COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 7

LOGISTICS

- Problem Set 1is due Thursday in Gradescope.
- My office hours today are 1:15pm-2:15pm.

Lecture Pace: Piazza poll results for last class:

- 18%: too fast

- 48%: a bit too fast
- 26%: perfect

- 8%: (a bit) too slow

So will try to slow down a bit.

SUMMARY

Last Class: Hashing for Jaccard Similarity

- MinHash for estimating the Jaccard similarity.
- Application to fast similarity search.
- Locality sensitive hashing (LSH).

This Class:

- Finish up MinHash and LSH.
- The Frequent Elements (heavy-hitters) problem.

- Misra-Gries summaries.

JACCARD SIMILARITY

P TR _ |ANB| __ # shared elements
Jaccard Similarity: J(A, B) = iAuB} = ## total elements *

0

- Near Neighbor Search: Have a database of n sets/bit strings
and given a set A, want to find if it has high similarity to
anything in the database. Naively O(n) time.

- All-pairs Similarity Search: Have n different sets/bit strings.
Want to find all pairs with high similarity. Naively O(n”) time.

Two Common Use Cases:

MINHASHING

MinHash(A) = mingea h(a) where h : U — [0,1] is a random hash.
Locality Sensitivity: Pr(MinHash(A) = MinHash(B)) = J(A, B).

Represents a set with a single number that captures Jaccard
similarity information!

Given a collision free hash function g : [0,1] — [m],

Pr[g(MinHash(A)) = g(MinHash(B))] = J(A, B).

y Sensitive Hash Function
\

LYPY~~~=0000

What happens to Pr[g(MinHash(A)) = g(MinHash(B))] if g is not
collision free? Collision probability will be larger than J(A, B). 4

LSH FOR SIMILARITY SEARCH

When searching for similar items only search for matches that land
in the same hash bucket.

- False Negative: A similar pair doesn't appear in the same bucket.

- False Positive: A dissimilar pair is hashed to the same bucket.

Need to balance a small probability of false negatives (a high hit
rate) with a small probability of false positives (a small query time.)

LOCALITY SENSITIVE HASHING

Consider a pairwise independent random hash function
h: U— [m]. Is this locality sensitive?

Pr(h(x) =h(y)) = % forall x,y € U. Not locality sensitive!

- Random hash functions (for load balancing, fast hash table
look ups, bloom filters, distinct element counting, etc.) aim
to evenly distribute elements across the hash range.

- Locality sensitive hash functions (for similarity search) aim
to distribute elements in a way that reflects their similarities.

BALANCING HIT RATE AND QUERY TIME

Balancing False Negatives/Positives with MinHash via repetition.
Table 1

MH, 1(x) MH, 5(x),..., MH, (x)

t repetitions
MH,;(X) MHj 5(X),..., MH; (x)

Table t

MH, ;(x) MH, 5(x),..., MH, (x) 9

Create t hash tables. Each is indexed into not with a single MinHash
value, but with r values, appended together. A length r signature:

MH[J(X)a MH[,Z(X)a SERE) MHi,r(X)'

SIGNATURE COLLISIONS

For A, B with Jaccard similarity J(A, B) = s, probability their length r
MinHash signatures collide:

Pr ([MHM(A), ..., MH; (A)] = [MH; 4(B), ..., MHi,,(B)]) =
Probability the signatures don’t collide:
Pr([MH;1(A),...,MH; (A)] # [MH;1(B),...,MH; (B)]) =1—s".
Probability there is at least one collision in the t hash tables:

Pr (Ji: [MH,1(A), ..., MH, (A)] = [MH,1(B), ..., MH, (B)]) =1— (1—s")".

MH; ;: (i, /) independent instantiation of MinHash. t repetitions (i = 1,...1),
each with r hash functions (j = 1,...r) to make a length r signature.

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
o © o ©o o o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

4
©

4
o

r=10,t=10

Hit Probability
o ©o o o o o
Mo s o o N

o

o

0.4 0.6 0.8 1
Jaccard Similarity s

o
o
)

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
o © o © o o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

THE S-CURVE

Using t repetitions each with a signature of r MinHash values, the
probability that x and y with Jaccard similarity J(x,y) = s match in at
least one repetitionis: 1— (1 s")"

Hit Probability
e © © © © o o
w A 0 ® N o © =

o
»

01

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

rand t are tuned depending on application. ‘Threshold” when hit
probability is 1/2 is =~ (1/t)/". E.g, ~ (1/30)"/> = .51 in this case. 9

S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You
are given a clip x and want to find any y in the database with

Jx,y) = 9.

* There are 10 true matches in the database with J(x,y) > .9.

* There are 1000 near matches with J(x,y) € [.7,.9].

With signature length r = 25 and repetitions t = 50, hit probability
forJ(x,y) =sis1—(1—s7)".

- Hit probability for J(x,y) > .9is > 1—(1—.9%)"" ~ .98 and < 1.
- Hit probability for J(x,y) € [.7,.9] is <1—(1—.9%)° ~ .98

- Hit probability for J(x,y) < .71is <1— (1 - .72)> ~ .007

Expected Number of Items Scanned: (proportional to query time)

1%10 4 .98 % 1000 + .007 9,998, 990 ~ 80, 000 < 10, 000, 000.

LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for search with any

similarity metric, given a locality sensitive hash function for that

metric.

- LSH schemes exist for many similarity/distance measures:
hamming distance, cosine similarity, etc.

Cosine Similarity: cos(8(x,y)) = %

- cos(f(x,y)) = 1when 6(x,y) = 0° and cos(6(x,y)) = 0 when

H(ny) = 90°, and COS(Q(X7 y)) = —1when 9(X7y) — 180°
1

LSH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = 1 X,

random plane

X3

SimHash(x) = -1

SimHash(x) = sign((x, t)) for a random vector t.

pr{SimHash(x) = SimHash(y)] = 1 — %) ~ COS(G(Xz’y N+T
T

HASHING FOR NEURAL NETWORKS

Many applications outside traditional similarity search. E.g,
approximate neural net computation (Anshumali Shrivastava).

Nonlinearity o /

n; = U(Z w(xj,n;) - % > =a((w;,x))

J=1

Input Layer Layer 1 Layer 2

* Evaluating V(x) requires |x| - |layer 1| + |layer 1| - [layer 2| + ...
multiplications if fully connected.

- Can be expensive, especially on constrained devices like
cellphones, cameras, etc.

- For approximate evaluation, suffices to identify the neurons in
each layer with high activation when x is presented. 13

HASHING FOR NEURAL NETWORKS
Input Layer Layer 1 Layer 2
Nonlinearity o /

n; = 0’<Z w(x]—,n,-) - Xj > =o((w;, x))

Jj=1

- Important neurons have high activation o((w;j, x}).
- Since o Is typically monotonic, this means large (w;, x).
- cos(O(w;, X)) = X Thus these neurons can be found

= TwilllIxIT
very quickly using LSH for cosine similarity search.

14

HASHING FOR DUPLICATE DETECTION

Bloom . Distinct
. Hash Table MinHash
Filters Elements
Check if x is Checkif xis a Checkif xis a
. . . Count # of
a duplicate | duplicate of any | duplicate of any | . .
Goal . . . items, excluding
of yin y in database y in database .
duplicates.
database.
Approximate - ,
Duplicates? x x x

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!

MinHash(A) is a single number sketch, that can be used both
to estimate the number of items in A and the Jaccard similarity
between A and other sets.

15

Questions on MinHash and Locality Sensitive Hashing?

16

