
The Power of Randomized Algorithms: From
Numerical Linear Algebra to Biological Systems

by

Cameron Nicholas Musco
B.S., Computer Science, Yale University (2012)

B.S., Applied Mathematics, Yale University (2012)
S.M., Computer Science, Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

June 22, 2018
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nancy A. Lynch
NEC Professor of Software Science and Engineering

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Theses



2



The Power of Randomized Algorithms: From Numerical

Linear Algebra to Biological Systems

by
Cameron Nicholas Musco

Submitted to the Department of Electrical Engineering and Computer Science
on June 22, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In this thesis we study simple, randomized algorithms from a dual perspective. The
first part of the work considers how randomized methods can be used to accelerate
the solution of core problems in numerical linear algebra. In particular, we give a
randomized low-rank approximation algorithm for positive semidefinite matrices that
runs in sublinear time, significantly improving upon what is possible with traditional
deterministic methods. We also discuss lower bounds on low-rank approximation and
spectral summarization problems that attempt to explain the importance of random-
ization and approximation in accelerating linear algebraic computation.

The second part of the work considers how the theory of randomized algorithms
can be used more generally as a tool to understand how complexity emerges from
low-level stochastic behavior in biological systems. We study population density-
estimation in ant colonies, which is a key primitive in social decision-making and
task allocation. We define a basic computational model and show how agents in this
model can estimate their density using a simple random-walk-based algorithm. We
also consider simple randomized algorithms for computational primitives in spiking
neural networks, focusing on fast winner-take-all networks.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering
Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

First, I would like to thank my advisor Nancy Lynch. As the contents of this thesis
evidence, my research has spanned a range of areas, which Nancy has been happy to
let me wander into. At the same time, she has been a hands-on advisor when needed,
driving much of my work on biological computation and teaching me how to build a
new research area, which is as much about proposing new kinds of problems as about
solving those problems.

I would also like to thank David Woodruff and Piotr Indyk, the other members of
my thesis committee. I was fortunate to have interned with David at IBM Research.
Since then he has been both a frequent collaborator and a valuable mentor to me.
Piotr has always been a friendly face in the theory group and a willing source for
advice on research and beyond.

I would also like to thank my many collaborators, from whom I have received the
vast the majority of my education as a Ph.D. student. I am especially grateful to
Aaron Sidford, whom I began working with in my first year at MIT and has been a
invaluable guide and friend. I am also grateful to Michael Kapralov, Mira Radeva,
Merav Parter, and Babis Tsourakakis, who have taught me so much throughout our
work together.

While we have never written a paper together, I would also like to thank Jelani
Nelson, Michael Mahoney, and Petros Drineas, who have closely followed my research
and provided mentorship and support throughout my Ph.D. I would also like to thank
Joanne Hanley for all her support and encouragement throughout my time at MIT.

Thanks so much to my family: Mom, Dad, Christopher, Brett, Jenna, Nicole,
Tyler, Amanda, and all the extended family; and to Christina. They are everything
to me and are the support behind everything that I do. Christopher and I have
operated as a team literally since day one, and he has been the greatest support as
we have embarked on our Ph.D.’s together.

Finally, I would like to thank Michael Cohen, who was a close collaborator and
friend, that sadly passed away of an illness last year. It is impossible for me to
describe Michael fully in words. He was by far the most brilliant person I have
ever encountered, and approached the world with unmatched openness, excitement,
humbleness, and happiness that we can only seek to emulate. His impact on me is
one of the greatest things I will take away from my time at MIT.

5



6



Contents

1 Introduction 13
1.1 A Dual View of Randomized Computation . . . . . . . . . . . . . . . 14
1.2 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Sublinear Time Low-Rank Approximation . . . . . . . . . . . 15
1.2.2 Lower Bounds for Linear Algebraic Computation . . . . . . . 17
1.2.3 Ant Colony Density Estimation . . . . . . . . . . . . . . . . . 19
1.2.4 Computation in Spiking Neural Networks . . . . . . . . . . . . 20

1.3 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Matrix and Vector Notation . . . . . . . . . . . . . . . . . . . 22

2 Sublinear Time Low-Rank Approximation of PSD Matrices 25
2.1 Background and Introduction to Results . . . . . . . . . . . . . . . . 26

2.1.1 Low-rank Approximation of PSD Matrices . . . . . . . . . . . 28
2.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 Some Further Intuition on Error Guarantees . . . . . . . . . . 36
2.1.5 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Ridge Leverage Score Sampling . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Leverage Score Definitions and Basic Properties . . . . . . . . 38
2.2.2 Approximation Bounds . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Fast Ridge Leverage Score Approximation . . . . . . . . . . . 51

2.3 Column Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 Row Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Approximating the Ridge Leverage Scores of AS1 . . . . . . . 55
2.4.2 Projection-Cost-Preserving Row Sampling . . . . . . . . . . . 56
2.4.3 Spectral Norm Projection-Cost-Preservation . . . . . . . . . . 58
2.4.4 Frobenius Norm Projection-Cost-Preservation . . . . . . . . . 65

7



2.5 Full Low-Rank Approximation Algorithm . . . . . . . . . . . . . . . . 71
2.5.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5.2 Outputting a PSD Matrix . . . . . . . . . . . . . . . . . . . . 82

2.6 Spectral Norm Error Bounds . . . . . . . . . . . . . . . . . . . . . . . 85
2.6.1 Algorithmic Approach . . . . . . . . . . . . . . . . . . . . . . 86
2.6.2 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.6.3 Sublinear Time Ridge Regression . . . . . . . . . . . . . . . . 91

2.7 Query Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.7.1 Lower Bound Approach . . . . . . . . . . . . . . . . . . . . . 94
2.7.2 Primitive Approximation . . . . . . . . . . . . . . . . . . . . . 95
2.7.3 Lower Bound for Low-Rank Approximation . . . . . . . . . . 97

2.8 Low-Rank Approximation of A via A1/2 . . . . . . . . . . . . . . . . 101
2.8.1 Converting a Low-Rank Approximation of A1/2 to a Low-Rank

Approximation of A . . . . . . . . . . . . . . . . . . . . . . . 101
2.8.2 PSD Low-Rank Approximation in 𝑛1.69 · poly(𝑘/𝜖) Time . . . 103

2.9 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 105
2.9.1 Sublinear Time Algorithms for PSD Matrices . . . . . . . . . 105
2.9.2 Sublinear Time Algorithms for Other Matrix Types . . . . . . 106
2.9.3 Expanding the Applications of Leverage Scores . . . . . . . . 107

3 Lower Bounds for Linear Algebraic Computation 109
3.1 Background and Introduction to Results . . . . . . . . . . . . . . . . 110

3.1.1 Spectral Sum Problems . . . . . . . . . . . . . . . . . . . . . . 110
3.1.2 Kernel Low-Rank Approximation . . . . . . . . . . . . . . . . 113
3.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 116
3.1.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.2 Lower Bounds for Spectrum Approximation . . . . . . . . . . . . . . 120
3.2.1 Lower Bound Approach . . . . . . . . . . . . . . . . . . . . . 121
3.2.2 Reductions From Triangle Detection . . . . . . . . . . . . . . 123
3.2.3 Hardness for Computing Spectral Sums . . . . . . . . . . . . . 126
3.2.4 Leverage Score and Effective Resistance Hardness . . . . . . . 130
3.2.5 Determinant Hardness . . . . . . . . . . . . . . . . . . . . . . 134

3.3 Lower Bounds for Kernel Approximation . . . . . . . . . . . . . . . . 136
3.3.1 Lower Bound Approach . . . . . . . . . . . . . . . . . . . . . 136
3.3.2 Lower Bound for Gram Matrices . . . . . . . . . . . . . . . . . 137
3.3.3 Lower Bound for Dot Product Kernels . . . . . . . . . . . . . 140

8



3.3.4 Lower Bound for Distance Kernels . . . . . . . . . . . . . . . 143
3.3.5 Fast Low-Rank Approximation of AA𝑇 . . . . . . . . . . . . . 146
3.3.6 Hardness of Outputting a Low-Rank Subspace . . . . . . . . . 147

3.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 148
3.4.1 Connecting Matrix Multiplication to Other Problems . . . . . 148
3.4.2 Understanding the Role of Randomness . . . . . . . . . . . . . 149

4 Ant-Inspired Density Estimation 151
4.1 Background and Introduction to Results . . . . . . . . . . . . . . . . 152

4.1.1 Density Estimation on the Grid . . . . . . . . . . . . . . . . . 152
4.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 153
4.1.3 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.2 Theoretical Model for Density Estimation . . . . . . . . . . . . . . . 155
4.2.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . 155
4.2.2 The Density Estimation Problem . . . . . . . . . . . . . . . . 156

4.3 Random-Walk-Based Density Estimation . . . . . . . . . . . . . . . . 157
4.3.1 Random-Walk-Based Density Estimation Analysis . . . . . . . 158
4.3.2 Decomposition of Collision Count into Independent Random

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3.3 Correctness of Encounter Rate in Expectation . . . . . . . . . 159
4.3.4 A Re-collision Probability Bound . . . . . . . . . . . . . . . . 160
4.3.5 Collision Moment Bound . . . . . . . . . . . . . . . . . . . . . 167
4.3.6 Correctness of Encounter Rate With High Probability . . . . . 172

4.4 Extensions to Other Regular Topologies . . . . . . . . . . . . . . . . 175
4.4.1 From Re-collision Bounds to Density Estimation . . . . . . . . 175
4.4.2 Density Estimation on the Ring . . . . . . . . . . . . . . . . . 176
4.4.3 Density Estimation on 𝑘-Dimensional Tori . . . . . . . . . . . 179
4.4.4 Density Estimation on Regular Expanders . . . . . . . . . . . 180
4.4.5 Density Estimation 𝑘-Dimensional Hypercubes . . . . . . . . . 181

4.5 Independent-Sampling-Based Density Estimation . . . . . . . . . . . 184
4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.6.1 Social Network Size Estimation . . . . . . . . . . . . . . . . . 186
4.6.2 Distributed Density Estimation by Robot Swarms . . . . . . . 196

4.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 196
4.7.1 Extensions to Our Model . . . . . . . . . . . . . . . . . . . . . 197
4.7.2 Biological Applications . . . . . . . . . . . . . . . . . . . . . . 198

9



4.7.3 Algorithmic Applications . . . . . . . . . . . . . . . . . . . . . 199

5 Computation in Spiking Neural Networks 201
5.1 Background and Introduction to Results . . . . . . . . . . . . . . . . 202

5.1.1 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . 202
5.1.2 The Winner-Take-All Problem . . . . . . . . . . . . . . . . . . 203
5.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 204
5.1.4 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2 Spiking Neural Network Model . . . . . . . . . . . . . . . . . . . . . 206
5.2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . 206
5.2.2 Network Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 208
5.2.3 Problems and Solving Problems . . . . . . . . . . . . . . . . . 209
5.2.4 Basic Results and Properties of the Model . . . . . . . . . . . 210
5.2.5 Potential Modifications to the Basic Model . . . . . . . . . . . 215
5.2.6 The Winner-Take-All Problem . . . . . . . . . . . . . . . . . . 216

5.3 A Two-Inhibitor Solution to the WTA Problem . . . . . . . . . . . . 218
5.3.1 Network Definition . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3.2 Basic Results and One-step Lemmas . . . . . . . . . . . . . . 221
5.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.3.4 Convergence to Good Configurations . . . . . . . . . . . . . . 228
5.3.5 Transition Lemmas for Good Configurations . . . . . . . . . . 232
5.3.6 Convergence to WTA . . . . . . . . . . . . . . . . . . . . . . . 238
5.3.7 Completing the Bounds . . . . . . . . . . . . . . . . . . . . . 246

