COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 11

LOGISTICS

- Problem Set 2 is due this Friday 10/11. Will allow submissions until Sunday 10/13 at midnight with no penalty.
- · Midterm next Thursday 10/17.

LOGISTICS

- Problem Set 2 is due this Friday 10/11. Will allow submissions until Sunday 10/13 at midnight with no penalty.
- Midterm next Thursday 10/17.

Problem Set 2:

- Mean was a 32.74/40 = 81%.
- · Mostly seem to have mastered Markov's, Chebyshev, etc.
- Some difficulties with exponential tail bounds (Chernoff and Bernstein). Will give some review exercises before midterm.

SUMMARY

Last Two Classes: Randomized Dimensionality Reduction

Last Two Classes: Randomized Dimensionality Reduction

- · The Johnson-Lindenstrauss Lemma
- Reduce n data points in any dimension d to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

Last Two Classes: Randomized Dimensionality Reduction

- · The Johnson-Lindenstrauss Lemma
- Reduce n data points in any dimension d to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and principal component analysis.

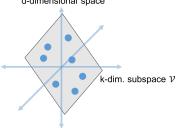
Last Two Classes: Randomized Dimensionality Reduction

- · The Johnson-Lindenstrauss Lemma
- Reduce n data points in any dimension d to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

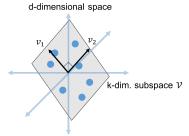
Next Two Classes: Low-rank approximation, the SVD, and principal component analysis.

- · Compression is still linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- · Can give better compression than random projection.

Assume that data points $\vec{x}_1,\dots,\vec{x}_n$ lie in any k-dimensional subspace $\mathcal V$ of $\mathbb R^d$.



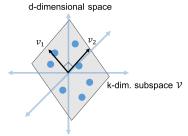
Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Recall: Let $\vec{v_1}, \dots, \vec{v_k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{x_i}, \vec{x_j}$:

$$(\mathbf{V}^\mathsf{T}\vec{x}_i - \mathbf{V}^\mathsf{T}\vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

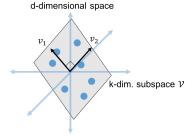


Recall: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



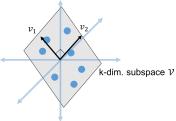
Recall: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

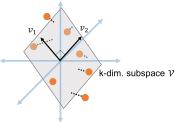
- $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.
- \cdot An actual projection, analogous to a JL random projection Π .

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

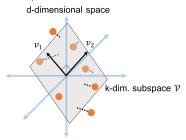
d-dimensional space



Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

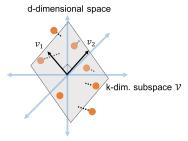


Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



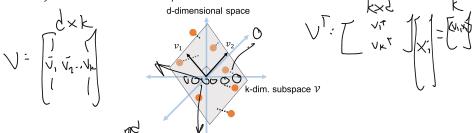
Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Main Focus of Today: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- · How good is the embedding?

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

· Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

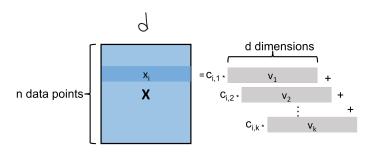
$$\vec{X}_i = c_{i,1} \cdot \vec{V}_1 + c_{i,2} \cdot \vec{V}_2 + \ldots + c_{i,k} \cdot \vec{V}_k.$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

· Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$



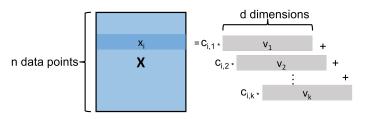
 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for V, can write any \vec{x}_i as:

$$\vec{X}_i = c_{i,1} \cdot \vec{V}_1 + c_{i,2} \cdot \vec{V}_2 + \ldots + c_{i,k} \cdot \vec{V}_k.$$

· So $\vec{v}_1, \dots, \vec{v}_k$ span the rows of **X** and thus rank(X) $\leq k$.



