COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 2

By Next Thursday 9/12:

- Sign up for Piazza.

- Pick a problem set group with 3 people and have one

member email me the names of the members and a group
name.

- Fill out the Gradescope consent poll on Piazza and contact
me via email if you don't consent.

LAST TIME

Last Class We Covered:

- Linearity of expectation: E[X + Y] = E[X] + E[Y] always.

- Linearity of variance: Var[X + Y] = Var[X] 4+ Var[Y] if X and ¥
are independent.

- Markov's inequality: a non-negative random variable with a
small expectation is unlikely to be very large:

PriXx>1) < E[tX]

- Talked about an application to estimating the size of a
CAPTCHA database efficiently.

TODAY

Today: We'll see how a simple twist on Markov's inequality can
give much stronger bounds.

- Enough to prove a version of the law of large numbers.

But First: Another example of how powerful linearity of
expectation and Markov’'s inequality can be in randomized
algorithm design.

- Will learn about random hash functions, which are a key tool
in randomized methods for data processing.

HASH TABLES

Want to store a set of items from some finite but massive
universe of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.
Classic Solution: Hash tables

- Static hashing since we won't worry about insertion and
deletion today.

HASH TABLES

128-bit IP addresses Hash Table

IRITE R e—

172.16.254.1

R WN R

192.168.1.34

h(16.58.26.164) = 1590

16.58.26.164

- hash function h : U — [n] maps elements from the universe

to indices 1,---,n of an array.
- Typically |U| > n. Many elements map to the same index.
- Collisions: when we insert m items into the hash table we
may have to store multiple items in the same location

(typically as a linked list).

COLLISIONS

Query runtime: O(c) when the maximum number of collisions
in a table entry is c (i.e., must traverse a linked list of size ¢).

c collisions
|
[\
h(172.16.254.1)’ 192.168.1.34 M 216.153.24.4 ‘—D' 172.16.254.1

How Can We Bound c?

- In the worst case could have ¢ = m (all items hash to the
same location).

- Two approaches: 1) we assume the items inserted are
chosen randomly from the universe U or 2) the hash
function is chosen randomly.

RANDOM HASH FUNCTION

Let h: U — [n] be a random hash function.

- le, forx € U, Pr(h(x) =i) = 1 foralli=1,...,n and
h(x), h(y) are independent for any two items x # y.

- Caveat: It is very expensive to represent and compute such a
random function. We will see how a hash function
computable in O(1) time function can be used instead.

Assuming we insert m elements into a hash table of size n,
what is the expected total number of pairwise collisions?

LINEARITY OF EXPECTATION

Let Gi; = 1if items i and j collide (h(x;) = h(x;)), and 0
otherwise. The number of pairwise duplicates is:

E[C] = ZE[C,‘J]- (linearity of expectation)
]

Forany pairi,j: E[G] = Pr[C;; = 1] = Pr[h(x;) = h(x))] = =.

R
1)

Identical to the CAPTCHA analysis from last class!

Xj,X;: pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

COLLISION FREE HASHING

el = "7 =Y,

- For n = 4m? we have: E[C] = 201 < 1.

1 . EC
Apply Markov's Inequality: Pr[C > 1] < B9 —]

5
1 7
PrlC=0]=1—-Pr[C>1]>1- =

g
Pretty good...but we are using O(m?) space to store m items

m: total number of stored items, n: hash table size, C: total pairwise collisions]
in table.

9

TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

A WON =

192.168.1.34 : collision free O(s?) space
. I'sivalues | pashfunction hash table

16.58.26.164

n

- For each bucket with s; values, pick a collision free hash function
mapping [s;] — [s7]
- Just Showed: A random function is collision free with probability

> £ so only requires checking O(1) random functions in
expectation to find a collision free one.

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S]=n+ Y.,
2

m
E[sTT=E | [D Tnp)=i
=

=E Z}Ih(xj):i “Thix)=i
ik

Collisions again!

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage

of two level hashing, s;: # items stored in hash table at position i. 11

SPACE USAGE

Query time for two level hashing is O(1): requires evaluating two
hash functions.

Up to constants, space used is: E[S]=n+ Y.,
2

m
E[sTT=E | [D Tnp)=i
=

=E Z}Ih(xj):i Thpy=i| = Z E [Hh(x,):i “Tn)=i] -
J.R J.R

. 2 . ’I
* Forj=RE {M(x,):/ ']Ih(xk)z/} =E [(Hh(xj)a) } =Prlh(x)) = 1] = 5.