5.4 WTA Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.4.1 Single Auxiliary Neuron Lower Bound . . . . . . . . . . . . . 251
5.4.2 Two Auxiliary Neuron Lower Bound . . . . . . . . . . . . . . 259

5.5 Faster Convergence With More Inhibitors . . . . . . . . . . . . . . . . 276
5.5.1 Use of History Period . . . . . . . . . . . . . . . . . . . . . . . 276
5.5.2 𝑂(1) Convergence Time with 𝑂(log 𝑛) Inhibitors . . . . . . . . 279
5.5.3 Two-Step Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 282
5.5.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
5.5.5 Convergence in 𝑂(1) Steps . . . . . . . . . . . . . . . . . . . . 294
5.5.6 Completing the Analysis . . . . . . . . . . . . . . . . . . . . . 309
5.5.7 Constructions With Runtime Tradeoffs . . . . . . . . . . . . . 314

5.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 316
5.6.1 Winner-Take-All Extensions and Open Questions . . . . . . . 317

10



5.6.2 Other Neural Computational Primitives . . . . . . . . . . . . 319
5.6.3 Learning Problems and Dynamic Networks . . . . . . . . . . . 321
5.6.4 Neural Linear Algebraic Computation . . . . . . . . . . . . . . 322

11



12



Chapter 1

Introduction

It is well understood that randomness is a powerful computational tool. Random-
ization seems to aid in the solution of many problems, from important questions
related to complexity theory like polynomial identity testing [Sax09], to basic com-
munication complexity problems like equality testing [ES02], to fundamental graph
problems like cut and flow approximation [BK96, She13]. In numerical linear algebra
and data analysis, randomization is used to initialize iterative eigenvector algorithms
[KW92, MM15], to seed clustering algorithms [AV07], to rapidly summarize inputs
to accelerate computation [Sar06, CW13, NN13, MM13], and in stochastic optimiza-
tion algorithms, like stochastic gradient descent, which are the methods of choice for
training complex models like deep neural networks [LBH15].

In these applications and many others, randomized algorithms can give much
faster, lower memory, and lower communication solutions than deterministic meth-
ods, sometimes with a provable gap. Aside from improvements in these traditional
complexity measures, randomized algorithms also often seem to come with other ad-
vantages in both theory and in practical applications. They can aggressively trade
approximation for efficiency and are often robust to noise and perturbations. They
often take simple and inexpensive ‘local’ steps that access a small portion of the input.
For this reason, they can often be naturally adapted to low-memory streaming or dis-
tributed environments. Finally, randomized methods can often be rigorously analyzed
as probabilistic processes, giving provable runtime and approximation guarantees for
worst-case inputs.

13



1.1 A Dual View of Randomized Computation

Throughout my Ph.D. I have explored randomized computation from two different
perspectives:

1. An engineering perspective – how can we use randomization and approximation
to design faster algorithms? In particular I have focused on basic problems in
computational linear algebra and data analysis like linear regression [CLM+15,
FMMS16], low-rank matrix approximation [MM15, GHJ+16, CMM17, MW17b],
clustering [CEM+15], kernel learning [MM17, AKM+17], and spectral sum-
marization [MNS+18]. We have employed randomization to give significant
speedups over traditional algorithms, such as iterative and direct methods in
numerical linear algebra, both in terms of theoretical runtime bounds and prac-
tical performance.

2. A scientific perspective – how can the analysis of randomized algorithms be
used to study systems in which complexity emerges from low-level stochastic
behavior? In particular I have focused on biological systems, including social
insect colonies and spiking neural networks. We model these systems as com-
putational processes and attempt to understand how their behaviors are driven
by randomized interactions between many simple, distributed ‘processors’. Our
research builds on work studying a wide variety of biological phenomena from a
computational viewpoint, including bird flocks [Cha09], cellular differentiation
[AAB+11], evolution [LPDF08], and optimization by slime molds [BMV12].

In this thesis, we highlight four sets of results, two that study fast randomized
algorithms for linear algebraic problems and two that study randomized computation
in biological systems.

∙ In Chapter 2 we study random sampling algorithms for fast low-rank approx-
imation of positive semidefinite (PSD) matrices. We show that random sam-
pling can give sublinear time algorithms for general PSD matrices, going sig-
nificantly beyond what is possible with both traditional deterministic methods
and random-projection-based methods.

∙ In Chapter 3 we prove lower bounds that attempt to explain the importance of
randomization and approximation in accelerating linear algebraic computation.
In particular, we show that approximation seems to be necessary to give fast
algorithms for a number of important problems including determinant, trace

14



inverse, nuclear norm, and trace exponential computation. We also show that
existing randomized algorithms for low-rank kernel matrix approximation are
near-optimal, barring a breakthrough in fast matrix multiplication.

∙ In Chapter 4 we study how ant colonies estimate population density, a quantity
used for a variety of social decision making, task allocation, and optimization
tasks. We show how population density can be estimated using a simple algo-
rithm based on tracking the number of times that ants encounter each other
while random walking on a two-dimensional surface. We discuss applications
of related algorithms beyond biology, including to random-crawl-based network
size estimation.

∙ In Chapter 5 we study computation in stochastic spiking neural networks, and,
in particular, consider the complexity of the classic winner-take-all symmetry
breaking problem. We show that this problem can be solved efficiently using a
very simple two-auxiliary neuron network that employs a random-competition-
based strategy. We also give lower bounds demonstrating the near-optimality
of this network, along with constructions that trade off a larger network size for
a faster convergence time.

We conclude each chapter with a review of future directions and open questions.
The landscape of randomized methods for numerical linear algebra, optimization,
learning, and estimation is still wide open, and there is significant potential to use
randomness to give faster algorithms for fundamental problems. In the area of bio-
logical computation, our work represents a few preliminary steps. There are many
modifications to the simple models we consider that are worth studying and many
computational problems solved by biological systems that we have not yet considered.

1.2 This Thesis

We now give an overview of the contents of each chapter of this thesis.

1.2.1 Sublinear Time Low-Rank Approximation

In Chapter 2 we highlight an application of random sampling methods to the prob-
lem of computing a low-rank approximation of a positive semidefinite (PSD) matrix,
initially published in [MW17b]. Positive semidefinite matrices comprise an important

15



class of matrices, including, for example, covariance matrices, graph Laplacians, and
Gram matrices (in particular, kernel matrices).

We demonstrate that, by approximating a PSD matrix with a small random subset
of columns and rows sampled according to their ridge leverage scores, a near-optimal
low-rank approximation can be computed in sublinear time. Specifically, computing a
rank-𝑘 approximation to an 𝑛× 𝑛 PSD matrix achieving error within a (1+ 𝜖) factor
of the optimal can be done in �̃�(𝑛 · poly(𝑘/𝜖)) time, even though the matrix may
have up to 𝑛2 nonzero entries. Our result represents a significant improvement from
what is possible with traditional deterministic methods for low-rank approximation,
which require Ω(𝑛3) time1 and other randomized methods, like random projection,
which require Ω(nnz(A)) time [CW13], where nnz(A) denotes the number of nonzero
entries in A, and may be Ω(𝑛2) for dense inputs.

Our sublinear time algorithm starts with the observation that any PSD matrix
A can be written as B𝑇B for some matrix B. That is, the entries of A correspond
to the pairwise dot products between the columns of B. This simple fact places a
number of geometric constraints on these entries, which can be leveraged to achieve
sublinear time low-rank approximation.

We can implicitly take advantage of these constraints by viewing A as allowing us
to compute any dot product b𝑇𝑖 b𝑗 in just 𝑂(1) time (by reading a𝑖𝑗), as opposed to
𝑂(𝑛) time if we were given b𝑖 and b𝑗. A number of sampling approaches are known
that compute a near-optimal rank-𝑘 approximation to B by first randomly selecting
a subset of poly(𝑘, 1/𝜖) columns that, with good probability, spans a near-optimal
rank-𝑘 approximation [DV06, DMM06b, AGR16]. This approximation can then be
found by computing the dot product between all other columns in B and the subset,
requiring 𝑂(𝑛 ·poly(𝑘, 1/𝜖)) dot products overall – which translates to 𝑛 ·poly(𝑘, 1/𝜖)
accesses to A. Thus, we can compute a near-optimal low-rank approximation to B

with a sublinear number of accesses to A. This low-rank approximation can in turn
be used to find a near-optimal low-rank approximation to A itself, although with a
loss in approximation quality. Overall this approach yields a sublinear time algorithm
for low-rank approximation of A accessing 𝑛3/2 · poly(𝑘, 1/𝜖) entries.

To achieve our final runtime of �̃�(𝑛 · poly(𝑘/𝜖)), we take a different but related
approach, sampling the rows and columns of A with probabilities proportional to
their ridge leverage scores. The ridge leverage scores are a natural measure of row and
column importance for a broad range of linear algebraic problems, including low-rank

1These methods can be sped up to Θ(𝑛𝜔) time, where 𝜔 < 2.373 is the exponent of fast matrix
multiplication [Wil12, LG14].

16



approximation [Sar06, DMM06a, AM15b, CMM17]. One can prove that sampling
the rows or columns of a matrix by these scores yields a small matrix that preserves
significant information about the original input. Specifically, computing a low-rank
approximation of the sampled input gives a near-optimal low-rank approximation to
the full matrix.

While computing these leverage scores exactly is difficult, they can be approxi-
mated efficiently via very simple iterative sampling methods, that we introduce in
[CLM+15, CMM17, MM17]. In particular, it is possible to approximate the ridge
leverage scores of B with B𝑇B = A using just �̃�(𝑛𝑘) accesses to A [MM17]. We can
further show that B’s scores coarsely approximate those of A itself. Thus, sampling
a small subset of A’s rows and columns according to these scores yields a submatrix
from which we can compute a near-optimal low-rank approximation to A.

Our work on fast leverage score approximation algorithms initially sought to ob-
tain sampling-based alternatives to sparse random projections [CW13, NN13, MM13],
which give algorithms for low-rank approximation and linear regression running in
𝑂(nnz(A)) time. We matched this state-of-the-art with sampling methods in [CLM+15,
CMM17]. As the result of this chapter highlights, in many cases, our sampling meth-
ods not only match, but can go significantly beyond what is achievable with random
projection methods, which require Ω(𝑛2) time for low-rank approximation of dense
PSD matrices. Beyond this example, leverage score based methods have been used
in applications ranging from approximate kernel methods [MM17], to ℓ𝑝 norm regres-
sion [CP15], to fast system solvers [KLP+16, KS16], to second order optimization
[ABH16, LHLS17], and matrix completion [WZZ14]. We believe that they will be
even more broadly useful in future work on randomized methods for linear algebraic
computation and beyond.

1.2.2 Lower Bounds for Linear Algebraic Computation

The result on PSD matrix approximation that we present in Chapter 2 is just one
example of how randomization and approximation can be used to give significantly
faster algorithms for basic linear algebraic problems. This algorithmic work raises the
obvious question of what further progress is possible. What are the optimal runtimes
for basic problems like low-rank approximation and linear regression? How important
are randomization and approximation in achieving these runtimes? In Chapter 3 we
attempt to understand specifically why approximation seems to be so important in
designing these faster algorithms.

17



We begin by presenting conditional lower bounds, initially published in [MNS+18],
on approximation algorithms for a number of important functions of an input ma-
trix A ∈ R𝑛×𝑛, including the determinant det(A), the trace inverse tr(A−1), the
trace exponential tr(exp(A)), the Schatten 𝑝-norm ‖A‖𝑝𝑝 for any 𝑝 ̸= 2, and the ma-
trix leverage scores. We demonstrate a tradeoff between runtime and approximation
quality for all these problems.

