COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 6

LOGISTICS

- Problem Set 1is due next Thursday 9/26 in Gradescope.
- My office hours next week will be Tuesday, 1:15-2:15.

SUMMARY

Last Class:

- Distinct Elements via Hashing:
- Distinct elements algorithm using min-of-hashes approach.
- Analysis using averaging and the ‘median trick..
- Practical implementations (HyperLoglLog) and applications.
- Jaccard Similarity:
- Jaccard similarity as a similarity metric between sets and binary
strings. Applications in document comparison and audio
fingerprinting.

This Class:

- See how a min-of-hashes approach (MinHash) is used to
estimate the Jaccard similarity.

- Application of MinHash to fast similarity search.

- Locality sensitive hashing.)

ANOTHER FUNDAMENTAL PROBLEM

Jaccard Index: A similarity measure between two sets.

_ |AnB| _ # shared elements
- |JAuB| 4 total elements

0

J(A, B)

Natural measure for similarity between bit strings - interpret

an n bit string as a set, containing the elements corresponding

the positions of its ones. J(x,y) = #2hared ones

COMPUTING JACCARD SIMILARITY

__|AnB| _ # shared elements
~ |JAUB| 4 total elements

J(A,B)

Two Common Use Cases:

- Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. O(n - average set size) time.

- All-pairs Similarity Search: Have n different sets/bit strings
and want to find all pairs with high similarity.

O(n? - average set size) time.

Will speed up significantly via hashing.

APPLICATIONS

Document Similarity:

- E.g, to detect plagiarism, copyright infringement, duplicate
webpages, spam.

- Use Shingling + Jaccard similarity. (n-grams, k-mers)

the quick brown
. ATAG CCGT
. . . quick brown fox GG GOTA
The quick brown fox jumped high. = brown fox jumped ATAGCCGTAGT > ,\ACC \,«’
fox jumped high CCG TAGT

Audio Fingerprinting:
- E.g., in audio search (Shazam)

* Represent sound clip via a binary ‘fingerprint’ then compare with
Jaccard similarity‘."

APPLICATION: EARTHQUAKE DETECTION

Small earthquakes make consistent signatures on seismographs that
repeat over time. Detecting repeated signatures lets you detect
these otherwise undetectable events.

2010-10-04 2010-12-27
800

- Split data into overlapping
windows of 10 seconds

- Fingerprint each window using the
spectrogram (i.e., compute a binary
string representing the reading in
the window).

* All-pairs search for windows with
high Jaccard similarity.

APPLICATION: COLLABORATIVE FILTERING

Online recommendation systems are often based on collaborative
filtering. Simplest approach: find similar users and make
recommendations based on those users.

COLLABORATIVE FILTERING CONTENT-BASED FILTERING

Read

Similar users
-

]
-~

Read by her,
recommended to him!

- Twitter: represent a user as the set of accounts they follow. Match
similar uses based on the Jaccard similarity of these sets.
Recommend that you follow accounts followed by similar users.

- Netflix: look at sets of movies watched. Amazon: look at products
purchased, etc.

APPLICATION: SPAM AND FRAUD DETECTION

Many applications to spam/fraud detection. E.g.

- Fake Reviews: Very common on websites like Amazon.
Detection often looks for (near) duplicate reviews on similar
products, which have been copied. ‘Near duplicate’
measured with shingles + Jaccard similarity.

- Lateral phishing: Phishing emails sent to addresses at a

business coming from a legitimate email address at the

same business that has been compromised.

- One method of detection looks at the recipient list of an email
and checks if it has small Jaccard similarity with any previous
recipient lists. If not, the email is flagged as possible spam.

WHY JACCARD SIMILARITY?

Why use Jaccard similarity over other metrics like: Hamming
distinct (bit strings), correlation (sound waves, seismograms),
edit distance (text, genome sequences, etc.)?

Two Reasons:

- Depending on the application, often is the right measure.

- Even when not ideal, very efficient to compute and
implement near neighbor search and all-pairs similarity
search with.

MINHASHING

Goal: Speed up Jaccard similarity search (near neighbor and
all-pairs similarity search).

Strategy: Use random hashing to map each set to a very
compressed representation. Jaccard similarity can be
estimated from these representations.

MinHash(A):

+ Leth: U —[0,1] be a random
hash function

C g =1
“ FOrXy,...,Xja €A é ‘>
- s :=min(s, h(x)) M'-lH_ h(A)
InNRas
+ Returns

Identical to our distinct elements sketch! 10

MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

- Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x # y (i.e, no spurious collisions)

AN

MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

- Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x # y (i.e, no spurious collisions)

1

MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

- Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x # y (i.e, no spurious collisions)

1

MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

- Since we are hashing into the continuous range [0, 1], we will
never have h(x) = h(y) for x # y (i.e, no spurious collisions)

- MinHash(A) = MinHash(B) only if an item in AN B has the

1

MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

Claim: MinHash(A) = MinHash(B) only if an item in AN B has
the minimum hash value in both sets.

| . ANB
Pr(MinHash(A) = MinHash(B)) = total # |items|hashed

AN B|

LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to
checking equality of a single number.

Pr(MinHash(A) = MinHash(B)) = J(A, B).
- An instance of (LSH).

- A hash function where the collision probability is higher when two
inputs are more similar (can design different functions for
different similarity metrics.)

13

LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing (LSH) help with similarity
search?

Locality Sensitive Hash Function

LYPYS~~~=0000

- Near Neighbor Search: Given item x, compute h(x). Only
search for similar items in the h(x) bucket of the hash table.

- All-pairs Similarity Search: Scan through all buckets of the
hash table and only look for similar pairs within each bucket.

LSH WITH MINHASH

Goal: Use MinHash to perform Jaccard similarity search of
documents efficiently.

