
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 1

0



motivation for this class

People are increasingly interested in analyzing and learning
from massive datasets.

• Twitter receives 6,000 tweets per second, 500 million/day.
Google receives 60,000 searches per second, 5.6 billion/day.
• How do they process them to target advertisements? To predict
trends? To improve their products?

• The Large Synoptic Survey Telescope will take high definition
photographs of the sky, producing 15 terabytes of data/night.

• How do they denoise and compress the images? How do they
detect anomalies such as changing brightness or position of
objects to alert researchers?

1



a new paradigm for algorithm design

• Traditionally, algorithm design focuses on fast computation
when data is stored in an efficiently accessible centralized
manner (e.g., in RAM on a single machine).

• Massive data sets require storage in a distributed manner or
processing in a continuous stream.

• Even ‘simple’ problems become very difficult in this setting.

2



a new paradigm for algorithm design

For Example:

• How can Twitter rapidly detect if an incoming Tweet is an
exact duplicate of another Tweet made in the last year?
Given that no machine can store all Tweets made in a year.

• How can Google estimate the number of unique search
queries that are made in a given week? Given that no
machine can store the full list of queries.

• When you use Shazam to identify a song from a recording,
how does it provide an answer in < 10 seconds, without
scanning over all ∼ 8 million audio files in its database.

3



motivation for this class

A Second Motivation: Data Science is highly interdisciplinary.

• Many techniques that aren’t covered in the traditional CS
algorithms curriculum.

4



what we’ll cover

Section 1: Randomized Methods & Sketching

How can we efficiently compress large data sets in a way that
let’s us answer important algorithmic questions rapidly?

• Probability tools and concentration inequalities.
• Randomized hashing for efficient lookup, load balancing, and
estimation. Bloom filters.

• Locality sensitive hashing and nearest neighbor search.
• Streaming algorithms: identifying frequent items in a data stream,
counting distinct items, etc.

• Random compression of high-dimensional vectors: the
Johnson-Lindenstrauss lemma and its applications.

• Randomly sampling datasets: importance sampling and coresets.
5



what we’ll cover

Section 2: Spectral Methods

How do we identify the most important directions and features
in a dataset using linear algebraic techniques?

• Principal component analysis, low-rank approximation,
dimensionality reduction.

• The singular value decomposition (SVD) and its applications to
PCA, low-rank approximation, LSI, MDS, …

• Spectral graph theory. Spectral clustering, community detection,
network visualization.

• Computing the SVD on large datasets via iterative methods.
6



what we’ll cover

Section 2: Spectral Methods

How do we identify the most important directions and features
in a dataset using linear algebraic techniques?

If you open up the codes that are underneath [most data
science applications] this is all linear algebra on arrays.

– Michael Stonebraker

6



what we’ll cover

Section 3: Optimization

Fundamental continuous optimization approaches that drive
methods in machine learning and statistics.

• Gradient descent. Analysis for convex functions.
• Stochastic and online gradient descent. Application to neural
networks, non-convex analysis.

• Optimization for hard problems: alternating minimization and the
EM algorithm. k-means clustering.

A small taste of what you can find in COMPSCI 590OP.
7



what we’ll cover

Section 4: Assorted Topics

• Compressed sensing, restricted isometry property, basis pursuit.
• Discrete Fourier transform, fast Fourier transform.
• High-dimensional geometry, isoperimetric inequality.
• Differential privacy, algorithmic fairness.

Some flexibility here. Let me know what you are interested in!

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.
• E.g., least squares regression, logistic regression, kernel
methods, random forests, SVM, deep neural networks.

• COMPSCI 589: Machine Learning

9



style of the course

This is a theory centered course.

• Idea is to build general tools and algorithmic strategies that
can be applied to a wide range of specific problems.

• Assignments will emphasize algorithm design, correctness
proofs, and asymptotic analysis.

• A strong background in algorithms and a strong
mathematical background (particularly in linear algebra and
probability) are required.

• UMass prereqs: COMPSCI 240 and COMPSCI 311.

For example: Baye’s rule in conditional probability. What it
means for a vector x to be an eigenvector of a matrix A. Greedy
algorithms, divide-and-conquer algorithms.

10



course logistics

See course webpage for logistics, policies, lecture notes,
assignments, etc.:

http://people.cs.umass.edu/~cmusco/CS514F19/

11

http://people.cs.umass.edu/~cmusco/CS514F19/


personnel

Professor: Cameron Musco

• Email: cmusco@cs.umass.edu
• Office Hours: Tuesdays, 11:30am-12:30pm, CS 234.

TAs:

• Raj Kumar Maity
• Xi Chen
• Pratheba Selvaraju

See website for office hours/contact info.

12



piazza

We will use Piazza for class discussion and questions.

• See website for link to sign up.
• We encourage good question asking and answering with up
to 5% extra credit.

13



homework

We will have 4 problem sets, completed in groups of 3.

• Groups will remain fixed for the full semester. After you pick
a group, have one member email me the members/group
name by next Thursday 9/12.

• See Piazza for a thread to help you organize groups.

Problem set submissions will be via Gradescope.

• See website for a link to join. Entry Code: MRVWB2
• Since your emails, names, and grades will be stored in
Gradescope we need your consent to use. See Piazza for a
poll to give consent. Please complete by next Thursday 9/12.