First, we show that many of these quantities can be coarsely approximated very
quickly (faster than the best known algorithms for matrix multiplication) via random-
ized methods. In contrast, we show that any algorithm (deterministic or randomized)
for approximating the above quantities to sufficiently high accuracy can be used as a
black box to give exact triangle detection in general graphs, and via a further reduc-
tion of [WW10], exact 𝑛 × 𝑛 Boolean matrix multiplication. This reduction implies
that fast algorithms for computing these quantities to high accuracy can give fast
algorithms for matrix multiplication.2

This result explains a recurring pattern in linear algebraic computation: if highly
accurate computation is required, the only known algorithms for solving most prob-
lems are what are known as direct methods. Such methods include, for example,
Gaussian elimination, Cholesky decomposition, and Householder orthogonalization.
They typically require Ω(𝑛3) time. They can also typically be sped up to Θ(𝑛𝜔) time,
where 𝜔 < 2.373 is the exponent of fast matrix multiplication [Wil12, LG14], but
no further.3 In contrast, fast, typically randomized, methods typically give relatively
coarse approximation guarantees (i.e., they have a poly(1/𝜖) runtime dependence to
achieve 1 ± 𝜖 approximation to the above quantities). Our bounds show that this
coarse approximation is in some sense required for any fast algorithm.

In the second part of Chapter 3 we present conditional lower bounds, initially
published in [MW17a], which show that, given A ∈ R𝑛×𝑑, computing a near-optimal
rank-𝑘 approximation to A𝑇A or a number of other kernel matrices based off A

cannot be done in 𝑜(nnz(A) · 𝑘)4 time without obtaining faster algorithms for gen-
eral rectangular matrix multiplication. This lower bound matches, up to logarithmic
factors, an upper bound which follows from the results of Chapter 2. Again, our
conditional lower bound is a step in understanding the inherent complexity of solving

2Our reductions are deterministic and show that, if the the spectral sum algorithm succeeds with
probability 1− 𝛿, it yields a triangle detection algorithm also succeeding with probability 1− 𝛿.

3See Section 1.3 for a formal definition of 𝜔.
4Here and throughout, nnz(A) denotes the number of nonzero entries in A. I.e., the time required

to read all of A if stored in a sparse matrix format. See Section 1.3 for a general overview of linear
algebraic notation.

18



these problems.

We conclude the chapter by discussing a number of potential directions in which to
extend our results and open questions which we believe are important in establishing a
more comprehensive understanding of the complexity of linear algebraic computation
and the importance of randomized and approximate computation in this field.

1.2.3 Ant Colony Density Estimation

In Chapter 4 we shift to studying computation in ant colonies using the tools of
randomized algorithm analysis, covering work initially published in [MSL17].

Distributed computation by social insects, including ants, termites, and bum-
blebees has long fascinated computer scientists. Ant colony optimization [DB11],
for example, is a set of optimization techniques that employ distributed, random-
ized search, initial inspired by ant colony behavior. Recently, significant work in
the theoretical computer science and distributed systems communities has focused
on studying ant colonies from an algorithmic perspective, considering tasks such as
foraging, task-allocation, and collective decision making, which are solved by these
colonies [FKLS12, FK13, CDLN14, LLNR14, GMRL15, Rad17].

In this chapter we focus on the primitive of population density-estimation by
ant colonies. Many ant species employ distributed population density estimation
in applications ranging from quorum sensing [Pra05], to task allocation [Gor99], to
appraisal of enemy colony strength [Ada90]. It has been shown that ants estimate
density by tracking encounter rates – the higher the population density, the more
often the ants bump into each other during a given time period [Pra05, GPT93].

We model encounter-rate-based density estimation as a simple randomized algo-
rithm. 𝑛 agents walk independently and randomly around a two-dimensional grid
graph with 𝐴 locations. The agents have no communication aside from the ability
to detect if, in a given time step, they are located in the same position as another
agent (i.e., they can detect collisions with other agents). The agents’ compute the
encounter rate # 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑡
at time 𝑡 and use this as an estimate for the population

density 𝑑 def
= 𝑛

𝐴
.

We show that, despite dependencies inherent in the fact that nearby agents may
collide repeatedly (and, worse, cannot recognize when this happens), the encounter
rate gives a good estimate of the density. Specifically, after �̃�

(︁
log(1/𝛿)
𝑑𝜖2

)︁
, each agent

will have an estimate 𝑑 ∈ (1 ± 𝜖)𝑑 with probability at least 1 − 𝛿. Surprisingly, this
bound nearly matches what is possible if the agents are able to obtain independent

19



samples of coin flips equal to 1 with probability 𝑑 and 0 otherwise.

From a biological perspective, our work helps shed light on how ants and other
social insects can obtain relatively accurate density estimates via encounter rates.
It has been shown that such estimates, for example, can be used in fast consensus
algorithms used for deciding between multiple candidate nests in the house-hunting
process of Temnothorax ants [GMRL15, Rad17].

From a technical perspective, our analysis provides new tools for understanding
complex dependencies in the collision probabilities of multiple random walks. We
bound the strength of these dependencies using local mixing properties of the under-
lying graph. Using these properties, we extend our results beyond the two-dimensional
grid to more general graphs. We show how an ant-inspired algorithm based on ran-
dom walk encounter rates can be applied to estimate the number of nodes in large
networks using link queries [KLS11]. We also discuss preliminary results on density
estimation for robot swarms and outline future directions for research, both in study-
ing random-walk based algorithms employed by ants, and in applying ideas from these
algorithms to computational problems.

1.2.4 Computation in Spiking Neural Networks

In Chapter 5 we consider randomized computation in one of the most fascinating and
difficult to understand biological systems – networks of spiking neurons like those
found in the human brain. Our aim is to study basic neural primitives, such as pat-
tern recognition, learning, and synchronization in these networks, from an algorithmic
perspective. We hope to design networks solving these problems and to identify trade-
offs between runtime (convergence time of the network to an appropriately defined
valid output), network complexity (e.g., the number of auxiliary neurons outside of
input and output neurons used in the network), and success probability or approx-
imation quality. We also hope to build an understanding of general network design
patterns and stochastic convergence behavior. Ideally, our work can eventually be
used to make biologically relevant conclusions about neural computation.

We start by defining a simple but biologically-inspired model of spiking neural
networks. We model each neuron as a stochastic threshold gate, which spikes at a
given discrete time 𝑡 with a probability determined by the behavior of its neighbors
at time 𝑡− 1. The spiking of excitatory neighbors at time 𝑡− 1 increases the neuron’s
membrane potential at time 𝑡, while the spiking of inhibitory neighbors decreases this
potential. The probability of spiking at time 𝑡 is given by a monotonically increasing

20



function of this potential, e.g., by the sigmoidal function 1
1+𝑒−𝑥 .

With our model in place, we consider solving the important winner-take-all (WTA)
problem, in which a single output is selected from a set of firing outputs, with the
non-selected outputs being suppressed. WTA resembles leader election in distributed
computing and is believed to underlie many neural mechanisms, including those for vi-
sual attention [KU87, LIKB99, IK01] and competitive learning [Now89, KK94, GL09].

We present a WTA network in our basic model of computation that uses just
two auxiliary inhibitor neurons to implement a competitive scheme based on the
well-studied idea of lateral inhibition. We show that this network converges to a valid
WTA output configuration with probability ≥ 1−𝛿 in 𝑂(log 𝑛·log(1/𝛿)) rounds, where
𝑛 is the number of possibly firing inputs. To complement this result we prove two
lower bounds. First, we show that any network with less than two auxiliary neurons
cannot solve the WTA problem in any meaningful parameter regime. Specifically,
such a network cannot stabilize to a valid output state for significantly longer than
the time required to converge to such a state. We also show, under some additional
restrictions on the network structure, that no two-inhibitor network can improve upon
the convergence time achieved by our network by more than a log log 𝑛 factor. These
lower bounds help clarify the dual rolls of inhibitory neurons in driving convergence
to and ensuring stability of a valid configuration in fast WTA networks.

We conclude by showing that faster convergence can be achieved by employing
more inhibitors and a small amount of state at each neuron used to record recent
firing history. The larger number of inhibitors are used to induce multiple levels of
inhibition which drive convergence at an appropriate rate depending on the number
of firing outputs at a given time step.

We discuss a large number of open directions, including studying WTA for more
general ‘non-binary’ input classes, using WTA within networks solving higher level
computational processes, and extending our work to related symmetry breaking prob-
lems. We more broadly discuss future directions in the theoretical exploration of
computation in spiking neural networks from an algorithmic perspective, including
connections to the randomized algorithms for linear algebraic computation presented
in the first two chapters of the thesis.

1.3 Notation and Preliminaries

In this section we lay out notation that will be used throughout the thesis. Additional
notation will be defined in the specific sections where it is used.

21



1.3.1 General Notation

We first define a few general conventions that we will use throughout the thesis.

∙ For any positive integer 𝑛 let [𝑛] denote the set {1, ..., 𝑛}.

∙ Let 𝑓(𝑥) = �̃�(𝑔(𝑥)) denote that there exists some constant 𝑐 such that 𝑓(𝑥) =
𝑂(𝑔(𝑥) · log𝑐 𝑔(𝑥)).

∙ Let 𝑓(𝑥) = poly(𝑔(𝑥)) denote that there exists some constant 𝑐 and some degree-
𝑐 polynomial 𝑝 such that 𝑓(𝑥) = 𝑂(𝑝(𝑔(𝑥))).

1.3.2 Matrix and Vector Notation

We next define matrix and vector notation, along with a number of basic matrix
functions and properties.

Basic Notation

∙ Matrices and vectors are represented by bold face symbols with matrices rep-
resented by capital letters and vectors by lowercase letters, e.g., M ∈ R𝑛×𝑑,
x ∈ R𝑛.

∙ For any M ∈ R𝑛×𝑑, let m𝑖 ∈ R𝑑 denote its 𝑖𝑡ℎ row.

∙ For any M ∈ R𝑛×𝑑, let M𝑖,𝑗 denote the entry in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of
M.

∙ For any M ∈ R𝑛×𝑑, let M𝑇 ∈ R𝑑×𝑛 denote its transpose.

∙ We typically think of a vector x ∈ R𝑛 as a matrix with a single column and 𝑛

rows. Let x𝑇 ∈ R1×𝑛 denote the transpose of x, which is a matrix with a single
row.

∙ Let I𝑛×𝑛 denote the 𝑛 × 𝑛 identity matrix. When its dimension is clear from
context we will drop the subscript.

∙ Let 0𝑛×𝑑 denote the 𝑛 × 𝑑 all zeros matrix. When its dimension is clear from
context we will drop the subscript.

∙ Let e𝑖 ∈ R𝑛 denote the standard basis vector, with a 1 at position 𝑖 and zeros
elsewhere.

22



Matrix Properties

∙ For any M ∈ R𝑛×𝑑, let nnz(M) denote the number of nonzero entries in M.
I.e., the time required to read all of M if stored in a sparse matrix format. For
any vector x ∈ R𝑛, let nnz(x) similarly denote the number of nonzero entries
in x.

∙ For any square M ∈ R𝑛×𝑛, let tr(M) denote its trace, the sum of M’s diag-
onal entries. It is well known that, letting 𝜆1(M), ..., 𝜆𝑛(M) ∈ C denote M’s
eigenvalues,

tr(M) =
𝑛∑︁
𝑖=1

𝜆𝑖(M).