- Given a document y, identify all documents x in the database
with Jaccard similarity (of their shingle sets) J(x,y) > 1/2.

Simple Approach:

- Create a hash table of size m, choose a random hash
function g : [0,1] — [m], and insert every item x into bucket
g(MinHash(x)). Search for items similar to y in bucket
g(MinHash(y)).

- For every document x in your database with J(x,y) = 1/2
what is the probability you will find x in bucket
g(MinHash(y)), assuming g is collision free? 1/2.

15

REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match x with J(x,y) = 1/2
with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash
values MHq(x), ... MH(x). Apply random hash function g to map all
these values to locations in t hash tables.

- To search for items similar to y, look at all items in bucket
g(MH(y)) of the 1°t table, bucket g(MH,(y)) of the 2" table, etc.

+ What is the probability that x with J(x,y) = 1/2 is in at least one of
these buckets, assuming for simplicity g has no collisions?

1— (probability in no buckets) = 1— (%)t ~ .99 fort=7.

+ What is the probability that x with J(x,y) = 1/4 is in at least one of
these buckets, assuming for simplicity g has no collisions?
1— (probability in no buckets) =1 — (%)t ~ 87fort=7.

Potential for a lot of false positives! Slows down search time. 16

BALANCING HIT RATE AND QUERY TIME

We want to balance a small probability of false negatives (a high hit

rate) with a small probability of false positives (a small query time.)
Table 1

r hashes per band
1

- S
MH, 1(x) MH ,(x).., MH, () o]

MH,,1(x) MH, 5(x),..., MH,,(x)

t repetitions

MHj ;(x) MH; 5(X),..., MH3 (x)

Table t

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature. 17

BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in t hash tables, using MinHash
signatures of length r. For x and y with Jaccard similarity J(x,y) = s:

- Probability that a single hash matches.
Pr[MH;(x) = MH;(y)] = J(x.y) = 5.

- Probability that x and y having matching signatures in repetition i.
Pr[MH;4(X), .., MH; ((X) = MHi(y), ..., MH; ()] = <.

- Probability that x and y don’t match in repetition i: 1 — s'.
- Probability that x and y don’t match in all repetitions: (1 — s")".

- Probability that x and y match in at least one repetition:

Hit Probability: 1 — (1 —s")".

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
o © o ©o o o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

19

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

4
©

4
o

r=10,t=10

Hit Probability
o ©o o o o o
Mo s o o N

o

o

0.4 0.6 0.8 1
Jaccard Similarity s

o
o
)

19

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
o © o © o o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

19

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
e © © © © o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

rand t are tuned depending on application. ‘Threshold” when hit
probability is 1/2 is =~ (1/t)/". E.g, ~ (1/30)"/> = .51 in this case. 19

S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You
are given a clip x and want to find any y in the database with

Jx,y) = 9.

* There are 10 true matches in the database with J(x,y) > .9.

* There are 10,000 near matches with J(x,y) € [.7,.9].

With signature length r = 25 and repetitions t = 50, hit probability
forJ(x,y) =sis 1 (1—s7)".

- Hit probability for J(x,y) > .9 is > 1— (1 —.9%0)0 ~ .98

- Hit probability for J(x,y) € [.7,.9] is < 1— (1 —.9%0)*0 ~ .98

- Hit probability for J(x,y) < .7] is < 1— (1 —.7%%)*° ~ .007

Expected Number of Items Scanned: (proportional to query time)

.98 %10 + .98 % 10,000 -+ .007 % 9,989,990 ~ 0. 000 < 10,000, 000.
20

Bloom . Distinct
. Hash Table MinHash
Filters Elements
Check if x is Check if x is a Check if x is a
. . . Count # of
a duplicate | duplicate of any | duplicate of any | . .
Goal . . . items, excluding
of yin y in database y in database .
duplicates.
database.

Approximate
Duplicates?

X

X

v/

X

All different variants of detecting duplicates/finding matches
in large datasets. This is an important problem in many

contexts!

HASHING FOR DUPLICATE DETECTION

21

LOCALITY SENSITIVE HASHING

Locality sensitive hashing (LSH) schemes have been developed
for many similarity/distance measures: hamming distance (bit
sampling), cosine similarity (random projections), etc.

- Typically used for fast near neighbor search and all-pairs
similarity search.

- Anshumali Shrivastava at Rice has proposed a huge number
of other interesting applications - from speeding up neural
net evaluation, to sampling points with large gradients in
stochastic gradient descent.

22

SPEEDING UP NEURAL NETWORKS

Input Layer Layer 1 Layer 2

- Evaluating the output for input x requires
|x| - [layer 1] + |layer 1| - [layer 2| + ... multiplications if fully
connected. Can be expensive, especially on constrained devices
like cellphones, cameras, etc.

23

SPEEDING UP NEURAL NETWORKS

Input Layer Layer 1 Layer 2

- Evaluating the output for input x requires
|x| - [layer 1] + |layer 1| - |layer 2| + ... multiplications if fully
connected. Can be expensive, especially on constrained devices
like cellphones, cameras, etc.

- For approximate evaluation, suffices to identify the neurons in
each layer with the highest activation when x is presented.

23

SPEEDING UP NEURAL NETWORKS

Input Layer Layer 1 Layer 2

- Evaluating the output for input x requires
|x| - [layer 1] + |layer 1| - |layer 2| + ... multiplications if fully
connected. Can be expensive, especially on constrained devices
like cellphones, cameras, etc.

- For approximate evaluation, suffices to identify the neurons in
each layer with the highest activation when x is presented.

* Thatis, n; where ZL Xi - W(x;,n;) = (x,w(n;)) is large. Can be
identified rapidly using LSH for cosine similarity! 23

Questions?

24