 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

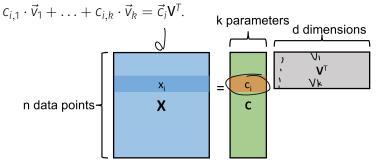
• Every data point \vec{x}_i (row of **X**) can be written as $c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k$.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

• Every data point \vec{x}_i (row of **X**) can be written as $c_{i,1} \cdot \vec{v}_1 + \ldots + c_{i,k} \cdot \vec{v}_k = \vec{c}_i \mathbf{V}^T$.

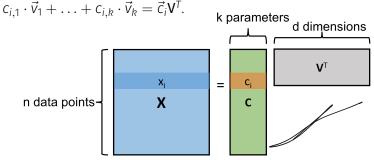
 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

· Every data point \vec{x}_i (row of **X**) can be written as



 $\vec{x}_1, \dots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

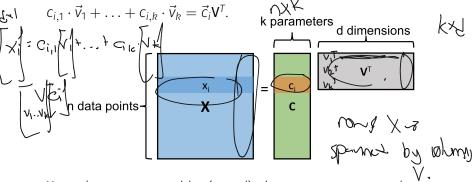
• Every data point $\vec{x_i}$ (row of X) can be written as



· X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

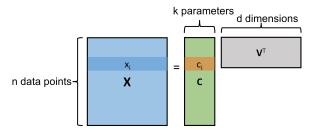
• Every data point \vec{x}_i (row of **X**) can be written as



- · X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- \cdot The columns of **X** are spanned by *k* vectors: the columns of **C**.

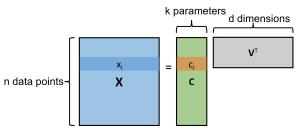
 $\vec{x}_1, \dots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.



 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

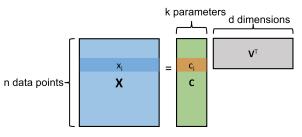
Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



What is this coefficient matrix **C**?

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

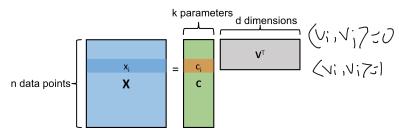


What is this coefficient matrix C?

$$\cdot X = CV^{T} \implies XV = (V^{T}V)^{T}$$

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

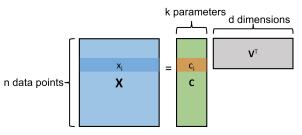


What is this coefficient matrix **C**?

- $\cdot X = CV^T \implies XV = CV^TV$
- $V^TV = I$, the identity (since V is orthonormal)

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

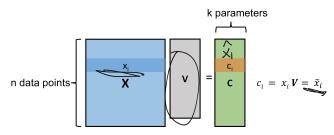


What is this coefficient matrix C?

- $\cdot X = CV^T \implies XV = CV^TV$
- · $V^TV = I$, the identity (since V is orthonormal) $\Longrightarrow XV = C$.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be written as $X = CV^T$.

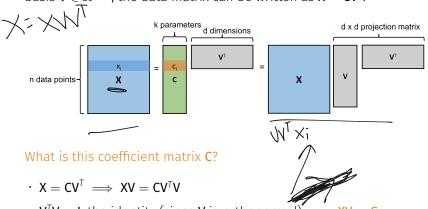


What is this coefficient matrix C?

- $\cdot X = CV^T \implies XV = CV^TV$
- · $V^TV = I$, the identity (since V is orthonormal) $\implies XV = C$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.



· $V^TV = I$, the identity (since V is orthonormal) $\Longrightarrow XV = C$.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^T$$
.

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = X(VV^T).$$

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = X(VV^T)$$
.

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

 $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \dots, \vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = X(VV^T).$$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

d-dimensional space v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_8 $v_$

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.$ $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = X(VV^T).$$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.

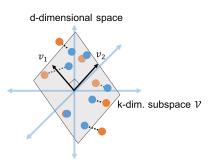


PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = X(VV^T).$$

• VV^T is a projection matrix, which projects the rows of X (the data points $\vec{x}_1, \dots, \vec{x}_n$ onto the subspace V.



