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LOGISTICS

- Problem Set 1 was due this morning in Gradescope.

- Problem Set 2 will be released tomorrow and due 10/10.



SUMMARY

Last Class: Finished up MinHash and LSH.

- Application to fast similarity search.

- False positive and negative tuning with length r hash
signatures and t hash table repetitions (s-curves).

- Examples of other locality sensitive hash functions
(SimHash).

This Class:

- The Frequent Elements (heavy-hitters) problem in data
streams.

- Misra-Gries summaries.

- Count-min sketch.



UPCOMING

Next Time: Random compression methods for high
dimensional vectors. The Johnson-Lindenstrauss lemma.

- Building on the idea of SimHash.
After That: Spectral Methods

- PCA, low-rank approximation, and the singular value
decomposition.

- Spectral clustering and spectral graph theory.
Will use a lot of linear algebra. May be helpful to refresh.

- Vector dot product, addition, length. Matrix vector
multiplication.

- Linear independence, column span, orthogonal bases, rank.
- Eigendecomposition.



HASHING FOR DUPLICATE DETECTION
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All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!



THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x4, ..., x, (with possible duplicates). Return any item
that appears at least # times. £.¢, forn =9,k =3:

X1 X, X3 X, X5 Xg Xy Xg Xq

5 12 3 3 4 5 5 10 3

- What is the maximum number of items that must be
returned? At most k items with frequency > 2.
- Think of k = 100. Want items appearing > 1% of the time.
- Easy with O(n) space - store the count for each item and
return the one that appears > n/k times.
- Can we do it with less space? l.e,, without storing all n items?
- Similar challenge as with the distinct elements problem. 5



THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

* Finding top/viral items (i.e,, products on Amazon, videos
watched on Youtube, Google searches, etc.)

- Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

- ‘lceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. l.e., want to maintain a running list of
frequent items that appear in a stream.



FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to
identify common associations between different events.

Cart 1 Cart 2 Qaﬁ 3

~ ~

- Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.
* Frequency of an itemset is known as its support.

- A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow. .



MAJORITY IN DATA STREAMS

Majority: Consider a stream of n items xq,...,X,, where a
single item appears a majority of the time. Return this item.

X3 X X3 Xa Xs Xe X7 Xg Xg X10

12 3 5 4 5 5 10 5

(0}
n

- Basically k-Frequent items for k = 2 (and assume a single
item has a strict majority.)



BOYER-MOORE ALGORITHM

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

- Initialize count ¢ := 0, majority element m :=__
- Fori=1,...,n

- Ifc=0,setm:=x;andc:=1.

- Elseifm=x;,setc:=c+1.

- Elseifm#x;,setc:=c—1.

Just requires O(logn) bits to store ¢ and space to store m.

c=0, m=1

X1 X2 X3 X4 Xs X X7 Xg X9 X10
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CORRECTNESS OF BOYER-MOORE

Boyer-Moore Voting Algorithm:
- Initialize count c := 0, majority element m :=_1L
« Fori=1,...,n

- Ifc=0,setm:=x;and c:=1.

- Elseifm=x,setc:=c+1.

- Elseifm#x;,setc:=c—1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = —c otherwise (sis a ‘helper variable).

¢=0, m=1 = ¢=0, m=3 c=0, m=4 m
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CORRECTNESS OF BOYER-MOORE

Boyer-Moore Voting Algorithm:
- Initialize count c := 0, majority element m :=_1L
« Fori=1,...,n

- Ifc=0,setm:=x;and c:=1.

- Elseifm=x,setc:=c+1.

- Elseifm#x;,setc:=c—1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = —c otherwise (sis a ‘helper variable).

- sisincremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value. = algorithm ends with m = M.



BACK TO FREQUENT ITEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., x, (with possible duplicates). Return any item
at appears at least 3 times.

Boyer-Moore Voting Algorithm:
- Initialize count ¢ := 0, majority element m :=__
- Fori=1,...,n

- Ifc=0,setm:=x

- Elseifm=x;,setc:=c+1.
- Elseifm#x;,setc:=c—1.

1



BACK TO FREQUENT ITEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of nitems x4, ..., X, (with possible duplicates). Return any item
at appears at least 3 times.
Misra-Gries Summary:
- Initialize counts ¢y, ..., Cp := 0, elements mq,..., myp =1
- Fori=1,...,n

- If m; = x; for some j,set ¢ := ¢+ 1.

