COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.

Lecture 12

LOGISTICS

- Problem Set 2 is due this Friday 10/11. Will allow submissions until Sunday 10/13 at midnight with no penalty.
- No class next Tuesday (Monday class schedule). I will hold office hours from 10:30am-12:30 pm.

Midterm next Thursday 10/17 in class.

- · See review material posted with class schedule.
- · More short-answer style than the problem sets.
- Review sheet will let you know what you need to memorize and what you don't.

Last Class: Low-Rank Approximation and PCA

- How to compress a dataset that lies close to a k-dimensional subspace.
- View as projection, low-rank approximation of the data matrix X.
- View as finding a small set of basis vectors for the rows or the columns of X.

This Class: Finish low-rank approximation and connection to eigendecomposition.

- Show how to find the best rank-k subspace to approximation
 X via eigendecomposition.
- · Show how to calculate the error of the approximation.

REVIEW OF LAST TIME

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$. Gives the closest approximation to X with rows in V.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx XVV^T$.

- XVV^T is a rank-k matrix all its rows fall in \mathcal{V} .
- · X's rows are approximately spanned by the columns of V.
- · X's columns are approximately spanned by the columns of XV.

DUAL VIEW OF LOW-RANK APPROXIMATION

Row (data point) compression

Column (feature) compression

FINDING THE SUBSPACE

Given $\vec{x}_1, \dots, \vec{x}_n$ that are close to a k-dimensional subspace \mathcal{V} ,

How do we find \mathcal{V} (and \mathbf{V})?

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \min} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T}\|_F^2 = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^\mathsf{T})_{i,j})^2 = \sum_{i=1}^n \|\vec{x}_i - \mathbf{V} \mathbf{V}^\mathsf{T} \vec{x}_i\|_2^2$$

By Pythagorean theorem, minimizing this error is the same as maximizing the norm of the projected dataset:

$$\operatorname*{arg\,max}_{\text{orthonormal}\,\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2}=\sum_{i=1}^{n}\|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2}$$

Projection only reduces data point lengths and distances. Want to minimize this reduction. How does this compare to JL random projection?

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n\|\mathbf{V}\mathbf{V}^T\vec{X}_i\|_2^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \sum_{j=1}^n \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^n \|\mathbf{V}^T\vec{x}_i\|_2^2 = \sum_{j=1}^n \sum_{i=1}^n \langle \vec{v}_j, \vec{x}_i \rangle^2$$

Columns of ${\bf V}$ are 'directions of greatest variance' in the data.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times k}}{\arg \max} \| \mathbf{X} \mathbf{V} \|_F^2 = \sum_{i=1}^n \| \mathbf{V}^T \vec{x_i} \|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^k \| \mathbf{X} \vec{v_j} \|_2^2$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily!

$$\vec{V}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

. .

$$\vec{\mathbf{V}}_{k} = \underset{\vec{\mathbf{V}} \text{ with } \|\mathbf{v}\|_{2}=1, \ \langle \vec{\mathbf{V}}, \vec{\mathbf{V}}_{j} \rangle = 0 \ \forall j < k}{\arg\max} \vec{\mathbf{V}}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{\mathbf{V}}.$$

These are exactly the top k eigenvectors of X^TX .

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^d$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A}\vec{x} = \lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- · That is, A just 'stretches' x.
- If **A** is symmetric, can find d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{\mathbf{v}}_1 & \mathbf{A}\vec{\mathbf{v}}_2 & \cdots & \mathbf{A}\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{\mathbf{v}}_1 & \lambda_2\vec{\mathbf{v}}_2 & \cdots & \lambda\vec{\mathbf{v}}_d \\ | & | & | & | \end{bmatrix} = \mathbf{VA}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$.

REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Typically order the eigenvectors in decreasing order: $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$.

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\begin{split} \vec{v}_1 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \ \vec{v}^T \mathbf{A} \vec{v}. \\ \vec{v}_2 &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \ \vec{v}^T \mathbf{A} \vec{v}. \\ & \cdots \\ \vec{v}_d &= \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0}{\text{arg max}} \ \vec{v}^T \mathbf{A} \vec{v}. \end{split}$$

- $\vec{\mathbf{v}}_i^T \mathbf{A} \vec{\mathbf{v}}_j = \lambda_j \cdot \vec{\mathbf{v}}_i^T \vec{\mathbf{v}}_j = \lambda_j$, the j^{th} largest eigenvalue.
- The first k eigenvectors of $\mathbf{X}^T\mathbf{X}$ (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in \mathbf{X} that we use for low-rank approximation.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

How accurate is this low-rank approximation? Can understand using eigenvalues of X^TX .

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k}\|_{F}^{2}$$

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\|\mathbf{X} - \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - \|\mathbf{X} \mathbf{V}_{k}\|_{F}^{2}$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Let $\vec{v}_1, \dots, \vec{v}_k$ be the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$ (the top k principal components). Approximation error is:

$$\begin{aligned} \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 &= \operatorname{tr}(\mathbf{X}^T \mathbf{X}) - \operatorname{tr}(\mathbf{V}_k^T \mathbf{X}^T \mathbf{X} \mathbf{V}_k) \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \vec{\mathbf{V}}_i^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}_i \\ &= \sum_{i=1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) - \sum_{i=1}^k \lambda_i (\mathbf{X}^T \mathbf{X}) = \sum_{i=k+1}^d \lambda_i (\mathbf{X}^T \mathbf{X}) \end{aligned}$$

• For any matrix **A**, $\|\mathbf{A}\|_F^2 = \sum_{i=1}^d \|\vec{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^T\mathbf{A})$ (sum of diagonal entries = sum eigenvalues).

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

error of optimal low rank approximation

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Claim: The error in approximating **X** with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$ is:

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}}\|_F^2 = \sum_{i=k+1}^d \lambda_i(\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of the covariance matrix X^TX (its eigenvalues) shows how compressible X is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

Plotting the spectrum of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_1, \dots, \vec{x}_n$ are to a low-dimensional subspace).

INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features are correlated

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
home n	5	3.5	3600	3	450,000	450,000

Our compressed dataset is $C = XV_k$ where the columns of V_k are the top k eigenvectors of X^TX .

What is the covariance of
$$\mathbf{C}$$
? $\mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{V}_{k}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{V}_{k} = \mathbf{V}_{k}^{\mathsf{T}}\mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{V}_{k} = \mathbf{\Lambda}_{k}$

Covariance becomes diagonal. I.e., all correlations have been removed. Maximal compression.

What is the runtime to compute an optimal low-rank approximation?

- · Computing the covariance matrix X^TX requires $O(nd^2)$ time.
- Computing its full eigendecomposition to obtain $\vec{v}_1, \dots, \vec{v}_k$ requires $O(d^3)$ time (similar to the inverse $(X^TX)^{-1}$).

Many faster iterative and randomized methods. Runtime is roughly $\tilde{O}(ndk)$ to output just to top k eigenvectors $\vec{v}_1, \dots, \vec{v}_k$.

· Will see in a few classes

Questions?