∙ For any M ∈ R𝑛×𝑑, the Frobenius norm is given by:

‖M‖𝐹
def
=

(︃
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

M2
𝑖,𝑗

)︃1/2

.

Correspondingly, for x ∈ R𝑛 the ℓ2 norm is given by ‖x‖2
def
= (
∑︀𝑛

𝑖=1 x
2
𝑖 )

1/2.

Orthonormal and Projection Matrices

∙ Q ∈ R𝑛×𝑑 is said to be an orthonormal matrix if it contains orthonormal
columns. Equivalently, if Q𝑇Q = I𝑑×𝑑.

∙ P ∈ R𝑛×𝑛 is an orthogonal projection matrix if and only if P2 = P and P = P𝑇 .
Any such matrix can be written as P = QQ𝑇 where Q ∈ R𝑛×rank(P) is an
orthonormal matrix.

Singular Value Decomposition

∙ For any M ∈ R𝑛×𝑑, using a singular value decomposition (SVD), it is pos-
sible to write M = UΣV𝑇 , where U ∈ R𝑛×rank(M) and V ∈ R𝑑×rank(M)

have orthonormal columns (the left and right singular vectors of M), and
Σ ∈ R𝑟×𝑟 is a positive diagonal matrix containing the singular values of M:
𝜎1(M) ≥ 𝜎2(M) ≥ ... ≥ 𝜎rank(M)(M).

∙ The squared Frobenius norm (defined above) is is equal to the sum of squared

23



singular values of M:

‖M‖2𝐹 =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

M2
𝑖,𝑗 =

rank(M)∑︁
𝑖=1

𝜎2
𝑖 (M).

∙ The spectral norm of M is defined as ‖M‖2
def
= 𝜎1(M).

∙ The Moore-Penrose pseudoinverse of M is given by M+ = VΣ−1U𝑇 . If M is
square and invertible M+ = M−1.

Positive Semidefinite Matrices

∙ A symmetric matrix M ∈ R𝑛×𝑛 is said to be positive semidefinite (PSD) if, for
all x ∈ R𝑛, x𝑇Mx ≥ 0.

∙ If M ∈ R𝑛×𝑛, all eigenvalues 𝜆1(M) ≥ 𝜆2(M) ≥ ... ≥ 𝜆𝑛(M) are nonnegative.
Additionally, its eigenvalues are equal to its singular values: 𝜆𝑖(M) = 𝜎𝑖(M).
Its singular value decomposition is simultaneously an eigendecomposition and
can be written M = UΣU𝑇 .

∙ For any symmetric M ∈ R𝑛×𝑛 we write M ⪰ 0 to denote that M is PSD. For
any symmetric M,N ∈ R𝑛×𝑛 we write M ⪰ N to denote that M−N is PSD.
⪰ induces a partial ordering on matrices called the Loewner ordering.

Fast Matrix Multiplication

∙ As is standard, we let 𝜔 denote the greatest value such that multiplying two
𝑛×𝑛 matrices together requires Ω(𝑛𝜔) time in general. It is known that 2 ≤ 𝜔 <

2.373. Further, the upper bound on 𝜔 is via the construction of an algorithm
that runs in 𝑂(𝑛2.373) time [Wil12, LG14].

∙ We let �̄� denote the least value for which there is a known algorithm that
runs in 𝑂(𝑛�̄�) time. Currently �̄� < 2.373 [Wil12, LG14]. We will often state
algorithmic runtimes in terms of �̄�. For example we may say that an algorithm
runs in 𝑂(𝑛𝑘�̄�−1) time, where 𝑛, 𝑘 ∈ Z are parameters of the input. This should
be interpreted as stating that, if the current best algorithm for multiplying two
𝑛 × 𝑛 matrices is improved (and hence �̄� decreases), then the runtime of our
algorithm is correspondingly improved.

24



Chapter 2

Sublinear Time Low-Rank
Approximation of PSD Matrices

In this chapter we show how to compute a near-optimal low-rank approximation to
any positive semidefinite (PSD) matrix in sublinear time. Specifically, we give a
randomized algorithm that, for any PSD A ∈ R𝑛×𝑛, rank parameter 𝑘 ∈ Z≥1 and
accuracy parameter 𝜖 > 0, outputs with good probability a rank-𝑘 matrix B ∈ R𝑛×𝑛,
in factored form, for which

‖A−B‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 ,

where A𝑘 is the best rank-𝑘 approximation to A (formally defined in Section 2.1.1).
The algorithm runs in �̃�(𝑛 · poly(𝑘/𝜖)) time.1

When 𝑘 and 1/𝜖 are not too large compared to the number of nonzero entries in
A, the algorithm does not need to read all entries of the matrix. Hence, this result
significantly improves upon previous Ω(nnz(A)) time algorithms based on oblivious
subspace embeddings [CW13, NN13, MM13], and bypasses an Ω(nnz(A)) time lower
bound for general matrices.2 We prove a sample complexity lower bound for low-
rank approximation of PSD matrices, showing that our algorithm is close to optimal.
Finally, we extend our techniques to give sublinear time algorithms for low-rank
approximation of A in the (often stronger) spectral norm metric ‖A − B‖22 and for
ridge regression on PSD matrices.

The results presented in this chapter were originally published in [MW17b] and

1For simplicity, we hide in this runtime, and throughout the introduction of this Chapter depen-
dencies on the failure probability 𝛿, which are never worse than poly(1/𝛿).

2Recall that nnz(A) refers to the number of nonzero entries in A – the time required to read the
full input. See Section 1.3 for an overview of notation.

25



represent a significant achievement in a line of work initiated in [CLM+15] and ex-
tended in [CMM17, MM17]. Our initial goal for this work was to develop simple
and efficient methods for approximating the leverage scores of a matrix. This led to
sampling-based algorithms matching state-of-the-art input sparsity time algorithms
given by random projection methods [CW13, NN13, MM13] and iterative sampling
methods combined with random projection [LMP13]. Beyond matching these meth-
ods, as highlighted in this chapter, sampling methods have allow us to push beyond
prior techniques in a number of applications, including PSD matrix low-rank ap-
proximation. The interested reader may also see Christopher Musco’s Ph.D. thesis
[Mus18], which highlights the efficient leverage score approximation algorithms devel-
oped in [CLM+15, CMM17, MM17], along with their applications to kernel methods
in machine learning.

Remark: The results of [MW17b] presented in this chapter were developed in col-
laboration with David Woodruff. David originally wrote up the details of the query
complexity lower bound presented in Section 2.7; the presentation has been minorly
modified in this thesis.

2.1 Background and Introduction to Results

Low-rank matrix approximation is a fundamental technique in numerical linear al-
gebra. A low-rank approximation of a matrix can reveal underlying low-dimensional
structure, can provide a compact way of storing a matrix in factored form, and can
be quickly applied to a vector to approximate multiplication with the input ma-
trix. Countless applications include clustering [DFK+04, FSS13, LBKW14, CEM+15],
data-mining [AFK+01], information retrieval [PRTV00], learning mixtures of distri-
butions [AM05, KSV08], recommendation systems [DKR02], topic modeling [Hof03],
and web search [AFKM01, Kle99].

One of the most well-studied versions of the problem is to compute a near-optimal
low-rank approximation with respect to the Frobenius norm.

Problem 2.1.1 (Near-Optimal Low-Rank Approximation). Given any A ∈ R𝑛×𝑑,
rank parameter 𝑘 ∈ Z≥1, and accuracy parameter 𝜖 ≥ 0, output M ∈ R𝑛×𝑘, N ∈ R𝑑×𝑘

such that, letting B = MN𝑇 ,

‖A−B‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 , (2.1)

where A𝑘 = argminrank-𝑘 B ‖A−B‖𝐹 .

26



Note that since B = MN𝑇 where M,N each have just 𝑘 columns, B is rank-𝑘.
Further, any rank-𝑘 matrix can be represented in this way. Since B itself may have
up to 𝑛2 nonzero entries, outputting B directly would take Ω(𝑛2) time and storing
B would take Ω(𝑛2) space. Thus, outputting a compact factorization MN𝑇 = B as
in Problem 2.1.1 is typically desired (and, as we will see, can be done much more
efficiently, in 𝑜(𝑛2) time).

A factorization of A𝑘 can be computed exactly using the singular value decom-
position – it is the projection of A onto the span of its top-𝑘 singular vectors. Thus,
using an SVD we can solve Problem 2.1.1 deterministically, with 𝜖 = 0. Unfortunately,
computing a full SVD requires Ω(𝑛3) time in practice and Ω(𝑛𝜔) time in theory, where
𝜔 < 2.373 is the greatest lower bound on the exponent of fast matrix multiplication.3

In seminal work, Frieze, Kannan, and Vempala [FKV04] and Achlioptas and McSh-
erry [AM07] show that using randomization and approximation, much faster runtimes
are possible. Specifically, [FKV04] gives an algorithm that, assuming access to the
row norms of A, outputs rank-𝑘 B, in factored form, such that with good probability,

‖A−B‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + 𝜖‖A‖2𝐹 .

The algorithm runs in just 𝑛 · poly(𝑘/𝜖) time. However Ω(nnz(A)) additional time
is required to compute the row norms.4 Further, the guarantee achieved can be
significantly weaker than (2.1), since the error is of the form 𝜖‖A‖2𝐹 rather than
𝜖‖A −A𝑘‖2𝐹 . Note that ‖A −A𝑘‖2𝐹 ≪ ‖A‖2𝐹 exactly when A is well-approximated
by a rank-𝑘 matrix. Related additive error algorithms with additional assumptions
were given for tensors in [SWZ16].

Sarlós [Sar06] showed how to solve Problem 2.1.1 with constant probability of
success using random projection in �̃�(nnz(A) · 𝑘/𝜖) + 𝑛 · poly(𝑘/𝜖) time. This was
improved by Clarkson and Woodruff [CW13] who achieved 𝑂(nnz(A))+𝑛 ·poly(𝑘/𝜖)
time by replacing the dense random projections used by Sarlos with very sparse
random projections that can be applied to A in 𝑂(nnz(A)) time. See also work by
Bourgain, Dirksen, and Nelson [BDN15], Cohen [Coh16], Meng and Mahoney [MM13],
and Nelson and Nguyen [NN13], which further improved the degree in the poly(𝑘/𝜖)

term. For a survey, see [Woo14].
In the special case that A is rank-𝑘 and so ‖A − A𝑘‖2𝐹 = 0, Problem 2.1.1 is

equivalent to the well studied low-rank matrix completion problem [CR09]. Much

3See Section 1.3 for a formal definition of 𝜔 and relatedly, the quantity �̄�.
4Recall that nnz(A) denotes the number of nonzero entries in A. See Section 1.3 for definitions

of other linear algebraic notation.

27



attention has focused on completing incoherent low-rank matrices, whose singular
directions are represented uniformly throughout the rows and columns and hence
can be identified via uniform sampling and without fully accessing the matrix. Under
incoherence (and often condition number) assumptions, a number of methods are able
to complete a rank-𝑘 matrix in �̃�(𝑛 · poly(𝑘)) time [JNS13, Har14]. Work by Pan et
al. has also shown how to achieve such runtimes for the low-rank approximation of
random matrices, which are incoherent with high probability [PLSZ17].

For general matrices, without incoherence, it is not hard to see that Ω(nnz(A))

is a time lower bound: if one does not read a constant fraction of entries of A, with
constant probability one can miss an entry much larger than all others, which needs
to be included in the low-rank approximation.

