
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 8

0

logistics

• Problem Set 1 was due this morning in Gradescope.
• Problem Set 2 will be released tomorrow and due 10/10.

1

summary

Last Class: Finished up MinHash and LSH.

• Application to fast similarity search.
• False positive and negative tuning with length r hash
signatures and t hash table repetitions (s-curves).

• Examples of other locality sensitive hash functions
(SimHash).

This Class:

• The Frequent Elements (heavy-hitters) problem in data
streams.

• Misra-Gries summaries.
• Count-min sketch.

2

upcoming

Next Time: Random compression methods for high
dimensional vectors. The Johnson-Lindenstrauss lemma.

• Building on the idea of SimHash.

After That: Spectral Methods

• PCA, low-rank approximation, and the singular value
decomposition.

• Spectral clustering and spectral graph theory.

Will use a lot of linear algebra. May be helpful to refresh.

• Vector dot product, addition, length. Matrix vector
multiplication.

• Linear independence, column span, orthogonal bases, rank.
• Eigendecomposition.

3

hashing for duplicate detection

All different variants of detecting duplicates/finding matches
in large datasets. An important problem in many contexts!

4

the frequent items problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
that appears at least nk times. E.g., for n = 9, k = 3:

• What is the maximum number of items that must be
returned? At most k items with frequency ≥ n

k .
• Think of k = 100. Want items appearing ≥ 1% of the time.
• Easy with O(n) space – store the count for each item and
return the one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?
• Similar challenge as with the distinct elements problem. 5

the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to
detect DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Generally want very fast detection, without having to scan
through database/logs. I.e., want to maintain a running list of
frequent items that appear in a stream.

6

frequent itemset mining

Association rule learning: A very common task in data mining is to
identify common associations between different events.

• Identified via frequent itemset counting. Find all sets of k items
that appear many times in the same basket.

• Frequency of an itemset is known as its support.
• A single basket includes many different itemsets, and with many
different baskets an efficient approach is critical. E.g., baskets are
Twitter users and itemsets are subsets of who they follow. 7

majority in data streams

Majority: Consider a stream of n items x1, . . . , xn, where a
single item appears a majority of the time. Return this item.

• Basically k-Frequent items for k = 2 (and assume a single
item has a strict majority.)

8

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

boyer-moore algorithm

Boyer-Moore Voting Algorithm: (our first deterministic algorithm)

• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Just requires O(logn) bits to store c and space to store m.

9

correctness of boyer-moore

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = −c otherwise (s is a ‘helper’ variable).

• s is incremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value.

=⇒ algorithm ends with m = M.

10

correctness of boyer-moore

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = −c otherwise (s is a ‘helper’ variable).

• s is incremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value.

=⇒ algorithm ends with m = M.

10

correctness of boyer-moore

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = −c otherwise (s is a ‘helper’ variable).

• s is incremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value.

=⇒ algorithm ends with m = M.

10

correctness of boyer-moore

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥

• For i = 1, . . . ,n
• If c = 0, set m := xi and c := 1.
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

Claim: The Boyer-Moore algorithm always outputs the majority
element, regardless of what order the stream is presented in.

Proof: Let M be the true majority element. Let s = c when m = M and
s = −c otherwise (s is a ‘helper’ variable).

• s is incremented each time M appears. So it is incremented more
than it is decremented (since M appears a majority of times) and
ends at a positive value. =⇒ algorithm ends with m = M.

10

back to frequent items

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least nk times.

Boyer-Moore Voting Algorithm:
• Initialize count c := 0, majority element m :=⊥
• For i = 1, . . . ,n
• If c = 0, set m := xi
• Else if m = xi, set c := c+ 1.
• Else if m ̸= xi, set c := c− 1.

11

back to frequent items

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream
of n items x1, . . . , xn (with possible duplicates). Return any item
at appears at least nk times.

Misra-Gries Summary:
• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

11

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored.

12

misra-gries algorithm

Misra-Gries Summary:

• Initialize counts c1, . . . , ck := 0, elements m1, . . . ,mk :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

Claim: At the end of the stream, all items with frequency ≥ n
k

are stored. 12

misra-gries analysis

Claim: At the end of the stream, the Misra-Gries algorithm
stores k items, including all those with frequency ≥ n

k .

Intuition:

• If there are exactly k items, each appearing exactly n/k
times, all are stored (since we have k storage slots).

• If there are k/2 items each appearing ≥ n/k times, there are
≤ n/2 irrelevant items, being inserted into k/2 ‘free slots’.

• May cause n/2
k/2 = n

k decrement operations. Few enough that
the heavy items (appearing n/k times each) are still stored.

Anything undesirable about the Misra-Gries output guarantee?
May have false positives – infrequent items that are stored.

13

approximate frequent elements

Issue: Misra-Gries algorithm stores k items, including all with
frequency ≥ n/k. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the
items with frequency ≥ n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k− 1 (should
not be output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that
appear at least nk times and only items that appear at least
(1− ϵ) · nk times.

