COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 10

LOGISTICS

- Problem Set 2 is due next Friday 10/11, although we will allow
submissions until Sunday 10/13 at midnight with no penalty.

- Midterm on Thursday 10/17. Will cover material through
today.

SUMMARY

Last Class: Dimensionality Reduction
- Applications and examples of dimensionality reduction in
data science.

- Low-distortion embeddings (MinHash as an example).
- Low-distortion embeddings for Euclidean space and the
Johnson-Lindenstrauss Lemma.

This Class: Finish the JL Lemma.

- Prove the Johnson-Lindenstrauss Lemma.

- Discuss algorithmic considerations, connections to other
methods, etc.

EMBEDDINGS FOR EUCLIDEAN SPACE

Low Distortion Embedding for Euclidean Space: Given x1,...,x, € RY
and error parameter e > 0, find X,...,X, € RY (where d’ < d) such

that forall i,j € [n]:
(1= a)llxi = xll2 < 1% = Xjll2 < (14 €)X = xill2

d-dimensional space d’-dimensional space
PY (for d’ << d)
° [
[J
[J
[J
° ® o
co
o, o
Il = x5, ’
tLe U -5,
If xa,...,%n lie in a k-dimensional subspace of RY can project to

d’ = k dimensions with no distortion.

If close to a k-dimensional space, can project to k dimensions
without much distortion (the idea behind PCA).

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: Let N € RY %9 have each

entry chosen ii.d. as \b - N(0,1). For

X1,....Xn € R4 €6 > 0,and d' = O(log(eirz’/‘s)) letting
X; = MNx;, with probability > 1 — § we have:

For all I,j . (1 — E)HX,' —XJ'HQ S Hf(, —)21”2 S (1 —|—e)HX,- —XjH2.

Surprising and powerful result.

- Construction of M is simple, random and

X1,...,Xn: original data points (d dimensions), Xq,...,Xn: compressed data
points (d’ < d dimensions), N € RY"*9: random projection matrix (embedding
function), e: error of embedding, &: failure probability.

RANDOM PROJECTION

dx1

dxd

.01 —-12 34 67 .10 —.49..
—45 7 14 .18 —-.65 .76..

I

random linear transformation
(random projection)

d=0 (logn/d)

€2

dx1

Xi

compressed output point
(low dimensions)

input point
(high dimensions)

N e R¥*4 is a random matrix. l.e., a random function mapping

length d vectors to length d’ vectors.

X1,...,Xn: original points (d dims.), Xi,. ..
dims.), M: random projection (embedding function), e: error of embedding.

,Xn: compressed points (d’ < d

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

dxd dx1 dx1

.01 —12 34 67 .10 —.49..
= 45070141 8= 650760

n

x| =%

random linear transformation
(random projection) compressed output point
(low dimensions)

,_ . (logn/é
d _0(€2)
input point
| (high dimensions)
X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d

dims.), M € RY"*: random projection (embedding function)

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

X4
Xz

v

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d
dims.), N € RY"*9: random projection (embedding function)

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

v

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d
dims.), N € RY"*9: random projection (embedding function)

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

a2

(2, (D)) % (D)

i |

v

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d
dims.), N € RY"*4: random projection (embedding function) 6

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

r

v

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d
dims.), N € RY"*9: random projection (embedding function)

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

r

v

X1,...,Xn: original points (d dims.), X1,...,%n: compressed points (d’ < d
dims.), N € RY"*9: random projection (embedding function)

CONNECTION TO SIMHASH

Compression operation is X; = Ix;, so for any j,
d
%)) = (NG)x) =Y N, R) - xi(R).-
k=1

M(j) is a vector with independent random Gaussian entries.

r

% =[1.1-2.401-5]

l

x=]

Points with high cosine
similarity have similar
random projections.

Computing a length d’ SimHash signature SHq(x;), ..., SHq/(X;) is
identical to computing X; = Mx; and then taking sign(X;).

DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let M € R™*¢ have each entry cho-

sen i.id. asﬁu/\/(1). If we setm = O(logV‘S) then

, with probability >1—4§
(1=l < IMyll2 < (T + €)lIyll2

Applying a random matrix N to any vector y preserves y's norm with

high probability.

- Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

+ Can be proven from first principles. Will see next.