2.1.1 Low-rank Approximation of PSD Matrices

An important class of matrices for which low-rank approximation is often applied
is the set of positive semidefinite (PSD) matrices. These are symmetric matrices
with all non-negative eigenvalues.5 They arise for example as covariance matrices,
graph Laplacians, Gram matrices (in particular, kernel matrices – see Chapter 3,
Section 3.3 for a detailed discussion), and random dot product models [YS07]. In
the multidimensional scaling literature, low-rank approximation of PSD matrices in
the Frobenius norm error metric (Problem 2.1.1) corresponds to the standard ‘strain
minimization’ problem [Dav91, CC00]. Completion of low-rank, or nearly low-rank
(i.e., when ‖A−A𝑘‖2𝐹 ≈ 0), PSD matrices from few entries is important in applica-
tions such as quantum state tomography [GLF+10] and global positioning using local
distances [SY05, YH38].

Due to its importance, a vast literature studies low-rank approximation of PSD
matrices [DM05, ZTK08, KMT09, BW09, LKL10, GM13, WZ13, DLWZ14, WLZ16,
TYUC16, LJS16, MM17, CW17a]. However, known algorithms either run in at least
Ω(nnz(A)) time (which can also be achieved using sketching algorithms for general
matrices), do not achieve the relative-error guarantee of Problem 2.1.1, or require
strong incoherence assumptions.6 See Table 2.1 for an overview of prior work on PSD
matrix low-rank approximation.

5See Section 1.3 for an introduction to PSD matrices and there basic properties.
6 Many of these algorithms satisfy the additional constraint that the low-rank approximation

B is PSD. In the notation of Problem 2.1.1, this is equivalent to requiring that M = N. This is
also now known to be possible in 𝑂(nnz(A)) time using sketching algorithms for general matrices
[CW17a].

28



Figure 2-1: Low-rank approximation of a general matrix A requires Ω(nnz(A)) time
to find a potentially randomly placed large off-diagonal entry, which must also be
large in any good low-rank approximation. This lower bound does not hold for PSD
A, since each off-diagonal entry is bounded by the maximum of its two corresponding
diagonal entries. So any single large entry can be found in 𝑂(𝑛) time by reading A’s
diagonal.

At the same time, the simple Ω(nnz(A)) time lower bound for general matrices
does not hold in the PSD case. Positive semidefiniteness ensures that for all 𝑖, 𝑗:

|A𝑖,𝑗| ≤
√︀

A𝑖,𝑖 ·A𝑗,𝑗 ≤ max(A𝑖,𝑖,A𝑗,𝑗).

This is easy to see by checking that if A𝑖,𝑗 >
√︀
A𝑖,𝑖 ·A𝑗,𝑗, then 𝜒𝑇

𝑖,𝑗A𝜒𝑖,𝑗 < 0 where
𝜒𝑖,𝑗 ∈ R𝑛 has a 1 at position 𝑖, a −1 and position 𝑗, and zeros elsewhere. This would
contradict positive semidefiniteness, which requires that x𝑇Ax ≥ 0 for all x ∈ R𝑛.

So, ‘hiding’ a large entry in A requires creating a corresponding large diagonal
entry. By reading the 𝑛 diagonal elements, an algorithm can avoid being tricked
by this approach. While far from an algorithm, this argument raises the possibility
that improved, possibly sublinear, runtimes could be possible for PSD matrices. See
Figure 2-1 for an illustration of the above arguement.

2.1.2 Our Contributions

We give the first sublinear time relative-error low-rank approximation algorithm for
PSD matrices. Our algorithm solves Problem 2.1.1 with probability ≥ 1 − 𝛿 for
any 𝛿 > 0. For 𝛿 = Θ(1), it reads only 𝑛𝑘 · poly(log 𝑛/𝜖) entries of A and runs
in 𝑛𝑘�̄�−1 · poly(log 𝑛/𝜖) time, where �̄� is the current smallest known exponent of
matrix multiplication (Theorem 2.5.1).7 We critically exploit the intuition discussed

7See Section 1.3 for a formal definition of �̄�, and the related quantity 𝜔, which is the largest
possible lower bound on the exponent of matrix multiplication. Currently �̄� < 2.373 [LG14].

29



in Section 2.1.1 that large off-diagonal entries cannot ‘hide’ in PSD matrices, but
surprisingly, we require no assumptions on A aside from its positive semidefiniteness,
such as incoherence or bounded condition number. As discussed, our algorithm is
based on random row and column sampling using fast ridge leverage score sampling
routines.

We complement our algorithm with an Ω(𝑛𝑘/𝜖) time lower bound. The lower
bound is information-theoretic, showing that any algorithm that reads fewer than
this number of entries in the input PSD matrix cannot solve Problem 2.1.1 with
probability ≥ 2/3. Since our algorithm reads only 𝑛𝑘 · poly(log 𝑛/𝜖) entries of A,
this is nearly optimal for constant 𝜖. We note that the actual time complexity of our
algorithm is slower by a factor of 𝑘�̄�−2.

Finally, we show that our techniques can be extended to compute M,N ∈ R𝑛×𝑘

such that B = MN𝑇 satisfies, with good probability, the spectral norm guarantee:8

‖A−B‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 . (2.2)

Our algorithm uses just 𝑛𝑘2 ·poly(log 𝑛/𝜖) accesses to A and 𝑛𝑘�̄� ·poly(log 𝑛/𝜖) time
(Theorem 2.6.3).

The guarantee of (2.2) can be stronger than (2.1) when ‖A−A𝑘‖2𝐹 is large com-
pared to ‖A − A𝑘‖22, and is important in many applications. For example, we use
this result to solve the ridge regression problem min𝑥∈R𝑛 ‖Ax − y‖22 + 𝜆‖x‖22 up to
(1+ 𝜖) relative error in �̃�

(︁
𝑛𝑠�̄�𝜆
𝜖2�̄�

)︁
time, where 𝑠𝜆 = tr((A2 + 𝜆I)−1A2) is the statistical

dimension of the problem (see Theorem 2.6.7). Typically 𝑠𝜆 ≪ 𝑛, so our runtime is
sublinear and improves significantly on existing input-sparsity time results [ACW16].
For a summary of our results and comparison to prior work see, Table 2.1.

2.1.3 Algorithm Overview

We start with a general overview of our algorithmic approach.

Low-Rank Approximation via Column Subset Selection

The starting point for our approach is the fundamental fact that any matrix A

contains a subset of 𝑂(𝑘/𝜖) columns, call them C, that span a relative-error rank-𝑘
approximation to A [DRVW06, DV06, DMM06b, GS12b]. Formally:

8Recall (see Section 1.3) that the spectral norm of any matrix M ∈ R𝑛×𝑑 is defined to be the top
singular value ‖M‖2 = 𝜎1(M).

9Note that this bound is stated incorrectly as ‖A−B‖𝐹 ≤ ‖A−A𝑘‖𝐹 +𝜖
∑︀𝑛

𝑖=1(A𝑖𝑖)
2 in [DM05].

30



Source Runtime Approximation Bound
[DM05] 𝑛𝑘�̄�−1 · poly(1/𝜖) ‖A−B‖𝐹 ≤ ‖A−A𝑘‖𝐹 + 𝜖‖A‖19

[KMT09] 𝑛𝑘�̄�−1 · poly(1/𝜖) ‖A−B‖𝐹 ≤ ‖A−A𝑘‖𝐹 + 𝜖𝑛 ·max𝑖A𝑖𝑖

[GM13] �̃�(𝑛2) + 𝑛𝑘�̄�−1 poly(log 𝑛/𝜖) ‖A−B‖𝐹 ≤ ‖A−A𝑘‖𝐹 + 𝜖‖A−A𝑘‖*
[AGR16]
+ [BW09] 𝑛 log 𝑛 · poly(𝑘) ‖A−B‖𝐹 ≤ (𝑘 + 1)‖A−A𝑘‖1

[MM17] 𝑛𝑘�̄�−1 · poly(log 𝑘/𝜖) ‖A1/2 −B‖2𝐹 ≤ (1 + 𝜖)‖A1/2 −A
1/2
𝑘 ‖2𝐹

[CW17a] 𝑂(nnz(A)) + 𝑛 poly(𝑘/𝜖) ‖A−B‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹
Our Results

Thm 2.5.1 𝑛𝑘�̄�−1 · poly(log 𝑛/𝜖) ‖A−B‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹
Thm 2.6.3 𝑛𝑘�̄� · poly(log 𝑛/𝜖) ‖A−B‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 + 𝜖

𝑘‖A−A𝑘‖2𝐹

Table 2.1: Comparison of our results to prior work on low-rank approximation of
PSD matrices. For simplicity, all stated runtimes are the required runtime to achieve
the shown bound with failure probability 𝛿 = 1/100. ‖M‖1 =

∑︀𝑛
𝑖=1 𝜎𝑖(M) denotes

the nuclear norm of matrix M. �̄� denotes the lowest known exponent of fast matrix
multiplication (see Section 1.3 for a formal definition). Currently �̄� ≈ 2.373 [LG14].
The cited results all output B (in factored form), which is itself PSD. In Theorem
2.5.7 we show how to modify our algorithm to satisfy this condition, and run in
𝑛𝑘�̄� · poly(log 𝑛/𝜖) time. The table shows results that do not require incoherence
assumptions on A. For general PSD matrices, all known incoherence based results
(see e.g., [Git11, GM13]) degrade to Ω(𝑛𝜔) runtime. Additionally, as discussed, any
general low-rank approximation algorithm can be applied to PSD matrices, with
state-of-the-art approaches running in input-sparsity time [CW13, MM13, NN13].
[CW17a] extends these results to the case where the output B is restricted to be
PSD. [TYUC16] does the same but outputs B with rank 2𝑘. For a more in depth
discussion of bounds obtained in prior work, see Section 2.1.4.

Theorem 2.1.2 (Theorem 1.2 of [GS12b]). For any A ∈ R𝑛×𝑑 and any 𝑘 ∈ Z≥1,
letting 𝑚 = min(⌈𝑘/𝜖⌉ + 𝑘 − 1, 𝑑), there is some C ∈ R𝑛×𝑚 whose columns are a
subset of the columns of A such that, there exists rank-𝑘 X ∈ R𝑑×𝑚 with:

‖A−CX𝑇‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 . (2.3)

Computing the best low-rank approximation to A using an SVD requires access
to all Θ(𝑛2) dot products between the columns of the A. However, given C, just
𝑛 ·𝑂(𝑘/𝜖) dot products are needed – to project the remaining columns of the matrix
to the span of the subset and compute X satisfying (2.3).

Additionally, a subset of size poly(𝑘/𝜖) can be identified with good probability
using an intuitive approach known as adaptive sampling [DV06]: columns are iter-
atively added to the subset, with each new column being sampled with probability
proportional to its norm outside the column span of the current subset. Formally,

31



column a𝑖 is selected with probability ‖a𝑖−PCa𝑖‖22
‖A−PCA‖2𝐹

where PC is the projection onto the
current subset C. Computing these sampling probabilities requires knowing the norm
of each a𝑖 along with its dot product with each column currently in C. So, overall
this approach gives a relative-error low-rank approximation using just 𝑛 · poly(𝑘/𝜖)
dot products between columns of A.

The above observation is surprising – not only does every matrix contain a small
column subset witnessing a near-optimal low-rank approximation, but also, such a
witness can be found using significantly less information about the column span of
the matrix than is required by a full SVD, via a simple random sampling approach.