- Else lett=argming. If ¢, =0, set m; :=x; and ¢; := 1.
- Else ¢j:==¢;—1forallj.

1



MISRA-GRIES ALGORITHM
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- Else lett =argming. If ¢ =0, set m; :=x; and ¢; == 1.
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c=0, m=L

c,=0, my=L

c3=0, m=L
Xy X, X3 Xq X5 Xg X; Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming. If ¢ =0, set m; :=x; and ¢; == 1.

- Else ¢j:= ¢ —1forallj.

c,=0, m;=L

c3=0, m=L
Xy X, X3 Xq X5 Xg X; Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming. If ¢ =0, set m; :=x; and ¢; == 1.

- Else ¢j:= ¢ —1forallj.

=1, m=12 @

c3=0, m=L
X, X, X3 X4 Xs Xg Xz Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

=1, m=12 @
X, X, X3 X, X5 Xg X7 Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

=1, m=12 @
X, X, X3 X, X5 Xg X7 Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

c,=0, m;=12
Xy X, X3 Xq X5 Xg X; Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

c,=0, m;=12
Xy X, X3 Xq X5 Xg X; Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

c,=0, m;=12
Xy X, X3 Xq X5 Xg X; Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

=1, m=10 @
X, X, X3 X, X5 Xg X7 Xg Xg
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

c2m=5 0@
=1, m=10 @
w2m=3 @@
X3 Xz X3 X4 Xs Xs X7 Xg X9
5 12 3 3 4 5 5 10 3




MISRA-GRIES ALGORITHM

Misra-Gries Summary:

- Initialize counts ¢y,...,Cp := 0, elements mq,...,mp :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢;:=¢; + 1.

- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢; := 1.

- Else ¢j:= ¢ —1forallj.

c2m=5 0@
=1, m=10 @
w2m=3 @@
X3 Xz X3 X4 Xs Xs X7 Xg X9
5 12 3 3 4 5 5 10 3

Claim: At the end of the stream, all items with frequency > 2
are stored. 12



MISRA-GRIES ANALYSIS

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency > f.

Intuition:

- If there are exactly k items, each appearing exactly n/kr
times, all are stored (since we have k storage slots).

- If there are kR/2 items each appearing > n/k times, there are
< n/2irrelevant items, being inserted into k/2 ‘free slots"

- May cause Z—ﬁ = 7 decrement operations. Few enough that

the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?

May have false positives - infrequent items that are stored.
13



APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

X1 X3 X3 X X5 Xe Xn-n/k+1 X
3 12| 9 |27 | 4 |100] 7 3 s

n/k-1 occurrences

14



APPROXIMATE FREQUENT ELEMENTS

Issue: Misra-Gries algorithm stores k items, including all with
frequency > n/k. But may include infrequent items.

- In fact, no algorithm using o(n) space can output just the
items with frequency > n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k — 1 (should
not be output).

(e, R)-Frequent Items Problem: Consider a stream of n items
X1,...,Xn. Return a set F of items, including all items that

n

appear at least § times and only items that appear at least

(1—€)- % times.

- An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1—¢) - #, 8] no output guarantee.

14



APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Misra-Gries Summary: (e-error version)

+ Letr:=[R/€]
- Initialize counts ¢y, ..., ¢ := 0, elements my, ..., m, :=_L.
- Fori=1,...,n

- If m; = x; for some j, set ¢; == ¢ + 1.
- Else lett =argming;. If ¢t =0, set m¢ :=x; and ¢¢ := 1.
- Else ¢j:= ¢ —1forallj.

* Return any m; with ¢; > (1—¢) - 7.

R

Claim: For all m; with true frequency f(m;):

flmj) — % < ¢ < flm)).

Intuition: # items stored r is large, so relatively few decrements.

Implication: If f(m,) > [, then ¢; > (1—¢€) - # so the item Is returned.
If f(m;) < (1—¢)- %, then¢ < (1—¢)- 7 sotheitem is not returned. 15



APPROXIMATE FREQUENT ELEMENTS WITH MISRA-GRIES

Upshot: The (e, R)-Frequent Items problem can be solved via
the Misra-Gries approach.

