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logistics

• Problem Set 2 is due next Friday 10/11, although we will allow
submissions until Sunday 10/13 at midnight with no penalty.

• Midterm on Thursday 10/17. Will cover material through
today.
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summary

Last Class: Dimensionality Reduction

• Applications and examples of dimensionality reduction in
data science.

• Low-distortion embeddings (MinHash as an example).
• Low-distortion embeddings for Euclidean space and the
Johnson-Lindenstrauss Lemma.

This Class: Finish the JL Lemma.

• Prove the Johnson-Lindenstrauss Lemma.
• Discuss algorithmic considerations, connections to other
methods, etc.
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embeddings for euclidean space

Low Distortion Embedding for Euclidean Space: Given x1, . . . , xn ∈ Rd

and error parameter ϵ ≥ 0, find x̃1, . . . , x̃n ∈ Rd′ (where d′ ≪ d) such
that for all i, j ∈ [n]:

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2

If x1, . . . , xn lie in a k-dimensional subspace of Rd can project to
d′ = k dimensions with no distortion.

If close to a k-dimensional space, can project to k dimensions
without much distortion (the idea behind PCA). 3



the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: LetΠ ∈ Rd′×d have each
entry chosen i.i.d. as 1√

d′
· N (0, 1). For any set of points

x1, . . . , xn ∈ Rd, ϵ, δ > 0, and d′ = O
(
log(n/δ)

ϵ2

)
, letting

x̃i = Πxi, with probability ≥ 1− δ we have:

For all i, j : (1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − x̃j∥2 ≤ (1+ ϵ)∥xi − xj∥2.

Surprising and powerful result.

• Construction of Π is simple, random and data oblivious.

x1, . . . , xn : original data points (d dimensions), x̃1, . . . , xñ : compressed data
points (d′ < d dimensions),Π ∈ Rd′×d : random projectionmatrix (embedding
function), ϵ: error of embedding, δ: failure probability.
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random projection

Π ∈ Rd′×d is a random matrix. I.e., a random function mapping
length d vectors to length d′ vectors.

x1, . . . , xn : original points (d dims.), x̃1, . . . , xñ : compressed points (d′ < d
dims.), Π: random projection (embedding function), ϵ: error of embedding.
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connection to simhash

Compression operation is x̃i = Πxi, so for any j,

x̃i(j) = ⟨Π(j), xi⟩ =
d∑
k=1

Π(j, k) · xi(k).

Π(j) is a vector with independent random Gaussian entries.

x1, . . . , xn : original points (d dims.), x̃1, . . . , xñ : compressed points (d′ < d
dims.), Π ∈ Rd′×d : random projection (embedding function)
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connection to simhash

Compression operation is x̃i = Πxi, so for any j,

x̃i(j) = ⟨Π(j), xi⟩ =
d∑
k=1

Π(j, k) · xi(k).

Π(j) is a vector with independent random Gaussian entries.

Points with high cosine
similarity have similar
random projections.

Computing a length d′ SimHash signature SH1(xi), . . . , SHd′(xi) is
identical to computing x̃i = Πxi and then taking sign(x̃i).
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distributional jl

The Johnson-Lindenstrauss Lemma is a direct consequence of a
closely related lemma:

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as 1√

m · N (0, 1). If we set m = O
(
log 1/δ

ϵ2

)
, then for any

y ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥y∥2 ≤ ∥Πy∥2 ≤ (1+ ϵ)∥y∥2

Applying a random matrix Π to any vector y preserves y’s norm with
high probability.
• Like a low-distortion embedding, but for the length of a
compressed vector rather than distances between vectors.

• Can be proven from first principles. Will see next.

Π ∈ Rm×d : random projection matrix. d: original dimension. m: compressed
dimension (analogous to d′), ϵ: embedding error, δ: embedding failure prob. 7



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that
a random projection Π preserves the norm of any y. The main JL
Lemma says that Π preserves distances between vectors.

Since Π is linear these are the same thing!

Proof: Given x1, . . . , xn, define
(n
2
)
vectors yij where yij = xi − xj.

x1, . . . , xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d′), ϵ: embedding error, δ: embedding failure prob. 8
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distributional jl =⇒ jl

Claim: If we choose Π with i.i.d. 1√
m · N (0, 1) entries and

m = O
(
log 1/δ′

ϵ2

)
, letting xĩ = Πxi, for each pair xi, xj with probability

≥ 1− δ′ we have:

(1− ϵ)∥xi − xj∥2 ≤ ∥x̃i − xj̃∥2 ≤ (1+ ϵ)∥xi − xj∥2.

With what probability are all pairwise distances preserved?

