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LOGISTICS

- Problem Set 2 is due this Friday 10/11. Will allow
submissions until Sunday 10/13 at midnight with no penalty.

- Midterm next Thursday 10/17.

Problem Set 2:

- Mean was a 32.74/40 = 81%.
- Mostly seem to have mastered Markov's, Chebyshey, etc.

- Some difficulties with exponential tail bounds (Chernoff and
Bernstein). Will give some review exercises before midterm.



SUMMARY

Last Two Classes: Randomized Dimensionality Reduction

- The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension dto O (10{72/5
dimensions and preserve (with probability > 1— ) all
palrwise distances up to 1+ e.

- Compression Is linear via multiplication with a random, data
oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and
principal component analysis.

- Compression is still linear — by applying a matrix.

- Chose this matrix carefully, taking into account structure of
the dataset.

- Can give better compression than random projection.



EMBEDDING WITH ASSUMPTIONS

Assume that data points Xi,..., X, lie in any k-dimensional subspace
Y of RY.

d-dimensional space

k-dim. subspace V

Recall: Let V4, ..., V, be an orthonormal basis for V and V € R9*k be
the matrix with these vectors as its columns. For all X;, X;:

IVI%: = VIil2 = (1% = Xill2-
- VI e R**4 is a linear embedding of Xi, ..., X, into k dimensions

with no distortion.

* An actual projection, analogous to a JL random projection M. 3



EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X, ..., X, lie close to
any k-dimensional subspace V of RY.

d-dimensional space

k-dim. subspace V

Letting V4, ..., Vi, be an orthonormal basis for V and V € R¥*F be the
matrix with these vectors as its columns, V'X; € R¥ is still a good
embedding for x; € RY. The key idea behind low-rank approximation

and principal component analysis (PCA).
* How do we find V and V?
* How good is the embedding? 4



LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting V4, ...,V be an orthonormal basis for V, can write any X; as:

)_(’,':C,‘J-V1+Ci’2-V2+...+C[7k-\7'h.

© S0 Vy,...,Vk span the rows of X and thus rank(X) < k.

d dimensions

I
0

Vi +
n data points+ X

Ci,k* Vi

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € RY: orthogo-
nal basis for subspace V. V e R9><k: matrix with columns v, s

« oy Vp.




Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X e R"<d

- Every data point X; (row of X) can be written as

Ci1 Vid...4+Cip-Vy=CV.
VI G Ve = G k parameters

d dimensions
H;\ ——

VT

n data points— X (o

- X can be represented by (n + d) - k parameters vs. n - d.
- The columns of X are spanned by k vectors: the columns of C.

X1,...,%n: data points (in R?), V: k-dimensional subspace of RY, v, ..., ¥, €
RY: orthogonal basis for V. V € R¥*k: matrix with columns v, . .., V.




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € RI*k the data matrix can be written as X = CV'.

k parameters

d dimensions
—

A\

n data points X (o

- X=CV — Xv=cVvlv

- VIV = |, the identity (since V is orthonormal) =

X1, ...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V. € R4*k: matrix with columns ¥4, . . ., V. 7




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € RI*k the data matrix can be written as X = CV'.

k parameters

n data points X V [7] ¢ ¢ =x V=%

- X=CV =— Xv=cVvlv

- VIV = |, the identity (since V is orthonormal) =

X1,...,%, € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9>%k: matrix with columns V4, ..., V. 7




LOW-RANK FACTORIZATION

Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € RI*k the data matrix can be written as X = CV'.

k parameters d x d projection matrix

d dimensions
VT vT
X; - g =
n data points X c X Vv

“X=CV = XV=qV'V
- VIV = |, the identity (since V is orthonormal) =

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R%: orthogo-
nal basis for subspace V. V e R9%k: matrix with columns V4, .. ., V. 7




PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as
X = X(W).

- W' is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V. e R4*k: matrix with columns ¥4, . . ., V. 8




PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as
X = X(W).
- Wlisa , which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V. e R4*k: matrix with columns ¥4, . . ., V. 8




PROJECTION VIEW

Claim: If X;,...,X, lie in a k-dimensional subspace V with
orthonormal basis V € R¥*k, the data matrix can be written as
X = X(W).

- W' is a projection matrix, which projects the rows of X (the data
points X1, ..., X, onto the subspace V.

d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V. e R4*k: matrix with columns ¥4, . . ., V. 8




LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:

X ~ X(W') = XPy,

d-dimensional space

k-dim. subspace V

Note: X(VV') has rank k. Itis a low-rank approximation of X.

X(WT) = argmin |X— B[z =) (X — B

B with rows in V i

X1, ...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9*%*: matrix with columns V4, ..., V.




LOW-RANK APPROXIMATION

So Far: If X,..., X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9** the data matrix can be approximated as:
X~ X(W).

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW7);, (XW'); be the i" and j"" projected data points,
[(XWT); = (XWT)j 2 = [[[(XV); — (XV)IVT 12 = [[(XV); = (XV),]]2-

- Can use XV € R"** as a compressed approximate data set.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V e R9*%*: matrix with columns V4, ..., V.




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi, ..., X, to lie close to a
k-dimensional subspace?
- The rows of X can be approximately reconstructed from a

basis of k vectors.
projections onto 15
784 dimensional vectors ~ dimensional space

1



WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

* Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors

home 1 2 2 1800 [ 2
home 2 4 2.5 2700 1

homen 5 35 3600 [ 3
12




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

* Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms floors| list price|sale price
home 1 2 2 | 200,000 | 195,000
home 2 4 1 | 300,000 | 310,000

homen 5 3 | 450,000 | 450,000




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

* Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10000* 10* ~
bedrooms floors sale price
home 1 2 2 195,000
home 2 4 1 310,000

homen 5 3 450,000




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with

orthonormal basis V € RY** the data matrix can be approximated as

XVVT. XV gives optimal embedding of X in V.

How do we find V (and V)?

argmin X = XWI[[2 = > (X — (XWT);)?
orthonormal VERI Xk i
d-dimensional space

k-dim. subspace V

Z 1% — WTXi||3

X1, ...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V € R4>*: matrix with columns ¥, ..

-y Vg

13



BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V.

How do we find V (and V)?
n
argmin  [X|IF = [IXWT[[F = [I%]5 = [WXi[13

orthonormal VERIxk i

d-dimensional space

k-dim. subspace V

nal basis for subspace V. V € RY*k: matrix with columns V4, .. . , V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo- ]
13
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If Xi,...,X, are close to a k-dimensional subspace V with
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XVVT. XV gives optimal embedding of X in V.
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d-dimensional space

k-dim. subspace V

nal basis for subspace V. V € RY*k: matrix with columns V4, .. . , V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo- ]
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V.

How do we find V (and V)?
n
argmax  [IXWTII2 =Y [IWK|3

orthonormal VERYx* i

d-dimensional space

k-dim. subspace V

nal basis for subspace V. V € RY*k: matrix with columns V4, .. . , V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo- ]
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