14



grading

Grade Breakdown:

• Problem Sets (4 total): 40%, weighted equally.
• In Class Midterm (10/17): 30%.
• Final (12/19, 10:30am-12:30pm): 30%.

Extra Credit: Up to 5% extra credit will be awarded for
participation. Asking good clarifying questions in class and on
Piazza, answering instructors questions in class, answering
other students’ questions on Piazza, etc.

15



disabilities

UMass Amherst is committed to making reasonable, effective,
and appropriate accommodations to meet the needs to
students with disabilities.

• If you have a documented disability on file with Disability
Services, you may be eligible for reasonable
accommodations in this course.

• If your disability requires an accommodation, please notify
me by next Thursday 9/12 so that we can make
arrangements.

16



Questions?

17



Section 1: Randomized Methods & Sketching

18



some probability review

Consider a random X variable taking values in some finite set
S ⊂ R. E.g., for a random dice roll, S = {1, 2, 3, 4, 5, 6}.

• Expectation: E[X] =
∑

s∈S Pr(X = s) · s.

• Variance: Var[X] = E[(X− E[X])2].

19



independence

Consider two random events A and B.

• Conditional Probability:

Pr(A|B) = Pr(A ∩ B)
Pr(B) .

• Independence: A and B are independent if:

Pr(A|B) = Pr(A).

Using the definition of conditional probability, independence means:

Pr(A ∩ B)
Pr(B) = Pr(A) =⇒ Pr(A ∩ B) = Pr(A) · Pr(B).

20



independence

For Example: What is the probability that for two independent
dice rolls the first is a 6 and the second is odd?

Pr(D1 = 6 ∩ D2 ∈ {1, 3, 5}) = Pr(D1 = 6) · Pr(D2 ∈ {1, 3, 5})

=
1
6 · 12 =

1
12

Independent Random Variables: Two random variables X, Y
are independent if for all s, t, X = s and Y = t are independent
events. In other words:

Pr(X = s ∩ Y = t) = Pr(X = s) · Pr(Y = t).

21



linearity of expectation and variance

When are the expectation and variance linear? I.e.,

E[X+ Y] = E[X] + E[Y]

and

Var[X+ Y] = Var[X] + Var[Y].

22



linearity of expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y.

Proof:

E[X+ Y] =
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · (s+ t)

=
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · s+
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · t

=
∑
s∈S

s ·
∑
t∈T

Pr(X = s ∩ Y = t) +
∑
t∈T

t ·
∑
s∈S

Pr(X = s ∩ Y = t)

=
∑
s∈S

s · Pr(X = s) +
∑
t∈T

t · Pr(Y = t) = E[X] + E[Y].

23



linearity of variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Claim 2: E[XY] = E[X] · E[Y] when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= Var[X] + Var[Y].

24



an algorithmic application

You have contracted with a new company to provide CAPTCHAS
for your website.

• They claim that they have a database of 1000000 unique
CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.
• You could make test checks until you see 1000000 unique
CAPTCHAS: would take ≥ 1000000 checks!

25



an algorithmic application

A Clever Idea: You run some test security checks and see if any
duplicate CAPTCHAS show up. If you’re seeing duplicates after
not too many checks, the database size is probably not too big.

• ‘Mark and recapture’ method in ecology.

If you run m security checks, and there are n unique CAPTCHAS,
how many pairwise duplicates do you see in expectation?

If e.g. the same CAPTCHA shows up three times, on your ith, jth,
and kth test, this is three duplicates: (i, j), (i, k) and (j, k).

26



linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0
otherwise. The number of pairwise duplicates is:

E[D] =
∑
i,j

E[Di,j].

For any pair i, j: E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑
i,j

1
n =

(m
2
)
n =

m(m− 1)
2n .

Note that the Di,j random variables are not independent!

27



linearity of expectation

You take m = 1000 samples. If the database size is as claimed
(n = 1000000) then expected number of duplicates is:

E[D] = m(m− 1)
2n = .4995

You see 10 pairwise duplicates. And suspect that something is
up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a
random variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the
behavior of randomized algorithms, the behavior of data
drawn from different distributions, etc.

28



markov’s inequality

The most fundamental concentration bound: Markov’s
inequality.

For any non-negative random variable X:

Pr[X ≥ t] ≤ E[X]
t .

Proof:

E[X] =
∑
s
Pr(X = s) · s ≥

∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).
29



markov’s inequality

The most fundamental concentration bound: Markov’s
inequality.

For any non-negative random variable X:

Pr[X ≥ t · E[X]] ≤ 1
t .

Proof:

E[X] =
∑
s
Pr(X = s) · s ≥

∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).
29



markov’s inequality

Given no other assumptions on X besides non-negativity, can
you prove a stronger bound than Markov’s? No!

Pr[X ≥ t] = E[X]
t .

30



back to our application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10.

Applying Markov’s inequality, if the real database size is
n = 1000000 the probability of this happening is:

Pr[D ≥ 10] ≤ E[D]
10 =

.4995
10 ≈ .05

This is pretty small – you feel pretty sure the number of
unique CAPTCHAS is much less than 1000000. But how can you
boost your confidence?We’ll discuss next class.

31