N e R™¥4: random projection matrix. d: original dimension. m: compressed
dimension (analogous to d’), e embedding error, §: embedding failure prob. 7

DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that
a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given xi,...,x,, define (J) vectors yj; where y;; = x; — X;.

X4
Xz

Xy

X1, ..., Xn: original points, X1, ..., %n: compressed points, 0 € R™*%: random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d’), e embedding error, §: embedding failure prob. 8

DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given xi,...,x,, define (J) vectors yj; where y;; = x; — X;.

- If we choose Mwithm =0 (ng/‘s) for each y;; with probability
> 1— 4§ we have:

(T =alyillz < Ayl < (1 + il

X1,...,Xn: original points, X, . .., %n: compressed points, M € R™%%: random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d’), e embedding error, §: embedding failure prob. 8

DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given xi,...,x,, define (J) vectors yj; where y;; = x; — X;.

- If we choose Mwithm =0 (ng/‘s) for each y;; with probability
> 1— 4§ we have:

(1=l ll2 < || 2 < (1+) ll2

X1,...,Xn: original points, X, . .., %n: compressed points, M € R™%%: random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d’), e embedding error, §: embedding failure prob. 8

DISTRIBUTIONAL JL — JL

Distributional JL Lemma = JL Lemma: Distributional JL show that

a random projection M preserves the of any y. The main JL
Lemma says that M preserves between vectors.

Since M is these are the same thing!

Proof: Given xi,...,x,, define (J) vectors yj; where y;; = x; — X;.

- If we choose Mwithm =0 (ng/‘s) for each y;; with probability
> 1— 4§ we have:

(1=)llxi = xll2 <] 2 < (T + e)llxi —]l

X1,...,Xn: original points, X, . .., %n: compressed points, M € R™%%: random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d’), e embedding error, §: embedding failure prob. 8

DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. ﬁ -N(0,1) entries and

m=0 (‘Ogg/‘sl), letting X; = Mx;, for each pair x;, x; with probability
>1—¢" we have:

(1=l =xll2 < [IX = Xjll2 < (14 €)lIxi = x]2-

Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ =6/(}). = form =0 (loggi/‘s/) all pairwise
distances are preserved with probability > 1 — 4.

o (tog(w)> (log(()/6)) (tog(;z/@) 0 (log(n/a))

X1, ..., Xn: original points, X1, ..., %n: compressed points, 1 € R™*9: random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d’), & embedding error, §: embedding failure prob.

DISTRIBUTIONAL JL — JL

Claim: If we choose M with i.i.d. N(0,1) entries and

;
2
m=20 (%) letting X; = Mx;, for each pair x;, x; with probability
>1—¢" we have:

(1= a)llxi = xjll2 < [1%i = Xjll2 < (V+ €)llx; — X |2
With what probability are all pairwise distances preserved?
Union bound: With probability > 1— (3) - &' all pairwise distances are
preserved.

Apply the claim with ¢’ =6/(}). = form =0 (all pairwise

distances are preserved with probability > 1 — 4.

o (tog(w)> (log(()/6)) (log(enzz/é)> . <tog<n»>>

Yields the JL lemma.

log1/6’)
€Z

DISTRIBUTIONAL JL PROOF

~

Distributional JL Lemma: Let M € R™*¢ have each entry cho-
sen iid. as = - N(0,1). If we setm =0 (logw) then

, with probability >1—4§

(1 =alylla < [IMyll2 < (1 + €) Iyl

- Let y denote My and let N(j) denote the j* row of M.
+ Forany j, ¥() = (N().y) = J= XL, - v; where g ~ A(0,7).
n

11(0)) Y
01-12 34 67 10 —49.. Yz

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection. d: original dim. m: compressed dim, e: error, §: failure prob. 10

DISTRIBUTIONAL JL PROOF

- Let § denote My and let M(j) denote the j row of M.
- For any j, §(j) = (N(),y) = —= 5L, g - yi where g ~ A/(0,1).
- gi-yi ~N(0,y?): a normal distribution

variance 1 variance y;

l_‘_\ A
I |

VANVAN

gi giYi

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

DISTRIBUTIONAL JL PROOF

- Let § denote My and let M(j) denote the j row of M.
+ Forany J, §() = (NG),y) = —= S0, g - y; where g ~ A(0,7).
- gi-yi ~N(0,y?): a normal distribution

variance y,

variance y; variance y,

1 L 1
[1 \ [\
/\+A e j\

. 1
}’(])=ﬁ(91'3ﬁ + 929 + ot GnVa)

Also Gaussian!