Union bound: With probability ≥ 1−
(n
2
)
· δ′ all pairwise distances are

preserved.

Apply the claim with δ′ = δ/
(n
2
)
. =⇒ for m = O

(
log 1/δ′

ϵ2

)
, all pairwise

distances are preserved with probability ≥ 1− δ.

m = O
(
log(1/δ′)

ϵ2

)
= O

(
log(

(n
2
)
/δ)

ϵ2

)
= O

(
log(n2/δ)

ϵ2

)
= O

(
log(n/δ)

ϵ2

)
x1, . . . , xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d′), ϵ: embedding error, δ: embedding failure prob.
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2
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ϵ2

)
Yields the JL lemma.

x1, . . . , xn : original points, x1̃, . . . , x̃n : compressed points, Π ∈ Rm×d : random
projection matrix. d: original dimension. m: compressed dimension (analo-
gous to d′), ϵ: embedding error, δ: embedding failure prob.

9



distributional jl proof

Distributional JL Lemma: Let Π ∈ Rm×d have each entry cho-
sen i.i.d. as 1√

m · N (0, 1). If we set m = O
(
log 1/δ

ϵ2

)
, then for any

y ∈ Rd, with probability ≥ 1− δ

(1− ϵ)∥y∥2 ≤ ∥Πy∥2 ≤ (1+ ϵ)∥y∥2

• Let ỹ denote Πy and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⟩ = 1√

m
∑d

i=1 gi · yi where gi ∼ N (0, 1).

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob. 10



distributional jl proof

• Let ỹ denote Πy and let Π(j) denote the jth row of Π.
• For any j, ỹ(j) = ⟨Π(j), y⟩ = 1√

m
∑d

i=1 gi · yi where gi ∼ N (0, 1).
• gi · yi ∼ N (0, y2i ): a normal distribution with variance y

2
i .

What is the distribution of ỹ(j)? Also Gaussian!

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable.
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distributional jl proof

Letting ỹ = Πy, we have ỹ(j) = ⟨Π(j), y⟩ and:

ỹ(j) = 1√
m

d∑
i=1

gi · yi where gi · yi ∼ N (0, y2i ).

Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1 ) and b ∼ N (µ2, σ

2
2) we have:

a+ b ∼ N (µ1 + µ2, σ
2
1 + σ22)

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable
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m

d∑
i=1
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Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1 ) and b ∼ N (µ2, σ

2
2) we have:

a+ b ∼ N (µ1 + µ2, σ
2
1 + σ22)

Thus, ỹ(j) ∼ N (0, ∥y∥22/m). I.e., ỹ itself is a random Gaussian vector.
Rotational invariance of the Gaussian distribution.

Stability is another explanation for the central limit theorem.

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable 12



distributional jl proof

So far: Letting Π ∈ Rd×m have each entry chosen i.i.d. as
1√
m · N (0, 1), for any y ∈ Rd, letting ỹ = Πy:

ỹ(j) ∼ N (0, ∥y∥22/m).

What is E[∥ỹ∥22]?

E[∥ỹ∥22] = E

 m∑
j=1

ỹ(j)2
 =

m∑
j=1

E[ỹ(j)2]

=
m∑
j=1

∥y∥22
m = ∥y∥22

So ỹ has the right norm in expectation.

How is ∥ỹ∥22 distributed? Does it concentrate?

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, gi : normally distributed random variable 13
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freedom (a sum of m squared independent Gaussians)
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)
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)
, with probability 1− O(e− log(1/δ)) ≥ 1− δ:

(1− ϵ)∥y∥22 ≤ ∥ỹ∥22 ≤ (1+ ϵ)∥y∥22.

Gives the distributional JL Lemma and thus the classic JL Lemma!

y ∈ Rd : arbitrary vector, ỹ ∈ Rm : compressed vector, Π ∈ Rm×d : random
projection mapping y → ỹ. Π(j): jth row of Π, d: original dimension. m: com-
pressed dimension, ϵ: embedding error, δ: embedding failure prob.
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example application: svm

Support Vector Machines: A classic ML algorithm, where data is
classified with a hyperplane.

• For any point a in A,
⟨a,w⟩ ≥ c+m

• For any point b in B
⟨b,w⟩ ≤ c−m.

• Assume all vectors
have unit norm.

JL Lemma implies that after projection into O
(
log n
m2

)
dimensions, still

have ⟨ã,w⟩̃ ≥ c+m/4 and ⟨b̃,w⟩̃ ≤ c−m/4.

Upshot: Can random project and run SVM (much more efficiently) in
the lower dimensional space to find separator w.̃
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Questions?
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