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LOGISTICS

- Problem Set 2 is due this Friday 10/11. Will allow
submissions until Sunday 10/13 at midnight with no penalty.

- No class next Tuesday (Monday class schedule). | will hold
office hours from 10:30am-12:30 pm.

Midterm next Thursday 10/17 in class.

- See review material posted with class schedule.
- More short-answer style than the problem sets.

- Review sheet will let you know what you need to memorize
and what you don't.



SUMMARY

Last Class: Low-Rank Approximation and PCA

- How to compress a dataset that lies close to a
k-dimensional subspace.
- View as projection, low-rank approximation of the data

matrix X.
- View as finding a small set of basis vectors for the rows or

the columns of X.

This Class: Finish low-rank approximation and connection to
eigendecomposition.

- Show how to find the best rank-k subspace to approximation
X via eigendecomposition.
- Show how to calculate the error of the approximation.



REVIEW OF LAST TIME

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W’ e R4 s the projection matrix onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




REVIEW OF LAST TIME

Low-Rank Approximation: Approximate X ~ XVV'.

d dimensions  k dimensions
| L
r 1 r 1

vT
n data points X =l XV
X; b8 % =Vx;
- XW'is a - all its rows fall in V.

+ X's rows are approximately spanned by the columns of V.

+ X's columns are approximately spanned by the columns of XV.

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9>k: matrix with columns V4, .. ., V.




DUAL VIEW OF LOW-RANK APPROXIMATION
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Column (feature) compression

10000* 10* ~
Row (data point) compression droom: floors| sale price
home 1 2 2 195,000
home 2 4 1 310,000
home n 5 3 450,000




FINDING THE SUBSPACE

Given X1, ..., X, that are close to a k-dimensional subspace V,
How do we find V (and V)?
argmin X = XWT2 = "(Xi; — (XWT);))* = Z 1% — WK||2
orthonormal VERdxk i

By Pythagorean theorem, minimizing this error is the same as
maximizing the norm of the projected dataset:

n
argmax — [IXWTI[2 = IWX|3
orthonormal VERA Xk i—1

Projection only reduces data point lengths and distances. Want to
minimize this reduction. How does this compare to L random

projection?
X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., V, € R%: orthogo-
nal basis for subspace V. V e R9*%*: matrix with columns V4, .. . , V.
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BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

n
argmax XV = IWTK |13

orthonormal VER?X i—1

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € R9*k: matrix with columns ¥, .. . , V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

n
argmax XTI = IVIKi[3

orthonormal VERY* i—1

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € R9*k: matrix with columns ¥, .. . , V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax_ X[ = vaTx*nz—ZZ

d
orthonormal VERYI* j=1 =1

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € R9*k: matrix with columns ¥, .. . , V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax_ X[ = vaTx*nz—ZZ

d
orthonormal VERYI* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € RY: orthogo-
nal basis for subspace V. V € R9*k: matrix with columns ¥, .. . , V.




BEST FIT SUBSPACE

V minimizing ||X — XW'||2 is given by:

argmax_ X[ = vaTx*nz—ZZ

d
orthonormal VERYI* j=1 =1

Columns of V are ‘directions of greatest variance’ in the data.

nal basis for subspace V. V € RYXk: matrix with columns ¥, .. . , V.

X1,...,% € RY: data points, X € R"%9: data matrix, ¥, . .., v, € R%: orthogo- ]




SOLUTION VIA EIGENDECOMPOSITION

V minimizing ||X — XW'||2 is given by:
n R n k )
argmax_ [XVIE=Y VR[5 =YD (W57 =D XV
orthonormal VERA Xk i=1 j=1 i=1 j=
Surprisingly, can find the columns of V, Vi, ..., V, greedily!
vy = argmax V' X'XV.

Zwith [|v],=1

v = arg max VIXTXV.
7with [[Vl=1, (7,7)=0

Ve = arg max VIXTXV.
Fwith [[vil,=1, (7,7)=0 Vj<k

These are exactly the top k eigenvectors of X'X.

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R%: orthogo-
nal basis for subspace V. V e R9>k: matrix with columns V4, .. ., V. 8




REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € RY is an eigenvector of a matrix A € R9x9 if
AX = XX for some scalar A (the eigenvalue corresponding to X).

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors
Vi,..., V4. Let V € R4 have these vectors as columns.

[ N B | | |
AV = |AV; A, - AVl = [NV A oo AV =VA

Yields eigendecomposition: AW = A = VAV’



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A
22

Typically order the eigenvectors in decreasing order:
M > > . g



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

Vi = argmax V'AV.
7 with ||v]|,=1

v, = arg max VAV
Vwith ||v]|,=1, (V,V1)=0
Vg = arg max VTAV.

Fwith [|v|l;=1, (7,7,)=0 Vj<d

© VIAV; = \; - VTV, = ), the j" largest eigenvalue.

