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- Problem Set 2 is due this Friday 10/11. Will allow
submissions until Sunday 10/13 at midnight with no penalty.

- Midterm next Thursday 10/17.

Problem Set 2:

- Mean was a 32.74/40 = 81%.
- Mostly seem to have mastered Markov's, Chebyshey, etc.

- Some difficulties with exponential tail bounds (Chernoff and
Bernstein). Will give some review exercises before midterm.
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SUMMARY

Last Two Classes: Randomized Dimensionality Reduction

- The Johnson-Lindenstrauss Lemma

- Reduce n data points in any dimension d to O (‘Oiig/‘;
dimensions and preserve (with probability > 1—6) all
pairwise distances up to T+e.

- Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and
principal component analysis.

- Compression is still linear = by applying a matrix.

- Chose this matrix carefully, taking into account structure of
the dataset.

- Can give better compression than random projection.
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- VI € R**4 is a linear embedding of Xi, ..., X, into k dimensions
with no distortion.



EMBEDDING WITH ASSUMPTIONS

Assume that data points X1, ..., X, lie in any kR-dimensional subspace
Y of RY.

d-dimensional space

k-dim. subspace V

Recall: Let Vi, ..., V), be an orthonormal basis for V and V € R4** be
the matrix with these vectors as its columns. For all X;, X;:

VX = VX[l = 1% = X2
- VI € R**4 is a linear embedding of Xi, ..., X, into k dimensions

with no distortion.

-+ An actual projection, analogous to a JL random projection M. 3
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EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points X1, ..., X, lie close to
any k-dimensional subspace V of RY.
& k d-dimensional space T J"\Xé.. L
X it \
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k-dim. subspace V

Letting Vi, ..., V, be an orthonormal basis for V and V € R?** be the
matrix with these vectors as its columns, V'X; € RF is still a good
embedding for x, € RY The key idea behind low-rank approximation

nei i ),
and principal component analysis (PCA). {l Ql‘ '{”()\\ ’\/)/\Ku _\J\
- How do we find V and V?

* How good is the embedding? 4



LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R™<9 has rank < k.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"™9 has rank < k.
Letting Vi, ...,V be an orthonormal basis for V, can write any X; as:

)_(',‘:C,'J-V1+Cj72-\7‘2+...+Cj7k-\7k.
L

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.




LOW-RANK FACTORIZATION

Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*d

- Letting ¥, ..., V), be an orthonormal basis for V, can write any X; as:

)_(',‘:C,'J-\71+C;72-\_/‘2+...+C,'7;?-\7k.
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nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V.
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Claim: Xi,...,X, lie in a k-dimensional subspace V < the data
matrix X € R"<¢ fie 5 _
Koy 70 Nl
- Letting ¥, ..., V), be an orthonormal basis for V, can write any X; as:
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥, ..., v, € R%: orthogo-
nal basis for subspace V. V e RY*k: matrix with columns V4, .. ., V. 5




Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X € R"™4 has rank < k.

- Every data point X; (row of X) can be written as
C,'71-\_/‘1+...—|-C,'7/?-\_/'/?

X1,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥, ...,V, €
RY: orthogonal basis for V. V e RY*k: matrix with columns V4, ..., V.




Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X € R"™4 has rank < k.

- Every data point X; (row of X) can be written as
Ciq-Vy +...—|—C,'7/?-\_/'/?:E,'VT.
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X1,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥, ...,V, €
RY: orthogonal basis for V. V e RY*k: matrix with columns V4, ..., V.




Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*¢

- Every data point X; (row of X) can be written as

Ci1-Vi4 ...+ Cp-Vp=CV.
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Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*¢

- Every data point X; (row of X) can be written as

Ci1-Vi4 ...+ Cp-Vp=CV.
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- X can be represented by (n + d) - k parameters vs. n - d.

X1,...,%;: data points (in R9), V: k-dimensional subspace of R?, ¥, ...,V, €
RY: orthogonal basis for V. V. e R¥*k: matrix with columns V4, . . ., V.




Claim: Xy, ...,X, lie in a k-dimensional subspace V < the data
matrix X € R"*¢

- Every data point X; (row of X) can be written as
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- X can be represented by (n + d) - k parameters vs. n - d.
- The columns of X are spanned by k vectors: the columns of C.

X1,...,%n: data points (in RY), V: k-dimensional subspace of R® w
__R% orthogonal basis for V. V € R***: matrix with columns ¥, ..., V.
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Claim: If X;,...,X, lie in a k-dimensional subspace with orthonormal
basis V € R¥*k the data matrix can be written as X = CV'.
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LOW-RANK APPROXIMATION

Claim: If X;,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R9*% the data matrix can be approximated as:
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Note: X(VWVT) has rank k. Itis a low-rank approximation of X.

X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.
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Note: X(VWVT) has rank k. Itis a low-rank approximation of X.
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X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V. .




LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*% the data matrix can be approximated as:
X~ X(W).

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with

orthonormal ba5|s V € RY%* the data matrix can be ppro><|mated as
X = X(W7). % ‘ 1}

This is the closest approximation to X with rows in ¥ (i.e,, in th

column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
IXVVT); = (AWl = [[TXV); = (XV)IVT L = [[T(XV); = (XV), ]2

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.
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+ Letting (XW');, (XWT); be the it" and i projected data points,
IXWVT); — (XWT)jl2 = [II(XV); — (XV)IVT Il = 1T(XV) = (X))

- Can use XV € R"** as a compressed approximate data set.
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LOW-RANK APPROXIMATION

So Far: If X1,...,X, lie close to a k-dimensional subspace V with
orthonormal basis V € R?*k the data matrix can be approximated as:
X~ X(W).