- Forj#hk E [ﬂh(m:, ~]Ih(xk)=,} = Pr{h(x) = iNh(x) =] = .

Xj, Xg: stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, s;: # items stored in hash table at position i. 1

SPACE USAGE

Elsf] =) E {Hh(xj):i ' H'MF’}
j,R

—m1+2 m !
a n 2) n?

“ Forj=RE []Ih(x,-):i ']Ih(xk):/} =

“Forj#RE []Ih(x,):«' ']Ih(xk):)} = .

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos I. 12

SPACE USAGE

Elsf] =) E {Hh(xj):i ' H'MF’}
j,R

=m W+2 m !
a n 2) n?

- Forj=k E {:‘h(,),s Ty),J} =1

“ Forj#RE []Ih(x,):«' ']Ih(xk):)} = 1.

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos I. 12

SPACE USAGE

Elsf] =) E {Hh(xj):i ' H'MF’}
j,R

1 <m> 1
=m-—4+2- ‘=
n 2 n+

- Forj=k E []Ih(xj):i ']Ih(xk):/} = %

+ For j # B, B [Ty - Tngu)—i]| = -

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos I. 12

SPACE USAGE

Elsf] =) E {Hh(xj):i ' H'MF’}
j,R

—m1+2 m !
a n 2) n?

m m(m-—1
*—+¥§2(Ifwesetn:m.)
n n

Sl

“ Forj=RE []Ih(x,-):i ']Ih(xk):/} =
* Forj#R E []Ih(x,):«' ']Ih(xk):/} = 5.
Total Expected Space Usage: (if we set n = m)

n
E[S]:H+Z]E[S,-2] <n+n-2=3n=23m.
=

Near optimal space with O(1) query time!

Xj,X: stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, s;: # items stored at pos I. 12

SOMETHING TO THINK ABOUT

What if we want to store a set and answer membership queries
in O(1) time. But we allow a small probability of a false
positive: query(x) says that x is in the set when in fact it isn't.

Can we do better than O(m) space?
Many Applications:

- Filter spam email addresses, phone numbers, suspect IPs,
duplicate Tweets.
- Quickly check if an item has been stored in a cache or is new.

- Counting distinct elements (e.g,, unique search queries.)

13

EFFICIENTLY COMPUTABLE HASH FUNCTION

So Far: we have assumed a fully random hash function h(x)
with Pr{h(x) = i] = £ fori € 1,...,n and h(x), h(y) independent
forx #£y.

- To store a random hash function we have to store a table of
x values and their hash values. Would take at least O(m)
space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!

x h(x)

X, | 45

X, 1004

X3 7107

Xm | 12

14

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U — [n] is two universal if:

Prlh(x) = h(y)] < -

.

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Prih(x) = h(y)] = 7.
Efficient Alternative: Let p be a prime with p > |U]. Choose random
a,b e [p] with a # 0. Let:
h(x) = (ax+b mod p) mod n. 5

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

s)

Pairwise Independent Hash Function. A random hash function
from h: U — [n] is pairwise independent if for all i € [n]:

Prih(x) = h(y) =1l = —.

Which is a more stringent requirement? 2-universal or pairwise
independent?

Prih(x)]_ZPr[h =il=n-—=
A closely related (ax + b) mod p construction gives pairwise

independence on top of 2-universality.
16

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

k-wise Independent Hash Function. A random hash function
from h: U — [n] is k-wise independent if for all i € [n]:

Prlh(x:) = h(x) = ... = h(x) = i] = %

Which is a more stringent requirement? 2-universal or pairwise
independent?

1 1
Pr[h(x)]—ZPr[h =ll=n ="

A closely related (ax + b) mod p construction gives pairwise
independence on top of 2-universality.

16

Questions on linearity of expectation/variance, Markov's,
hashing?

17

NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn’t give much.

2. Then we'll show how a simple twist on Markov's can give a
much stronger result.

ANOTHER APPLICATION

Randomized Load Balancing:

s @

l 2 R_equests

/N
B AR, .. AD

o I111] (o 1111] (o111

Server 1 Server 2 Server k

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

- Often assignment is done via a random hash function. Why?