- Space usage is [R/e] counts - O (“’%) bits and [R/e] items.
- Deterministic approximation algorithm.

16



FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers.

random hash function h

m length array A| 0 0 0 0 0 0 0 0 0 0

17
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FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

- A major advantage: easily distributed to processing on
multiple servers. Build arrays Ay, ..., As separately and then
just set A=A+ ...+ As.

random hash function h

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. l.e, [{xj : x; = x}|. 17




COUNT-MIN SKETCH ACCURACY

Xi X Xz Xg o .. X

random hash function h

m length arrayAl 4 2 1 E. 1 B

Use A[h(x)] to estimate f(x)
Claim 1: We always have A[h(x)] > f(x).

- Alh(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.
< AL = FX) + )iy —ngo ).

f(x): frequency of x in the stream (i.e,, number of items equal to x). h: random
hash function. m: size of count-min sketch array.




COUNT-MIN SKETCH ACCURACY

ATh()] = f(x) + Y.

y#xh(y)=h(x)

Expected Error: error in frequency estimate

E { > f(y)] = > Pr(h(y) = h(x)) - f(¥)
Y

#x:h(y)=h(x) Y#X
n
=Y =) <

V#X

Markov's inequality: Pr {Zy;ﬁx h(y)=ho f(V) =

2-universal.

f(x): frequency of x in the stream (i.e, number of items equal to x). h: random

hash function. m: size of count-min sketch array. 10




COUNT-MIN SKETCH ACCURACY

X;  Xp X3 X4 R

random hash function h

m length arrayAl 4 2 1 ‘L. 1 3

Claim: For any x, with probability at least 2/3,

f(x) < Alh()] < f(x) +

To solve the (e, k)-Frequent elements problem, set m = .

How can we improve the success probability?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

20



COUNT-MIN SKETCH ACCURACY

Xy Xy Xy X4 .. X

t random hash functions
hy, hy,oons hy

A, 0 0 0 0 0 0 0 0 0 0

tlengthmarrays A, | 0 0 0 0O
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COUNT-MIN SKETCH ACCURACY

Xy Xy Xy X4 .. X

t random hash functions
hy, hy,oony by

A1100000‘0‘000

tlengthmarrays A, | 0 | 0 0o 0
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COUNT-MIN SKETCH ACCURACY

Xy Xy Xy X4 .. X

t random hash functions
hy, hy,oons hy

Al2 0/ glo % 0o o000

tlengthmarrays A, | 0 | 0 | 1 | 0 | ©
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COUNT-MIN SKETCH ACCURACY

Xy Xo Xz Xy Xn

t random hash functions
hy, hy,oons hy

A, 2 5 1 0 6 12. 1 3 4

tlengthmarrays A, | 1 | 6 | 1 |10 78 . 4 (11| 3 |5

A1.1 52 6 | 3 |12 33.3 2
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COUNT-MIN SKETCH ACCURACY

Xy Xy Xy X4 .. X

\
o ]
\

tlength m arrays Az

631233.32

Estimate f(x) with f(x) = min;cq Ai[h;(x)]. (count-min sketch)
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COUNT-MIN SKETCH ACCURACY

Xy Xy Xy X4 .. X

\
o ]
\

tlength m arrays Az

631233.32

Estimate f(x) with f(x) = min;cq Ai[h;(x)]. (count-min sketch)

Why min instead of median? The minimum estimate is always
the most accurate since they are all overestimates of the true

frequency!
21



COUNT-MIN SKETCH ANALYSIS

Ay

tlength m arrays A;

Estimate f(x) by f(x) = minicig A[hi(x)]

- For every x and i € [t], we know that for m = O(k/¢), with

probability > 2/3:
70 < Al ()] < £+ T

* Whatis Pr[f(x < f(x) < f(x) + €7 1-1/3t
- To have a good estimate with probability > 1—§, sett = log(1/5). 22



COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ! with probability > 1—4in
O (log(1/d) - R/€) space.

- Accurate enough to solve the (e, R)-Frequent elements
problem.

- Actually identifying the frequent elements quickly requires a
little bit of further work.
One approach: Store potential frequent elements as they
come in. At step i remove any elements whose estimated
frequency is below i/k. Store at most O(R) items at once and
have all items with frequency > n/k stored at the end of the
stream.

23



Questions on Frequent Elements?
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