-singles in a document (i.e., all possible strings
of 5 English words). If x and y are indicator vectors of the 5-shingles in two different
documents, why do we expect them to be very sparse (i.e., each only have a few bits set
to 1)?

(d) Why might might MinHash and Jaccard similarity be more useful in the situation of (c)
than the hash function h and Hamming distance.

3. Use a Chernoff bound to show that if we hash n items into a table with n buckets, with
probability ≥ 1 − δ, the maximum number of items in a single bucket is upper bounded by
O(log n/δ).
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