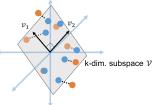
Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T)$$
d-dimensional space
 v_1
 v_2
 k -dim. subspace v

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T) = XP_{\mathcal{V}}$$

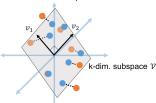
d-dimensional space



Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

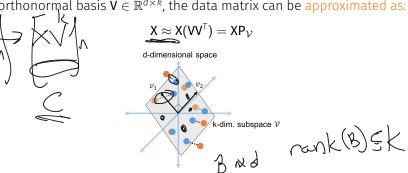
$$X \approx X(VV^T) = XP_{\mathcal{V}}$$

d-dimensional space



Note: $X(VV^T)$ has rank k. It is a low-rank approximation of X.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:



Note: $X(VV^T)$ has rank k. It is a low-rank approximation of X.

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T)$$
.

This is the closest approximation to \mathbf{X} with rows in \mathcal{V} (i.e., in the column span of \mathbf{V}).

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $X \approx X(VV^T)$.

This is the closest approximation to X with rows in $\overline{\mathcal{V}}$ (i.e., in the column span of V).

• Letting $(\mathbf{XVV}^T)_i$, $(\mathbf{XVV}^T)_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{XVV}^T)_i - (\mathbf{XVV}^T)_j\|_2 = \|[(\mathbf{XV})_i - (\mathbf{XV})_j]\mathbf{V}^T\|_2 = \|\underline{[(\mathbf{XV})_i - (\mathbf{XV})_j]}\|_2.$

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T)$$
.

This is the closest approximation to \mathbf{X} with rows in \mathcal{V} (i.e., in the column span of \mathbf{V}).

- Letting $(XVV^T)_i$, $(XVV^T)_j$ be the i^{th} and j^{th} projected data points, $\|(XVV^T)_i (XVV^T)_j\|_2 = \|[(XV)_i (XV)_j]V^T\|_2 = \|[(XV)_i (XV)_j]\|_2.$
- · Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T)$$
.

This is the closest approximation to ${\bf X}$ with rows in ${\bf \mathcal{V}}$ (i.e., in the column span of ${\bf V}$).

- Letting $(XVV^T)_i$, $(XVV^T)_j$ be the i^{th} and j^{th} projected data points, $\|(XVV^T)_i (XVV^T)_j\|_2 = \|[(XV)_i (XV)_j]V^T\|_2 = \|[(XV)_i (XV)_j]\|_2.$
- · Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\cal V}$ and correspondingly ${f V}$.

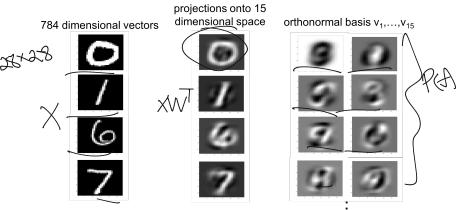
Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of *k* vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to k-dimensional subspace? • The rows of X can be approximately reconstructed from a

basis of k vectors.



Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x}_1, \dots \vec{v}_n$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
	•	•			•	
	•	•		•	•	
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

-							
					<i>(</i> 1	$\overline{}$	ı
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
home 1	2	2	1800	2	200,000	195,000	\setminus
home 2	4	2.5	2700	1	300,000	310,000	
				.			
•					\ .		
					\		
							/
home n	5	3.5	3600	3	450,000	450,000	

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
					•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

10000* bathrooms+ 10* (sq. ft.) ≈ list price

10000 Battineerila: 10 (sq. its) is brief						
bedrooms	bathrooms	sq.ft.	floors	list price	sale price	
2	2	1800	2	200,000	195,000	
4	2.5	2700	1	300,000	310,000	
				•		
				•		
	•			•		
5	3.5	3600	3	450,000	450,000	
	bedrooms 2 4	bedrooms 2 2 2 4 2.5	bedrooms bathrooms sq.ft. 2	bedrooms bathrooms sq.ft. floors 2	bedrooms bathrooms sq.ft. floors list price 2	

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (and V)?

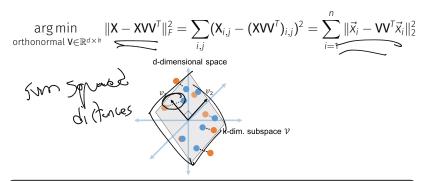
If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find
$$\mathcal{V}$$
 (and \mathbf{V})?

arg min orthonormal $\mathbf{V} \in \mathbb{R}^{d \times k}$ $\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{W}^T)_{i,j})^2 = \sum_{i=1}^n \|\vec{\mathbf{X}}_i + \mathbf{V} \mathbf{V}^T \vec{\mathbf{X}}_i\|_2^2$

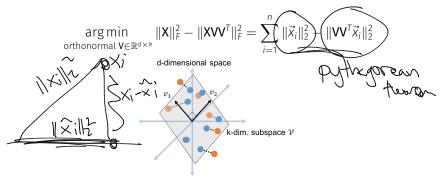
If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (and \mathbf{V})?