19

WEAKNESS OF MARKOV'S

Expected Number of requests assigned to server i:

n n
. LN
E[R] = ;E[Hrequest/‘assigned toi] = 21 Prj assigned to i] = R
j= j=
If we provision each server be able to handle
, what is the probability that a server is

overloaded?

Applying Markov's Inequality
E[R] 1

2E[R] 2
Not great..half the servers may be overloaded.

Pr[R; > 2E[R]] <

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i.

20

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov’'s Inequality can be made
much more powerful.

For any random variable X and any value t:
Pr(|X| > t) = Pr(X* > t2).

X? is a nonnegative random variable. So can apply Markov's
inequality:
Chebyshev's inequality:

Pr(IX| > t) < E[)f].

21

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov’'s Inequality can be made
much more powerful.

For any random variable X and any value t:
Pr(|X| > t) = Pr(x* > t2).
X% is a nonnegative random variable. So can apply Markov's
inequality:
Chebyshev's inequality:

Var[X]

Pr(i —Ef| > 1) <

(by plugging in the random variable X — E[X])

21

CHEBYSHEV'S INEQUALITY

Pr(IX —E[X]| > t) < Vatrz[)q

What is the probability that X falls s standard deviations from
it's mean?

Pr(X — EX]| > 5 - \/Var[X]) < % -

Why is this so powerful?

X: any random variable, t,s: any fixed numbers.

22

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.)
random variables Xy, ..., X, with mean x and variance o2

How well does the sample average S = 1 37 | X; approximate
the true mean u?

1 ! T « 1 , o’
Var[s] = — Var [;X,] = nZ’Z;Var[X,»] = —5not=—.
By Chebyshev's Inequality: for any fixed valuee > 0,
var[S] o?

2 ne
Law of Large Numbers: with enough samples, the sample

average will always concentrate to the mean.

Pr(lS—ul >¢€) <

- Cannot show from vanilla Markov's inequality.
23

BACK TO LOAD BALANCING

Recall that R; is the load on server i when n requests are randomly
assigned to k servers. p
Ri=> Ri
j=1

where R;; is 1if request j is assigned to server i and 0 o.w.

var[R] = E [(R- - E[R,j])z}

kR
Applying Chebyshev’s:
2n n n/k k
Pr (R,- > k) < Pr (IR~ E[R]| = E) <o =

Overload probability is extremely small when k < n! 24

TIGHTER TOLERANCES

Provisioning each server with twice the expected necessary
capacity (22 vs. #) is really expensive.

If we give each server the capacity to serve (14 ¢) - 7 requests
for § € (0,1), what is the probability that a server exceeds its
capacity?

E[Rj] = % and Var[Rj] <

=S

Chebyshev’s Inequality:
PrX—-EX]| =€) <

Bonus: What if requests are assigned to servers with a 2-universal
hash function? With a pairwise independent hash function?

Va r[X]

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. , € any values.

25

TIGHTER TOLERANCES

If we give each server the capacity to serve (14 ¢) - # requests for
0 € (0,1), what is the probability that a server exceeds its capacity?

n n
E[R] = " and Var[Rj] < s
Chebyshev’s Inequality:
Pr (X — B > o) < 2P,
€
_ n _ _ n Var[Rj]
Pr(R, > (144)- E) < Pr (|R, —E[R]|>5- k) T
_k
- 62n’

Cansetd =0 (O\/E) and still have a pretty good probability that a
server won't be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
R;: number of requests assigned to server i. 26

ASSIGNMENT WITH EFFICIENT HASH FUNCTIONS

Bonus: What if requests are assigned to servers with a
2-universal hash function? With a pairwise independent hash
function?

- To apply Chebyshev’s need to bound

var[R] = E[R] - E[R}]* < E[R]].

- With pairwise independence can apply a similar technique
as we did to bounding the expected second level table size
for two level hashing, showing Var[R] = O (%) .

- Will see that 2-universal hashing is not strong enough here!

27

NEXT TIME

Chebyshev’s Inequality: A quantitative version of the law of
large numbers. The average of many independent random
variables concentrates around its mean.

Chernoff Type Bounds: A quantitative version of the central
limit theorem. The average of many independent random
variables is distributed like a Gaussian.

s

Frequency

o
x|

3.9 4.2 45 4.8 5.1 5.4 5.7 6.0
Means

28

Questions?

29