- The first k eigenvectors of XX (corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation. 1



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

XX =|%%|V A A

6 d-dimensional space

k-dim. subspace V

o & b o



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting Vi, have columns 4, ...,V corresponding to
the top k eigenvectors of the covariance matrix X’X, Vj, is the
orthogonal basis minimizing

X — XVRVE|[,

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand
using eigenvalues of X’X.

X1,...,% € R data points, X € R"%%: data matrix, V4,...,V, € R% top
eigenvectors of X'X, Vi, € R9XF: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Let Vs,. ..,V be the top k eigenvectors of X'X (the top k
principal components). Approximation error is:

[IX = XVRVEI[E = X[ — XV V2

X1,...,%X, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Let Vs,. ..,V be the top k eigenvectors of X'X (the top k
principal components). Approximation error is:

X — XVRVEI[E = [IX[IF — IXV |7

X1,...,%X, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Let Vs,. ..,V be the top k eigenvectors of X'X (the top k
principal components). Approximation error is:

X — XVRVEI[E = [IX[IF — IXV |7

- For any matrix A, [Al|Z = >°7 [|d;|12 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X1,...,%X, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.

14



SPECTRUM ANALYSIS

Let Vs,. ..,V be the top k eigenvectors of X'X (the top k
principal components). Approximation error is:

X — XVRVE[12 = tr(XTX) — tr(VEXTXVp)

d R
=D NXX) =) VXX,
i=1 i=1
d k
=D AXX) = > A(XTX) =
i=1 i=1

- For any matrix A, |A|2 = 2%, ||di||2 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X1,...,%X, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.

14



SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVeVE[E = > X(X'X)
i=k+1

dxd

XX = |1 %,.. 54V \"A

error of optimal low rank
approximation

X,..., % € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top
eigenvectors of X'X, Vj, € R4k matrix with columns V4, . . ., V.
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SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVeVE[E = > X(X'X)
i=R+1

784 dimensional vectors

eigendecomposition

—

Eigenvalue

5 0 w0 % 4o
Eigenvalue Rank

Njsl-Jo

eigenvectors of XX, Vi, € R4k matrix with columns V4, . . ., V.

X,...,% € RY data points, X € R">9: data matrix, v1,...,¥, € R top ]
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SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
IX = XVeVE[E = > X(X'X)
i=k+1

784 dimensional vectors

Eigenvalue

0 5 10 \‘u 20 25 EJ
Eigenvalue Rank

error from best rank-
approximation

X1,...,% € RY data points, X € R"*9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.

15



SPECTRUM ANALYSIS

Plotting the of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;, ..., X, are to a low-dimensional subspace).

784 dimensional vectors

eigendecomposition

m—)

Eigenvalue

o s 10 15 20 25 3 5 40
Eigenvalue Rank

Nl e]~]o]

X1,...,%, € RY: data points, X € R">9: data matrix, v4,...,¥% € R top
eigenvectors of XTX, Vi, € RYXF: matrix with columns v, .. ., V.
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X, ..., X, are to a low-dimensional subspace).

784 dimensional vectors

Eigenvalue

o 5 10 15 20 2 0 3 4
Eigenvalue Rank

X1,...,%, € RY: data points, X € R">9: data matrix, v4,...,¥%, € R top
eigenvectors of X7X, Vi, € R9XF: matrix with columns v, . . ., V.
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how

close Xi,..., X, are to a low-dimensional subspace).
2t :

eigendecomposition ..

m—)

Eigenvalue

°
(33 .
05
0
Eigenvalue Rank
Xi,...,%X € RY data points, X € R"*9: data matrix, 4,...,V, € R top
eigenvectors of X7X, Vi, € R9%F: matrix with columns v, . . ., V.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features

10000* 10* =
are correlated.
floors sale price
home 1 2 2 195,000
home 2 a 1 310,000
home n 3 3 450,000

Our compressed dataset is C = XV, where the columns of Vj, are the
top k eigenvectors of X'X.

C7C = VIX'XV, = VIW'V,, = A,

l.e, all correlations have been
removed. Maximal compression.

Xi,...,%X € RY data points, X € R">9: data matrix, v4,...,¥, € R top
eigenvectors of XX, V,, € RY>k: matrix with columns V4, ..., V.

17



ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

- Computing the covariance matrix XX requires O(nd”) time.
- Computing its full eigendecomposition to obtain Vy,. ..,V
requires O(d”) time (similar to the inverse (X"X)™7).

Many faster iterative and randomized methods. Runtime is
roughly to output just to top k eigenvectors Vi, ..., V.

- Will see in a few classes

X1,...,% € RY data points, X € R">9: data matrix, v4,...,¥, € R top
eigenvectors of XX, V,, € RY>k: matrix with columns V4, ... , V.




Questions?
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