If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find V (and V)?



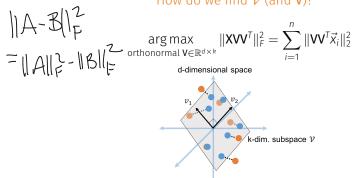
If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T . \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} .

How do we find \mathcal{V} (and \mathbf{V})?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\vec{x}_i\|_2^2 - \|\mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2$$

$$\underset{v_1}{\text{d-dimensional space}}$$

If $\vec{x}_1, \dots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^T . XV gives optimal embedding of X in \mathcal{V} .



V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\operatorname*{arg\,max}_{\text{orthonormal}\, \mathbf{V} \in \mathbb{R}^{d \times k}} \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V} \mathbf{V}^T \vec{\mathbf{x}}_i\|_2^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max}\,\|\mathbf{X}\mathbf{V}\|_{F}^{2}=\sum_{i=1}^{n}\|\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

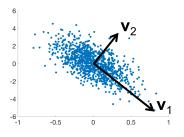
$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of **V** are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

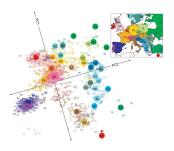
Columns of **V** are 'directions of greatest variance' in the data.



V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.



V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T \vec{X}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{V}_j, \vec{X}_i \rangle^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{\mathbf{V}}_{j}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{\mathbf{V}}_{j}\|_{2}^{2}$$

Can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily!

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \|\boldsymbol{X} \vec{v}\|_2^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily!

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \|\textbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1}{\text{arg max}} \vec{v}^T \textbf{X}^T \textbf{X}\vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max}\,\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \|\textbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1}{\text{arg max}} \vec{v}^T \textbf{X}^T \textbf{X} \vec{v}.$$

 \vec{v}_1 is the top eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_1 = \lambda_1(\mathbf{X}^T\mathbf{X}) \cdot \vec{v}_1$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{v}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \ldots, \vec{v}_k$ greedily!

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \, \|\textbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1}{\text{arg max}} \, \vec{v}^T \textbf{X}^T \textbf{X} \vec{v}.$$

 \vec{v}_1 is the top eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_1 = \lambda_1(\mathbf{X}^T\mathbf{X}) \cdot \vec{v}_1$.

$$\cdot \ \vec{\mathbf{v}}_1^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}_1 = \lambda_1 (\mathbf{X}^T \mathbf{X}) \cdot \vec{\mathbf{v}}_1^T \vec{\mathbf{v}}_1 = \lambda_1 (\mathbf{X}^T \mathbf{X}).$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\operatorname*{arg\,max}_{\text{orthonormal}\,\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{F}^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{\mathbf{v}}_{j}\|_{2}^{2}$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \|\textbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1}{\text{arg max}} \vec{v}^T \textbf{X}^T \textbf{X}\vec{v}.$$

 \vec{v}_1 is the top eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_1 = \lambda_1(\mathbf{X}^T\mathbf{X}) \cdot \vec{v}_1$.

- $\cdot \ \vec{\mathbf{v}}_1^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}_1 = \lambda_1 (\mathbf{X}^T \mathbf{X}) \cdot \vec{\mathbf{v}}_1^T \vec{\mathbf{v}}_1 = \lambda_1 (\mathbf{X}^T \mathbf{X}).$
- · X^TX is the covariance matrix (sometimes after mean centering).