This is the closest approximation to X with rows in V (i.e,, in the
column span of V).

+ Letting (XW');, (XWT); be the it" and i projected data points,
IXWVT); — (XWT)jl2 = [II(XV); — (XV)IVT Il = 1T(XV) = (X))

- Can use XV € R"** as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

X,..., % € RY: data points, X € R"*: data matrix, ¥, . .., V, € R orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, . . . , V.

10
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k-dimensional subspace?
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k-dimensional subspace?

- The rows of X can be approximately reconstructed from a
basis of k vectors.
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Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| bathrooms| sq.ft.|floors| list price|sale price
home 1 2 2 1800 | 2 | 200,000 | 195,000
home 2 4 2.5 2700 | 1 300,000 | 310,000
home n 5 3.5 3600 | 3 450,000 | 450,000




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables: /\

bedrooms| bathrooms| sq.ft. roors/
home 1 2 2 1800 | 2
home 2 4 2.5 2700 1
home n 5 35 3600 3
12




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

bedrooms| floors| list price| sale price
home 1 2 2 | 200,000 | 195,000
home 2 4 1 300,000 | 310,000

home n 5 3 | 450,000 | 450,000




WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xy, ..., X, to lie close to a
k-dimensional subspace?

- Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10000* 10* =~
bedrooms floors sale price
home 1 2 2 195,000
home 2 4 1 310,000

home n 5 3 450,000




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.
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X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (and V)?

n
argmin || X = XWT||2 = Z(X/’,j — (XW);;)? = Z X — WXi|13
orthonormal VERIXF  o——— i = >

d-dimensional space

-dim. subspace V

X1,...,% € RY: data points, X € R"*?: data matrix, v1, . .., v, € R orthogo-
nal basis for subspace V. V € RY¥k: matrix with columns ¥, . . . , V.




BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with
orthonormal basis V € RY** the data matrix can be approximated as
XVWV'. XV gives optimal embedding of X in V.

How do we find V (and V)?

argmin X2 — [XWT|2 =
orthonormal VERd Xk

< X)

d-dimensional space

k-dim. subspace V
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SOLUTION VIA EIGENDECOMPOSITION
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- X'X is the covariance matrix (sometimes after mean centering).
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SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
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orthonormal VERY* =1

Can find the columns of V, Vi, ..., V, greedily!
V, = arg max IXV]|3 = arg max VIXTXV.
Vwith [|V],=1and (v,V;)=0 Vwith ||V]|,=1and (v,V;)=0

V is the second eigenvector of XX with XTXV, = M\ (XTX) - ¥4.

° V;XTXVQ = )\z(XTX) . \7;\72 = )\2(XTX)

- Continue like this, setting v, . . ., Vi, to the top k eigenvectors of X'X.

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.
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PRINCIPAL COMPONENT ANALYSIS

Upshot: To find an orthogonal basis V for a k-dimensional
subspace as close as possible to X, minimizing

X — XWT2,

we let V have columns v;,. .., V, corresponding to the top k
eigenvectors of the covariance matrix X'X.
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Upshot: To find an orthogonal basis V for a k-dimensional
subspace as close as possible to X, minimizing

X — XWT2,

we let V have columns v;,. .., V, corresponding to the top k
eigenvectors of the covariance matrix X'X.

This is principal component analysis (PCA).
How accurate is this low-rank approximation?

d-dimensional space

k-dim. subspace V
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SPECTRUM ANALYSIS

Let V4, ...,V be the top k eigenvalues of X'X (the top k
principal components). Approximation error is:

X — XVVT|I?
X1,...,%, € R% data points, X € R"%9: data matrix, V4,...,¥, € R% basis
composed of top eigenvectors of XX, V € R4*k: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Upshot: The error in approximating X with the best rank k

approximation (projecting onto the top k eigenvectors of X'X is:

d
IX=XWTE = 3 A (X0%)
i=R+1
X1,...,% € RY data points, X € R"%9: data matrix, v4,...,¥, € R% basis

composed of top eigenvectors of XX, V € R4k matrix with columns v, . . .

5 Vg
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SPECTRUM ANALYSIS

Upshot: The error in approximating X with the best rank k
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Upshot: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
X —XWJZ = 37 A (X'X)
i=R+1

784 dimensional vectors

eigendecomposition
\H/‘

o —
o s 10 1 2 # % ®m
? Eigenvalue Rank

Xi,...,%X € R% data points, X € R"%Y: data matrix, V4,...,V, € R% basis
composed of top eigenvectors of XX, V € RI%F: matrix with columns ¥, . . . , V.

Eigenvalue
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SPECTRUM ANALYSIS

Upshot: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
T2 T
X —XWJZ = 3= A (XX)
i=k+1
784 dimensional vectors

eigendecomposition 12

”
Xi,...,X» € RY: data points, X € R"*%: data matrix, v4,...,V, € RY basis
composed of top eigenvectors of XX, V € RIXF: matrix with columns ¥, . . . , V..
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Questions?
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