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submissions until Sunday 10/13 at midnight with no penalty.

- No class next Tuesday (Monday class schedule). I will hold
office hours from 10:30am-12:30 pm.

Midterm next Thursday 10/17 in class.

- See review material posted with class schedule.
- More short-answer style than the problem sets.

- Review sheet will let you know what you need to memorize
and what you don't.
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Last Class: Low-Rank Approximation and PCA

- How to compress a dataset that lies close to a
k-dimensional subspace.
- View as projection, low-rank approximation of the data

matrix X.
- View as finding a small set of basis vectors for the rows or

the columns of X.

This Class: Finish low-rank approximation and connection to
eigendecomposition.

- Show how to find the best rank-k subspace to approximation
X via eigendecomposition.
- Show how to calculate the error of the approximation.
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Set Up: Assume that data points X;, ..., X, lie close to any
fe dlmenS|onal subspace V of RY. Let X € R"*9 be the data matrix.

d-dimensional space
[i< Zk

k-dim. subspace V

Let Vi, ...,V be an orthonormal basis for V and V € R9** pe the
matrix with these vectors as its columns.

- W' e R s the projection matrix onto V.

-+ X & X(WT)) Gives the closest approximation to X with rows in V.
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REVIEW OF LAST TIME

Low-Rank Approximation: Approximate X ~ XVV'.

d dim?nsions k dimensions
A
I 1 r 1

VT
n data points X | Xv
5% % % =VTx
- XW'isa - all its rows fall in V.

- X's rows are approximately spanned by the columns of V.

- X's columns are approximately spanned by the columns of XV.

Xi,...,% € RY: data points, X € R"*?: data matrix, ¥1, . .., v, € R orthogo-
nal basis for subspace V. V € RY%k: matrix with columns ¥, . . . , V.




DUAL VIEW OF LOW-RANK APPROXIMATION
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Projection only reduces data point lengths and distances. Want to
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REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € R9x9 if

AX = XX for some scalar A (the eigenvalue corresponding to X)

- That is, A just ‘stretches’ x.

- If Ais symmetric, can find d orthonormal eigenvectors

Vi,...,Vq. Let V e R9%Y have these vectors as columns.
[ N R | | I T
AV = [AV; AV, --- AVy| = MV MV oo AVy| = VAV
=
[ N R o I
QJ\X\HW»,)O’T
Yields eigendecomposition: AW’ = A % VAV I

AX \“\\/TK 9



REVIEW OF EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal
l .
) L
A =V v V ) A i
[ \ Aay
Aa
VANZA

Typically order the eigenveetors in decreasing order:
M > > A

10



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given via the greedy optimization:

V; = argmax V' AV.
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v with ||v||,=1
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COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are
given vig\the greedy optimization:

* . —T p =
R W N et /AY - >{P><
e -
v, = argmax VAV
Vwith [lv|l2=1, (V.¥)=0
v, = arg max VTAV.

7 with [[v],=1, (V,#)=0 Vj<d

© VIAV; = ;- VTV, = \;, the j largest eigenvalue.

- The first k eigenvectors of X'X (corresponding to the largest k
eigenvalues) are exactly the directions of greatest variance in X
that we use for low-rank approximation.
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the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing
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This is principal component analysis (PCA).
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tt'\’\ﬁ O o~ d k
XX = AXTX) = > N(XTX) =
N () =1 =1

- For any matrix A, A2 = 320, ||di[12 = tr(ATA) (sum of
diagonal entries = sum eigenvalues).

X,..., % € RY data points, X € R"*9: data matrix, v1,...,vV, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.
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SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

X — XV, V|2 = i‘ A(X'X)

iI=kR+1
Xi,...,%X € RY: data points, X € R"%9: data matrix, v,...,V, € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , V.
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Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:

d
T2 T
IX = XVVE[E = > Ai(X7X)
iI=kR+1
dxd
A
A2
-
XTX = |#, %,.. 54\ A VT
e |
Aa
error of optimal low rank
approximation
X,...,% € RY data points, X € R">9: data matrix, v4,...,V, € R% top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , V.




SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:
d

X = XVeVE[E = > A(X'X)
i=R+1

784 dimensional vectors
KK

elgendecomposmon

Eigenvalue

Eigenvalue Rank

I=]
|/

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of X7X, Vi, € R?%k: matrix with columns ¥, . . ., V.
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SPECTRUM ANALYSIS

Claim: The error in approximating X with the best rank k
approximation (projecting onto the top k eigenvectors of X'X is:
SN d

4 - ’1\\\‘\% X=XVl = 37 n(X)

i=R+1
Al
(o L& RS
784 dimensional vectors
elgendecomposmon ‘2
- A erfor from best rank-
- é’. (:]lj’,/\\,v\f 1ation
XY
X,...,% € RY data points, X € R">9: data matrix, v4,...,V, € R% top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.




SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X'X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how
close X;,...,X, are to a low-dimensional subspace).

X,..., % € RY data points, X € R"*9: data matrix, v4,...,v, € R% top
eigenvectors of XX, V, € R9%k: matrix with columns ¥, .. . , 7.
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close X;,... X, are to a low-dimensional subspace).

784 dimensional vectors

Eigenvalue

o s 10 15 2 o 35
Eigenvalue Rank

Xi,...,%X € RY data points, X € R"%9: data matrix, v1,...,V, € R top
eigenvectors of XX, V, € RY%k: matrix with columns ¥, .. . , 7.
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X’X (its eigenvalues)
shows how compressible X is using low-rank approximation (i.e., how

close X;, ..., X, are to a low-dimensional subspace).
0.0
oo . N
eigendecomposition
:’;I &
’ * Ei;enva?lfJe R:nk Lo

Xi,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XX, V, € RIXk: matrix with columns ¥, .. . , 7.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors sale price

home 1 2 2 195,000
home 2 a4 1 310,000

home n 5 3 450,000

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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INTERPRETATION IN TERMS OF CORRELATION

Recall: Low-rank approximation is possible when our data features
are correlated. S

floors| sale price
home 1 2 2 195,000
home 2 a4 1 310,000
home n 5 3 450,000

Our compressed dataset is C = XV, where the columns of V, are the
. T T
top k eigenvectors of X'X.

C'C = VIX'XV), = VIW'V}, = A,
l.e., all correlations have been
removed. Maximal compression.

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, V, € R?%k: matrix with columns ¥, . . ., V.
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ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥, . . ., V.
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- Computing its full eigendecomposition to obtain Vi, ...,V
requires O(d®) time (similar to the inverse (XX)~").
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ALGORITHMIC CONSIDERATIONS

What is the runtime to compute an optimal low-rank
approximation?

- Computing the covariance matrix X'X requires Of time.

- Computingts full eigendecomposition to obtain vy, ...,V
requires time (similar to the inverse (XX)~").

Many faster iterative and randomized methods. Runtime is
roughly to output just to top k eigenvectors vi, ..., V.
—_——

- Will see in a few classes

X1,...,% € RY data points, X € R"%9: data matrix, v4,...,% € R top
eigenvectors of XTX, Vi, € R?%k: matrix with columns ¥, . . ., V.

18



Questions?
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