Sublinear Time Low-Rank Approximation of A1/2

This fact is not immediately algorithmically useful, as computing the required dot
products takes nnz(A) · poly(𝑘/𝜖) time. However, given PSD A, we can write the
singular value decomposition A = UΣU𝑇 where Σ is a non-negative diagonal matrix
of singular values, and let A1/2 = UΣ1/2U𝑇 be the matrix square root of A. Since
A1/2A1/2 = A, the entry A𝑖,𝑗 is just the dot product between the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns
of A1/2. So with A in hand, the dot products have been ‘precomputed’ and the
above approach yields a low-rank approximation algorithm for A1/2 running in just
𝑛 · poly(𝑘/𝜖) time. Note that, aligning with our initial intuition that reading the
diagonal entries of A is necessary to avoid the nnz(A) time lower bound for general
matrices, the diagonal entries of A are the column norms of A1/2, and hence their
values are critical to computing the adaptive sampling probabilities.

By the above argument, given PSD A, we can compute in 𝑛 · poly(𝑘/𝜖) time a
rank-𝑘 orthogonal projection matrix P ∈ R𝑛×𝑛 (in factored form) for which:

‖A1/2 −A1/2P‖2𝐹 ≤ (1 + 𝜖)‖A1/2 −A
1/2
𝑘 ‖2𝐹 .

This approach can be implemented using adaptive sampling [DV06], sublinear time
volume sampling [AGR16], or as we show in [MM17], recursive ridge leverage score
sampling. The ridge leverage scores are a natural interpolation between adaptive
sampling and the widely studied leverage scores, which, as we will see, have a number
of additional algorithmically useful properties. As discussed in [MM17], the guaran-
tee for A1/2 is useful for a number of kernel learning methods such as kernel ridge
regression. However, it is very different from the final goal of Problem 2.1.1. In
fact, it is possible to show that projecting to P can yield an arbitrarily bad low-rank
approximation to A itself (see Section 2.8).

32



Boosting to a True Low-Rank Approximation Using Ridge Leverage Scores

We note that, since P is constructed via column selection methods, it is possible to
efficiently compute a factorization of A1/2PA1/2 (see Section 2.8). Further, this matrix
gives a near-optimal low-rank approximation of A if we use error parameter 𝜖′ =
𝜖/
√
𝑛 (again, see Section 2.8 for details). This approach gives a first sublinear time

algorithm, but it is significantly suboptimal. Namely, it requires reading �̃�(𝑛𝑘/𝜖′) =
�̃�(𝑛3/2𝑘/𝜖) entries of A and takes 𝑛1.69 ·poly(𝑘/𝜖) time using 𝑂(𝑛�̄�) time 𝑛×𝑛 matrix
multiplication for �̄� ≈ 2.373 [LG14].

To improve the dependence on 𝑛, we will develop a better understanding of how
to select columns and rows of A using ridge leverage score sampling. We start by
proving that the ridge leverage scores of A1/2 are within a factor of 𝑂(

√︀
𝑛/𝑘) of

the ridge leverage scores of A (see Section 2.3 for a definition of these scores). By
this bound, if we sample columns of A using approximations to the ridge leverage
scores of A1/2 multiplied by 𝑂(

√︀
𝑛/𝑘) (these scores are computable efficiently via

our algorithm developed in [MM17]), we obtain, with high probability, a sample of
�̃�(
√︀
𝑛/𝑘 · 𝑘/𝜖2) columns that is a projection-cost-preserving sketch (PCP) of A. We

introduced the notion of a PCP in [CEM+15]. Formally:

Definition 2.1.3 (Projection-cost-preserving sketch). C ∈ R𝑛×𝑑′ is an (𝜖, 𝑘)-PCP of
A ∈ R𝑛×𝑑 if for all rank-𝑘 projection matrices P ∈ R𝑛×𝑛:

(1− 𝜖)‖A−PA‖2𝐹 ≤ ‖C−PC‖2𝐹 ≤ (1 + 𝜖)‖A−PA‖2𝐹 . (2.4)

One important property of an (𝜖, 𝑘)-PCP is that good low-rank approximations to
C translate to good low-rank approximations of A. More precisely, if U is an 𝑛× 𝑘

matrix with orthonormal columns for which ‖C − UU𝑇C‖2𝐹 ≤ (1 + 𝜖)‖C − C𝑘‖2𝐹 ,
then:

‖A−UU𝑇A‖2𝐹 ≤ (1 + 𝜖)2

(1− 𝜖)
‖A−A𝑘‖2𝐹 .

Letting C be the 𝑛×�̃�(
√
𝑛𝑘/𝜖2) submatrix of A that we sample via ridge leverage

scores, we can apply an 𝑂(nnz(C)) time algorithm to compute a subspace U ∈ R𝑛×𝑘

whose columns span a near-optimal low-rank approximation of C, and hence of A
by the (𝜖, 𝑘)-PCP property. Using standard sampling techniques, we can approxi-
mately project the columns of A to U, producing our final solution. This gives time
complexity 𝑂(nnz(C)) = 𝑛3/2 · poly(𝑘/𝜖), improving slightly upon our first approach.

33



Achieving a Near-Optimal Runtime

To reduce the time to linear in 𝑛, we must further reduce the size of C by sampling
a small subset of its rows, which themselves form a PCP of C. To find these rows,
we cannot afford to use random projection techniques, which would take at least
Ω(nnz(C)) time, nor can we use our previous method for providing 𝑂(

√︀
𝑛/𝑘) overes-

timates to the ridge leverage scores, since C is no longer PSD. In fact, the row ridge
leverage scores of C can be arbitrarily large compared to those of A1/2.

The key idea to getting around this issue is that, since C is a column PCP of A,
projecting its columns onto A’s top singular vectors gives a near-optimal low-rank
approximation of C. Further, we can show that the ridge leverage scores of A1/2

(appropriately scaled) upper bound the standard leverage scores of this low-rank ap-
proximation. Sampling by these leverage scores is not enough to give a PCP guarantee
like that of Definition 2.1.3 – they ignore the entire component of C not falling in the
span of A’s top singular vectors and so may significantly distort projection costs over
the matrix. Further, it is unclear how to estimate even the row norms of C, or its
Frobenius norm, with 𝑛 · poly(𝑘/𝜖) samples, which are necessary to implement any
kind of adaptive sampling approach.

Fortunately, using that sampling at least preserves the matrix in expectation,
along with a few other properties of the ridge leverage scores of A1/2, we show that,
with good probability, sampling �̃�(

√
𝑛𝑘/ poly(𝜖)) rows of C by these scores yields a

subset of rows R satisfying a slightly weaker PCP property:

Definition 2.1.4 (Projection-cost-preserving sketch with additive error). R ∈ R𝑛′×𝑑

is an (𝜖,Δ, 𝑘)-PCP of C ∈ R𝑛×𝑑 if for all rank-𝑘 projection matrices P ∈ R𝑑×𝑑:

(1− 𝜖)‖C−CP‖2𝐹 ≤ ‖R−RP‖2𝐹 + 𝐸 ≤ (1 + 𝜖)‖C−CP‖2𝐹 ,

where 𝐸 is a fixed value, independent of P, with |𝐸| ≤ Δ · ‖C−C𝑘‖2𝐹 for some Δ.

We prove that R obtained by sampling �̃�(
√
𝑛𝑘/ poly(𝜖)) rows of C by the ridge

leverage scores of A1/2 is an (𝜖, 𝑂(1), 𝑘)-PCP of C with good probability. Thus, since
the same 𝐸 error applies to all projections P, and since it is at most a constant times
the true optimum, a near-optimal low-rank approximation for R still translates to a
near-optimal approximation for C.

At this point R is a �̃�(
√
𝑛𝑘/ poly(𝜖))× �̃�(

√
𝑛𝑘/ poly(𝜖)) matrix, and we can run

any 𝑂(nnz(R)) time algorithm to find a good low-rank factorization to it. Specifically,

34



Figure 2-2: An illustration of our leverage-score-based approach. We sample√
𝑛𝑘/ poly(𝜖) columns of A, giving us a matrix C. We further sample

√
𝑛𝑘/ poly(𝜖)

rows to obtain a matrix R. Due to the projection-cost-preserving sketch guarantees
of ridge leverage score sampling, a near-optimal low-rank approximate to R can be
used to give a near-optimal low-rank approximation to C and in turn to A.

we can compute E,F ∈ R𝑘×�̃�(
√
𝑛𝑘/poly(𝜖)) such that:

‖R− EF𝑇‖2𝐹 ≤ (1 + 𝜖)‖R−R𝑘‖2𝐹 .

Since R is a (𝜖, 𝑂(1), 𝑘)-PCP for C, by regressing the rows of C to the span of
F, we can obtain a near-optimal low-rank approximation to C. We can solve this
multi-response regression approximately in sublinear time via standard sampling tech-
niques. Approximately regressing A to the span of this approximation using similar
techniques yields our final result. The total runtime is dominated by the input-
sparsity low-rank approximation of R requiring 𝑂(nnz(R)) = �̃�(𝑛𝑘/ poly(𝜖)) time.
We give an illustration of the above approach in Figure 2-2.

To improve 𝜖 dependencies in our final runtime, achieving sample complexity
�̃�
(︀
𝑛𝑘
𝜖2.5

)︀
, we modify this approach somewhat, showing that R actually satisfies a

stronger spectral norm PCP property for C with good probability. This property
lets us find Z ∈ R𝑑×𝑘 with ‖C − CZZ𝑇‖22 ≤ 𝜖

𝑘
‖A − A𝑘‖2𝐹 , from which, through a

series of approximate regression steps, we can extract a low-rank approximation to A

solving Problem 2.1.1 with good probability. This stronger spectral guarantee also lies
at the core of our extensions to near-optimal spectral norm low-rank approximation
(Theorem 2.6.3), ridge regression (Theorem 2.6.7), and low-rank approximation where

35



the output is restricted to be PSD (Theorem 2.5.7).

2.1.4 Some Further Intuition on Error Guarantees

Observe that in computing a low-rank approximation of A, we read just �̃�(𝑛 ·
poly(𝑘/𝜖)) entries of the matrix, which is, up to lower order terms, the same num-
ber of entries (corresponding to column dot products of A1/2) that we accessed to
compute a low-rank approximation of A1/2 in our description above. However, these
sets of entries are very different. While low-rank approximation of A1/2 looks at
an 𝑛 × poly(𝑘/𝜖) sized submatrix of A together with the diagonal entries, our algo-
rithm considers a carefully chosen

√
𝑛𝑘 poly(log 𝑛/𝜖)×

√
𝑛𝑘 poly(log 𝑛/𝜖) submatrix

together with the diagonal entries, which gives significantly more information about
the spectrum of A.

As a simple example, consider A with top eigenvalue 𝜆1 =
√
𝑛, and 𝜆𝑖 = 1 for

𝑖 = 2, ...𝑛. ‖A1/2‖2𝐹 =
∑︀𝑛

𝑖=1 𝜆𝑖 =
√
𝑛+𝑛−1 while ‖A1/2−A

1/2
1 ‖2𝐹 =

∑︀𝑛
𝑖=2 𝜆𝑖 = 𝑛−1.

So, A1/2 has no good rank-1 approximation. Unless we set 𝜖 = 𝑂(1/
√
𝑛), a low-

rank approximation algorithm for A1/2 can learn nothing about 𝜆1 and still be near-
optimal. In contrast, ‖A‖2𝐹 =

∑︀𝑛
𝑖=1 𝜆

2
𝑖 = 2𝑛− 1 and ‖A−A1‖2𝐹 =

∑︀𝑛
𝑖=2 𝜆

2
𝑖 = 𝑛− 1.

So, even with 𝜖 = 1/2, any rank-1 approximation algorithm for A must identify the
presence of 𝜆1 and project this direction off the matrix. In this sense, our algorithm
is able to obtain a much more accurate picture of A’s spectrum.