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max}\,\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \|\mathbf{X} \vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \|\mathbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

 \vec{v}_2 is the second eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_2 = \lambda_2(\mathbf{X}^T\mathbf{X})\cdot\vec{v}_1$.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal V} \in \mathbb{R}^{d \times k}} \|\mathbf{XV}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{v}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \|\mathbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

 \vec{v}_2 is the second eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_2 = \lambda_2(\mathbf{X}^T\mathbf{X})\cdot\vec{v}_1$.

$$\vec{\mathbf{v}}_2^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \vec{\mathbf{v}}_2 = \lambda_2 (\mathbf{X}^\mathsf{T} \mathbf{X}) \cdot \vec{\mathbf{v}}_2^\mathsf{T} \vec{\mathbf{v}}_2 = \lambda_2 (\mathbf{X}^\mathsf{T} \mathbf{X}).$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\|_{\mathit{F}}^2 = \sum_{j=1}^k \|\mathbf{X}\vec{\mathbf{V}}_j\|_2^2$$

Can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \|\mathbf{X}\vec{v}\|_2^2 = \underset{\vec{v} \text{ with } \|\vec{v}\|_2 = 1 \text{ and } \langle v, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

 \vec{v}_2 is the second eigenvector of $\mathbf{X}^T\mathbf{X}$ with $\mathbf{X}^T\mathbf{X}\vec{v}_2 = \lambda_2(\mathbf{X}^T\mathbf{X})\cdot\vec{v}_1$.

- $\cdot \ \vec{\mathbf{v}}_2^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \vec{\mathbf{v}}_2 = \lambda_2 (\mathbf{X}^\mathsf{T} \mathbf{X}) \cdot \vec{\mathbf{v}}_2^\mathsf{T} \vec{\mathbf{v}}_2 = \lambda_2 (\mathbf{X}^\mathsf{T} \mathbf{X}).$
- · Continue like this, setting $\vec{v}_1, \dots, \vec{v}_k$ to the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$.

PRINCIPAL COMPONENT ANALYSIS

Upshot: To find an orthogonal basis **V** for a *k*-dimensional subspace as close as possible to **X**, minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

we let **V** have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$.

PRINCIPAL COMPONENT ANALYSIS

Upshot: To find an orthogonal basis **V** for a *k*-dimensional subspace as close as possible to **X**, minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

we let **V** have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^T \mathbf{X}$.

This is principal component analysis (PCA).

PRINCIPAL COMPONENT ANALYSIS

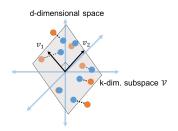
Upshot: To find an orthogonal basis **V** for a *k*-dimensional subspace as close as possible to **X**, minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

we let **V** have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^T \mathbf{X}$.

This is principal component analysis (PCA).

How accurate is this low-rank approximation?



Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X}\mathbf{V}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X}\mathbf{V}\|_{F}^{2}$$

· For any matrix A, $\|\mathbf{A}\|_F^2 = \text{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}\|_F^2 = \operatorname{tr}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) - \operatorname{tr}(\mathbf{V}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{V})$$

· For any matrix A, $\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \operatorname{tr}(\mathbf{V}^T \mathbf{X}^T \mathbf{X} \mathbf{V})$$
$$= \sum_{i=1}^d \lambda_i(\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{v}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}_i$$

• For any matrix A, $\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 &= \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \operatorname{tr}(\mathbf{V}^T \mathbf{X}^T \mathbf{X} \mathbf{V}) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{v}_i^T \mathbf{X}^T \mathbf{X} \vec{v}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) \end{aligned}$$

• For any matrix A, $\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvalues of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{split} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 &= \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \operatorname{tr}(\mathbf{V}^T \mathbf{X}^T \mathbf{X} \mathbf{V}) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{v}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{split}$$

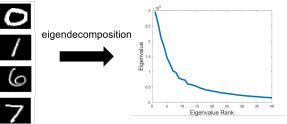
· For any matrix A, $\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A})$ (sum of diagonal entries).

Upshot: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

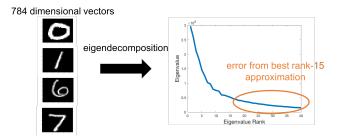
Upshot: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$



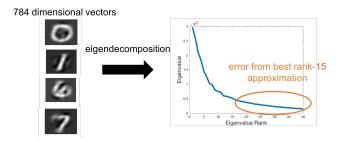
Upshot: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$



Upshot: The error in approximating X with the best rank k approximation (projecting onto the top k eigenvectors of X^TX is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$



Questions?