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable.

1

DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j),y) and:

d
N] .y e 2
¥() = \/m;g, yi where g; - y; ~ N(0,y?).

Stability of Gaussian Random Variables. For an~
N(w,0%) and b ~ N(up,07) we have:

a+ b~ N+ 2,07 + 73)

VARV

y € RY: arbitrary vector, § € R™: compressed vector, M € R™*%: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

DISTRIBUTIONAL JL PROOF

Letting y = Ny, we have y(j) = (N(j),y) and:

d
N] .y e 2
¥() = \/m;g, yi where g; - y; ~ N(0,y?).

Stability of Gaussian Random Variables. For an~
N(w,0%) and b ~ N(up,07) we have:

a+ b~ N+ 2,07 + 73)

Thus, y(j) ~ le,Vy itself is a random Gaussian vector.

Stability is another explanation for the

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable 12

DISTRIBUTIONAL JL PROOF

o far: Letting M € R?*™ have each entry chosen i.i.d. as
7= - N(0,1), forany y € RY, letting § = My:

Y() ~ N0, [Iyl3/m).

E[§I3] =E | > 90) Z]E[y
j=1

vl _
m

NN

|
.Mg

1

J
So ¥ has the right norm in expectation.

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j* row of N, d: original dimension. m: com-
pressed dimension, g;: normally distributed random variable

13

DISTRIBUTIONAL JL PROOF

So far: Letting M € RY*™ have each entry chosen i.i.d. as
L. N(0,1), forany y € RY letting y = Ny:

I
Y(j) ~ N (0, |lyll3/m) and E[[[§[I3] = [Iv]3
19112 = Y, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)
filz) \f
0.5
0.4
0.3
0.2 X

0.1

y € RY: arbitrary vector, § € R™: compressed vector, M € R™*%: random
projection mapping y — y. M(j): j row of N, d: original dimension. m: com-

pressed dimension, e: embedding error, §: embedding failure prob. 14

DISTRIBUTIONAL JL PROOF

o far: Letting M € R?*™ have each entry chosen i.i.d. as
T -N(0,1), for any y € RY, letting y = My:
Y(j) ~ N(0, llyllz/m) and E[[|¥I2] = [IyI3
91 = 322, 90)

(a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr(|z — EZ| > eEZ] < 2e~"<'/8,

Ifwesetm=0 (log(ﬁ%) with probability 1 — O(e~'08(/9)) > 1 — §:

(1 =alylz < 912 < (0 +)lyli3.

y € R% arbitrary vector, § € R™: compressed vector, M € R™*9: random
projection mapping y — . M(j): j row of N, d: original dimension. m: com-
pressed dimension, e: embedding error, §: embedding failure prob.

14

DISTRIBUTIONAL JL PROOF

o far: Letting M € R?*™ have each entry chosen i.i.d. as
T - N(0,1), for any y € RY, letting § = My:

Y() ~ N0, lIyll3/m) and E[I¥[15] = llyl2

19112 = Y=, ¥(j)? a Chi-Squared random variable with m degrees of
freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-
Squared random variable with m degrees of freedom,

Pr(|z — EZ| > eEZ] < 2e~"<'/8,

Ifwesetm=0 (M) with probability 1 — O(e~'08(/9)) > 1 — §:

(1 =alylz < 912 < (0 +)lyli3.

Gives the distributional JL Lemma and thus the classic JL Lemma!

14

EXAMPLE APPLICATION: SVM

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

Class A ° Separating
Hyperplane - For any pointain A,

(a,w) >c+m

- For any point b in B

o
Class B <b’ W> sc-—m.
- Assume all vectors
! have unit norm.

margin m

JL Lemma implies that after projection into O (loni”) dimensions, still
have (a,W) > c+m/4 and (b,wW) < c—m/4
Upshot: Can random project and run SVM (much more efficiently) in

the lower dimensional space to find separator w.
15

Questions?

16