With incoherence assumptions, prior work on PSD low-rank approximation [GM13]
obtains the bound ‖A −B‖1 ≤ (1 + 𝜖)‖A −A𝑘‖1 in sublinear time, where ‖M‖1 =∑︀𝑛

𝑖=1 𝜎𝑖(M) is the nuclear norm of M. Recent work ([AGR16] in combination with
[BW09]) gives ‖A−B‖𝐹 ≤ (𝑘 + 1)‖A−A𝑘‖1 without the incoherence assumption.
These nuclear norm bounds are closely related to approximation bounds for A1/2 and
it is not hard to see that neither require 𝜆1 to be detected in the example above, and
so in this sense are weaker than our Frobenius norm bound.

A natural question if even stronger bounds are possible. Can we compute B with:

‖A−B‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 (2.5)

in sublinear time? We partially answer this question in Theorem 2.6.3. We show that
in �̃�(𝑛𝑘�̄� poly(log 𝑛/𝜖)) time, we can find B, in factored form, satisfying (2.2),

‖A−B‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹

36



with good probability. Significantly improving the above bound seems difficult: it
is easy to see that computing B (in factored form) that satisfies the relative error
spectral norm guarantee of (2.5) requires Ω(𝑛2) time. Consider a random input A

that is equal to the identity except with A𝑖,𝑗 = A𝑗,𝑖 = 1 for some uniform random
pair (𝑖, 𝑗). Finding (𝑖, 𝑗) requires Ω(𝑛2) queries to A. However, it is necessary to
achieve a relative error spectral norm guarantee with 𝜖 < 3 since ‖A‖22 = 4 while
‖A − A1‖22 = 1 where A1 is all zeros with ones at its (𝑖, 𝑖), (𝑗, 𝑗), (𝑖, 𝑗), and (𝑗, 𝑖)

entries.
A similar argument shows that relative error low-rank approximation in higher

Schatten-𝑝 norms, i.e., ‖A − B‖𝑝𝑝 for 𝑝 > 2 requires superlinear dependence on 𝑛

(where ‖M‖𝑝𝑝 =
∑︀𝑛

𝑖=1 𝜎
𝑝
𝑖 (M).) We can set A to be the identity but with an all ones

block on a uniform random subset of 𝑛1/𝑝 indices. This block has associated eigenvalue
𝜆1 = 𝑛1/𝑝 and so, since all other (𝑛 − 𝑛1/𝑝) eigenvalues of A are 1, ‖A‖𝑝𝑝 = Θ(𝑛),
and the block must be recovered to give a relative error approximation to ‖A−A1‖𝑝𝑝.
However, as the block is placed uniformly at random and contains just 𝑛2/𝑝 entries,
finding even a single entry requires Ω(𝑛2−2/𝑝) queries to A – superlinear for 𝑝 > 2.

2.1.5 Road Map

We present our results as follows. Aside from some of the background results presented
in Section 2.2, all results were originally published in [MW17b].
Section 2.2: Ridge Leverage Scores. We introduce the ridge leverage scores, our
prior results on approximating them quickly [CMM17, MM17], and approximation
guarantees that hold for ridge leverage score sampling.
Section 2.3: Column Sampling. We show that the ridge leverage scores of A

are within an 𝑂(
√︀
𝑛/𝑘) factor of those of A1/2, letting us use the fast ridge leverage

score sampling algorithm of [MM17] to sample C, a subset of �̃�(
√
𝑛𝑘/𝜖2) columns of

A that form a PCP of the matrix.

Section 2.4: Row Sampling. We discuss how to further accelerate our algorithm
by sampling rows from C to obtain a PCP, letting us to achieve linear in 𝑛 runtime.

Section 2.5: Full Algorithm. We use the primitives in the previous sections along
with standard approximate regression techniques to give our full sublinear time low-
rank approximation algorithm.

Section 2.6: Spectral Norm Bounds. We modify the algorithm of Section 2.5
to give the tighter spectral norm approximation of (2.2) and discuss applications to
sublinear time ridge regression.

37



Section 2.7: Lower Bounds. We show that our algorithm is nearly optimal – any
relative error low-rank approximation algorithm must read Ω(𝑛𝑘/𝜖) entries of A.

Section 2.8: Simple Sublinear Time Algorithm. We demonstrate that a low-
rank approximation for A1/2 does not directly yield one for A, but that a simple
approach can be used to convert a low-rank approximation to A1/2 to a near-optimal
one for A in 𝑛1.69 · poly(𝑘/𝜖) time.

2.2 Ridge Leverage Score Sampling

Our main algorithmic tool will be ridge leverage score sampling, which is used to
identify a small subset of columns of A that span a good low-rank approximation of
the matrix. In this section we give a general introduction to and some basic results
on the ridge leverage scores, drawing on our work in [CMM17, MM17, MW17b]. The
results here constitute a general (but very incomplete) overview of sampling methods
for randomized linear algebra, useful beyond just the work presented in this chapter.

In Section 2.2.1 we define the ridge leverage scores and the related standard lever-
age scores and give a few basic properties of these scores that we use throughout
our analysis. In Section 2.2.2 we prove that sampling the rows or columns of a ma-
trix by their (ridge) leverage scores yield, with good probability, an approximation
to the matrix that can be used, e.g., to approximately solve fundamental low-rank
approximation and regression problems. Finally, in Section 2.2.3 we discuss efficient
computation of these scores.

2.2.1 Leverage Score Definitions and Basic Properties

We first introduce the ridge leverage scores and some of their basic properties. Beyond
low-rank approximation, the ridge leverage scores have been used in algorithms for
a number of problems including ordinary least squares regression [LMP13], ridge
regression [AM15a], and graph sparsification [KLM+17]. In the general form they are
given by:

Definition 2.2.1 (Ridge Leverage Scores). For any A ∈ R𝑛×𝑑 and ridge parameter
𝜆 ≥ 0, letting a𝑖 ∈ R𝑛 be the 𝑖𝑡ℎ column of A, the 𝑖𝑡ℎ 𝜆 column ridge leverage score
of A is:

𝜏𝑖,𝜆(A) = a𝑇𝑖
(︀
AA𝑇 + 𝜆I

)︀+
a𝑖.

38



Recall that for any matrix M, M+ denotes its Moore-Penrose pseudoinverse (see
Section 1.3). Unless 𝜆 = 0 and A is singular, all of (AA𝑇 + 𝜆I)’s eigenvalues are
positive and (AA𝑇 + 𝜆I)+ = (AA𝑇 + 𝜆I)−1. Note that we define the ridge leverage
scores for A’s columns. However, ridge leverages scores can be defined for A’s rows
as well: as the corresponding column ridge leverage scores of A𝑇 .

For low-rank approximation, we set the ridge parameter 𝜆 appropriately, giving
us the rank-𝑘 ridge leverage scores:

Definition 2.2.2 (Rank-𝑘 Ridge Leverage Scores). For any A ∈ R𝑛×𝑑, letting a𝑖 ∈
R𝑛 be the 𝑖𝑡ℎ column of A, the 𝑖𝑡ℎ rank-𝑘 column ridge leverage score of A is given
by 𝜏 𝑘𝑖 (A) = 𝜏𝑖,𝜆(A) (Definition 2.2.1) with 𝜆 =

‖A−A𝑘‖2𝐹
𝑘

.

Above I is the 𝑛× 𝑛 identity matrix. It is not hard to check that 0 < 𝜏 𝑘𝑖 (A) < 1

for all 𝑖. Since we use these scores as sampling probabilities, it is critical that the
sum of scores, and hence the size of the subsets we sample, is not too large. We have
the following bound:

Lemma 2.2.3 (Sum of Ridge Leverage Scores). For any A ∈ R𝑛×𝑑 and any 𝑘,

𝑑∑︁
𝑖=1

𝜏 𝑘𝑖 (A) ≤ 2𝑘.

Proof. We rewrite Definition 2.2.2 using A’s singular value decomposition A = UΣV𝑇 .

𝜏𝑖(A) = a𝑇𝑖

(︂
UΣ2U𝑇 +

‖A−A𝑘‖2𝐹
𝑘

UU𝑇

)︂−1

a𝑖

= a𝑇𝑖
(︀
UΣ̄U𝑇

)︀
a𝑖,

where Σ̄ is the diagonal matrix with Σ̄𝑖,𝑖 =
1

𝜎2
𝑖 (A)+

‖A−A𝑘‖2
𝐹

𝑘

. We then have:

𝑛∑︁
𝑖=1

𝜏𝑖(A) = tr
(︀
A𝑇UΣ̄U𝑇A

)︀
= tr

(︀
VΣΣ̄ΣV𝑇

)︀
= tr(Σ2Σ̄). (2.6)

Σ and Σ̄ are diagonal and we can compute:

(Σ2Σ̄)𝑖,𝑖 =
𝜎2
𝑖 (A)

𝜎2
𝑖 (A) +

‖A−A𝑘‖2𝐹
𝑘

. (2.7)

39



For 𝑖 ≤ 𝑘 we simply upper bound (2.7) by 1. Combined with (2.6) we have:

𝑛∑︁
𝑖=1

𝜏𝑖(A) = tr(Σ2Σ̄)

≤ 𝑘 +
𝑛∑︁

𝑖=𝑘+1

𝜎2
𝑖 (A)

𝜎2
𝑖 (A) +

‖A−A𝑘‖2𝐹
𝑘

≤ 𝑘 + 𝑘
𝑛∑︁

𝑖=𝑘+1

𝜎2
𝑖 (𝐴)

‖A−A𝑘‖2𝐹

= 2𝑘.

The ridge leverage scores are a generalization of the standard leverage scores of
A, which are defined as:

Definition 2.2.4 (Standard Leverage Scores – see e.g., [Woo14]). For any A ∈ R𝑛×𝑑,
letting a𝑖 ∈ R𝑛 be the 𝑖𝑡ℎ column of A, the 𝑖𝑡ℎ column leverage score of A is:

ℓ𝑖(A) = a𝑇𝑖
(︀
AA𝑇

)︀+
a𝑖.

By writing A = UΣV𝑇 in its SVD, one can see that standard leverage scores are
just the squared column norms of V𝑇 , and sum to rank(A), which for A ∈ R𝑛×𝑑 may
be as large as min(𝑛, 𝑑). Sampling columns with probabilities proportional to their
leverage scores yields what is known as a spectral approximation to A – formally
defined in Lemma 2.2.6, via a matrix Chernoff bound.

In the ridge leverage scores, the addition of the weighted identity (or ‘ridge’) 𝜆I,
‘dampens’ contributions from smaller singular directions of A, decreasing the sum of
the scores and allowing us to sample fewer columns. At the same time, it introduces
error dependent on the size of 𝜆. In Definition 2.80 we set 𝜆 =

‖A−A𝑘‖2𝐹
𝑘

, which
ultimately gives an approximation to A from which it is possible to output a near-
optimal low-rank approximation to the original matrix.

Before giving the above mentioned sampling results, we formally show that the
standard leverage scores of A are upper bounded by the row norms of any orthonormal
matrix spanning A’s rows. If the span of the orthogonal matrix is equal to the span
of A’s rows, this inequality becomes an equality.

Lemma 2.2.5. For any A ∈ R𝑛×𝑑, let Z ∈ R𝑑×𝑑′ have orthonormal columns that span
the rows of A. Then, for all 𝑖 ∈ [𝑑], the 𝑖𝑡ℎ column leverage score of A (Definition

40



2.2.4) is bounded by:

ℓ𝑖(A) ≤ ‖z𝑖‖22,

where z𝑖 is the 𝑖𝑡ℎ row of Z. If the column span of Z is equal to the row span of A
then ℓ𝑖(A) = ‖z𝑖‖22.