• An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1− ϵ) · nk ,

n
k] no output guarantee.

14

approximate frequent elements

Issue: Misra-Gries algorithm stores k items, including all with
frequency ≥ n/k. But may include infrequent items.

• In fact, no algorithm using o(n) space can output just the
items with frequency ≥ n/k. Hard to tell between an item
with frequency n/k (should be output) and n/k− 1 (should
not be output).

(ϵ, k)-Frequent Items Problem: Consider a stream of n items
x1, . . . , xn. Return a set F of items, including all items that
appear at least nk times and only items that appear at least
(1− ϵ) · nk times.

• An example of relaxing to a ‘promise problem’: for items
with frequencies in [(1− ϵ) · nk ,

n
k] no output guarantee.

14

approximate frequent elements with misra-gries

Misra-Gries Summary: (ϵ-error version)

• Let r := ⌈k/ϵ⌉
• Initialize counts c1, . . . , cr := 0, elements m1, . . . ,mr :=⊥.
• For i = 1, . . . ,n
• If mj = xi for some j, set cj := cj + 1.
• Else let t = argmin cj. If ct = 0, set mt := xi and ct := 1.
• Else cj := cj − 1 for all j.

• Return any mj with cj ≥ (1− ϵ) · nk .

Claim: For all mj with true frequency f(mj):

f(mj)−
ϵn
k ≤ cj ≤ f(mj).

Intuition: # items stored r is large, so relatively few decrements.

Implication: If f(mj) ≥ n
k , then cj ≥ (1− ϵ) · nk so the item is returned.

If f(mj) < (1− ϵ) · nk , then cj < (1− ϵ) · nk so the item is not returned. 15

approximate frequent elements with misra-gries

Upshot: The (ϵ, k)-Frequent Items problem can be solved via
the Misra-Gries approach.

• Space usage is ⌈k/ϵ⌉ counts – O
(
k log n

ϵ

)
bits and ⌈k/ϵ⌉ items.

• Deterministic approximation algorithm.

16

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|.

17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers.

Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|. 17

frequent elements with count-min sketch

A common alternative to the Misra-Gries approach is the
count-min sketch: a randomized method closely related to
bloom filters.

• A major advantage: easily distributed to processing on
multiple servers. Build arrays A1, . . . ,As separately and then
just set A := A1 + . . .+ As.

Will use A[h(x)] to estimate f(x), the frequency of x in the
stream. I.e., |{xi : xi = x}|. 17

count-min sketch accuracy

Use A[h(x)] to estimate f(x)

Claim 1: We always have A[h(x)] ≥ f(x). Why?

• A[h(x)] counts the number of occurrences of any y with
h(y) = h(x), including x itself.

• A[h(x)] = f(x) +
∑

y̸=x:h(y)=h(x) f(y).

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

18

count-min sketch accuracy

A[h(x)] = f(x) +
∑

y ̸=x:h(y)=h(x)
f(y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y ̸=x:h(y)=h(x)

f(y)

 =
∑
y ̸=x

Pr(h(y) = h(x)) · f(y)

=
∑
y ̸=x

1
m · f(y) = 1

m · (n− f(x)) ≤ n
m

What is a bound on probability that the error is ≥ 3n
m ?

Markov’s inequality: Pr
[∑

y ̸=x:h(y)=h(x) f(y) ≥ 3n
m

]
≤ 1

3 .

What property of h is required to show this bound? 2-universal.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

19

count-min sketch accuracy

Claim: For any x, with probability at least 2/3,

f(x) ≤ A[h(x)] ≤ f(x) + ϵn
k .

To solve the (ϵ, k)-Frequent elements problem, set m = 6k
ϵ .

How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random
hash function. m: size of count-min sketch array.

20

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median?

The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median?

The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median?

The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median?

The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median?

The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch accuracy

Estimate f(x) with f̃(x) = mini∈[t] Ai[hi(x)]. (count-min sketch)

Why min instead of median? The minimum estimate is always
the most accurate since they are all overestimates of the true
frequency!

21

count-min sketch analysis

Estimate f(x) by f̃(x) = mini∈[t] Ai[hi(x)]
• For every x and i ∈ [t], we know that for m = O(k/ϵ), with
probability ≥ 2/3:

f(x) ≤ Ai[hi(x)] ≤ f(x) + ϵn
k .

• What is Pr[f(x ≤ f̃(x) ≤ f(x) + ϵn
k]? 1− 1/3t.

• To have a good estimate with probability ≥ 1− δ, set t = log(1/δ). 22

count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of
every item in a stream up to error ϵn

k with probability ≥ 1− δ in
O (log(1/δ) · k/ϵ) space.

• Accurate enough to solve the (ϵ, k)-Frequent elements
problem.

• Actually identifying the frequent elements quickly requires a
little bit of further work.
One approach: Store potential frequent elements as they
come in. At step i remove any elements whose estimated
frequency is below i/k. Store at most O(k) items at once and
have all items with frequency ≥ n/k stored at the end of the
stream.

23

Questions on Frequent Elements?

24