Proof. Write the singular value decomposition A = UΣV𝑇 and recall that e𝑖 denotes
the 𝑖𝑡ℎ standard basis vector, with a 1 at position 𝑖 and zeros elsewhere. We have:

ℓ𝑖(A) = e𝑇𝑖 A
𝑇 (AA𝑇 )+Ae𝑖

= e𝑇𝑖 VΣU𝑇 (UΣ−2U𝑇 )UΣV𝑇e𝑖

= e𝑇𝑖 VIV𝑇e𝑖

= ‖v𝑖‖22. (2.8)

where v𝑖 is the 𝑖𝑡ℎ row of V. Now, the columns of V fall within the row span of A
and so are spanned by the columns of Z. So we can write V = ZZ𝑇V, which gives:

‖v𝑖‖22 = e𝑇𝑖 VV𝑇e𝑖 = e𝑖ZZ
𝑇VV𝑇ZZ𝑇e𝑖

≤ e𝑖ZZ
𝑇ZZ𝑇e𝑖

= e𝑖ZIZ
𝑇e𝑖

= ‖z𝑖‖22.

Combined with (2.8) this gives ℓ𝑖(A) ≤ ‖z𝑖‖22, and hence the lemma. If the column
span of Z is equal to the row span of A, then above we in fact have ‖v𝑖‖22 = ‖z𝑖‖22,
giving ℓ𝑖(A) = ‖z𝑖‖22 in this case.

2.2.2 Approximation Bounds

We now prove basic matrix approximation results that hold when sampling rows or
columns using both the standard leverage scores and ridge leverage scores. We start
by proving general spectral approximation bounds that directly bound the degree to
which a matrix is approximated after sampling. We then prove more specialized
approximation bounds, which show that after leverage score sampling, the sampled
matrix can be used in place of the original matrix to approximately solve low-rank
approximation and regression problems.

41



Spectral Approximation Bounds

We first prove what are known as spectral approximation bounds, or subspace em-
bedding bounds (see, e.g. [Sar06, SS08, CW17b]). These bounds show that, after
sampling the columns of a matrix A using probabilities proportional to their leverage
scores, the norm of x𝑇A is approximately preserved for all x ∈ R𝑛. The more columns
sampled, the higher accuracy the approximation will be.

We first show a spectral approximation bound for standard leverage score sam-
pling, via the application of a matrix Chernoff bound [Tro15]. This type of bound is
standard – see e.g. [DMM06a, LMP13, CLM+15].

Lemma 2.2.6 (Leverage Score Sampling Spectral Approximation). For any A ∈
R𝑛×𝑑 and 𝑖 ∈ [𝑑], let ℓ̃𝑖 ≥ ℓ𝑖(A) be an overestimate for A’s 𝑖𝑡ℎ column leverage score
(Definition 2.2.4. Let 𝑝𝑖 = ℓ̃𝑖∑︀

𝑖 ℓ̃𝑖
and for any 𝜖, 𝛿 ∈ (0, 1/2], 𝑡 ≥ 32 log(rank(A)/𝛿)

𝜖2

∑︀
𝑖 ℓ̃𝑖.

Construct C by sampling 𝑡 columns of A, each independently set to 1√
𝑡𝑝𝑖
a𝑖 with prob-

ability 𝑝𝑖. Then, with probability ≥ 1− 𝛿:

(1− 𝜖)CC𝑇 ⪯ AA𝑇 ⪯ (1 + 𝜖)CC𝑇 . (2.9)

Recall that for M,N ∈ R𝑛×𝑛, M ⪰ N indicates that M−N is PSD (see Section
1.3.) Thus, (2.9) implies that, for any x ∈ R𝑛:

x𝑇 (AA𝑇 − (1− 𝜖)CC𝑇 )x ≥ 0

x𝑇AA𝑇x ≥ (1− 𝜖)x𝑇CC𝑇x

‖x𝑇A‖22 ≥ (1− 𝜖)‖x𝑇C‖22.

Similarly, it gives (1 + 𝜖)‖x𝑇C‖22 ≥ ‖x𝑇A‖22. Thus, we can interpret (2.9) as showing
that C can be used to approximate the norm of x𝑇A up to (1 ± 𝜖) error, for any
x ∈ R𝑛.

We prove Lemma 2.2.6 using standard techniques for showing matrix concentra-
tion results.

Proof of Lemma 2.2.6. Write the singular value decomposition A = UΣV𝑇 . By (2.8)
we have ℓ𝑖(A) = ‖v𝑖‖22 where v𝑖 is the 𝑖𝑡ℎ row of V.

Let Y = Σ−1U𝑇
(︀
CC𝑇 −AA𝑇

)︀
UΣ−1 and for 𝑗 ∈ [𝑡], define a set of independent

and identically distributed random variables X1, ...,X𝑡 by:

X𝑗 =
1

𝑡
·Σ−1U𝑇

(︂
1

𝑝𝑖
a𝑖a

𝑇
𝑖 −AA𝑇

)︂
UΣ−1 with probability 𝑝𝑖.

42



We can rewrite the random variable Y as:

Y =
𝑡∑︁

𝑗=1

[︂
Σ−1U𝑇

(︂
c𝑗c

𝑇
𝑗 − 1

𝑡
AA𝑇

)︂
UΣ−1

]︂
def
=

𝑡∑︁
𝑗=1

[X𝑗] .

We have E[X𝑗] =
∑︀𝑑

𝑖=1 𝑝𝑖

[︁
1
𝑝𝑖
a𝑖a

𝑇
𝑖 −AA𝑇

]︁
= 0, which gives E[Y] = 0. We have the

following claim:

Claim 2.2.7. If ‖Y‖2 ≤ 𝜖/2 then (1− 𝜖)CC𝑇 ⪯ AA𝑇 ⪯ (1 + 𝜖)CC𝑇 .

Proof. ‖Y‖2 ≤ 𝜖/2 can be equivalently written as

− 𝜖

2
I ⪯ Y ⪯ 𝜖

2
I.

Writing CC𝑇 −AA𝑇 = UΣYΣU we can thus bound:

− 𝜖

2
UΣIΣU ⪯ CC𝑇 −AA𝑇 ⪯ 𝜖

2
UΣIΣU.

Noting that UΣIΣU = AA𝑇 we thus have:

(1− 𝜖/2)AA𝑇 ⪯ CC𝑇 ⪯ (1 + 𝜖/2)AA𝑇

which gives

1

1 + 𝜖/2
CC𝑇 ⪯ AA𝑇 ⪯ 1

1− 𝜖/2
CC𝑇 .

The claim follows since for any 𝜖 ∈ (0, 1], 1
1+𝜖/2

≥ 1− 𝜖 and 1
1−𝜖/2 ≤ 1 + 𝜖.

By Claim 2.2.7, to prove Lemma 2.2.6, it suffices to show that ‖Y‖2 ≤ 𝜖/2 with
probability ≥ 1 − 𝛿. We prove this bound using a matrix Bernstein inequality from
[Tro15]. Applying this bound requires upper bounds on the spectral norm of each X𝑗

and on the variance of Y. We first prove a key property of the leverage scores:

Lemma 2.2.8. For any A ∈ R𝑛×𝑑 and any 𝑖 ∈ [𝑛], 1
ℓ𝑖(A)

· a𝑖a𝑇𝑖 ⪯ AA𝑇 .

Proof. Let (AA𝑇 )+/2 = UΣ−1U𝑇 . Any vector x ∈ R𝑑 that is in A’s column span
can be written as Az for some z ∈ R𝑑 in A’s row span, which is equal to the row span
of V𝑇 . We can thus write x = AVw = UΣ for some w ∈ Rrank(A). Setting y = UΣ2

43



we can thus write:

x = (AA𝑇 )+/2y = UΣ−1U𝑇UΣ2w = UΣw. (2.10)

Using (2.10) we can write for any x in A’s column span:

x𝑇
(︀
a𝑖a

𝑇
𝑖

)︀
x = y𝑇 (AA𝑇 )+/2a𝑖a

𝑇
𝑖 (AA𝑇 )+/2y

≤ ℓ𝑖(A)‖y‖22 (2.11)

since (AA𝑇 )+/2a𝑖a
𝑇
𝑖 (AA𝑇 )+/2 is rank-1 and so has maximum eigenvalue

tr
(︀
(AA𝑇 )+/2a𝑖a

𝑇
𝑖 (AA𝑇 )+/2

)︀
= a𝑇𝑖 (AA𝑇 )+a𝑖 = ℓ𝑖(A)

by the cyclic property of trace. Further,

x𝑇AA𝑇x = y𝑇 (AA𝑇 )+/2AA𝑇 (AA𝑇 )+/2y = ‖y‖22.

Combined with (2.11) this gives us, for any x in the column span of A:

1

ℓ𝑖(A)
· x𝑇

(︀
a𝑖a

𝑇
𝑖

)︀
x ≤ x𝑇AA𝑇x. (2.12)

For any x ∈ R𝑛 not in the column span of A, we can write x = Px+ (I−P)x where
P is the projection to this span. We then have:

x𝑇
(︀
a𝑖a

𝑇
𝑖

)︀
x = x𝑇P

(︀
a𝑖a

𝑇
𝑖

)︀
Px+ 0

and

x𝑇AA𝑇x = x𝑇PAA𝑇Px+ 0.

The lemma follows by applying (2.12) to Px, which is in the column span of A.

Using Lemma 2.2.8 we can prove:

Claim 2.2.9. For all 𝑗 ∈ [𝑡], ‖X𝑗‖2 ≤ 𝜖2

32 log(rank(A)/𝛿)
with probability 1.

Proof. Lemma 2.2.8 gives:

1

ℓ𝑖(A)
·Σ−1U𝑇a𝑖a

𝑇
𝑖 UΣ−1 ⪯ Σ−1U𝑇AA𝑇UΣ−1 = I.

44



And so, using the assumption that for all 𝑖, ℓ̃𝑖 ≥ ℓ𝑖(A) and that 𝑡 ≥ 32 log(rank(A)/𝛿)
𝜖2

:

0 ⪯ 1

𝑡𝑝𝑖
Σ−1U𝑇a𝑖a

𝑇
𝑖 UΣ−1 ⪯ 𝜖2

32 log(rank(A)/𝛿)ℓ̃𝑖
Σ−1U𝑇a𝑖a

𝑇
𝑖 UΣ−1

⪯ 𝜖2

32 log(rank(A)/𝛿)
I. (2.13)

Additionally,

0 ⪯ 1

𝑡
Σ−1U𝑇AA𝑇UΣ−1 ⪯ 𝜖2

32 log(rank(A)/𝛿)
I, (2.14)

using that
∑︀

𝑖 ℓ̃𝑖 ≥ 1 since
∑︀

𝑖 ℓ̃𝑖 ≥
∑︀

𝑖 ℓ𝑖(A) = rank(A). Recalling that

X𝑗 =
1

𝑡
·Σ−1U𝑇

(︂
1

𝑝𝑖
a𝑖a

𝑇
𝑖 −AA𝑇

)︂
UΣ−1 with probability 𝑝𝑖,

have via (2.13) and (2.14), with probability 1:

− 𝜖2

32 log(rank(A)/𝛿)
I ⪯ X𝑗 ≺

𝜖2

32 log(rank(A)/𝛿)
I.

Or equivalently, ‖X𝑗‖2 ≤ 𝜖2

32 log(rank(A)/𝛿)
, which gives the claim.

We next bound the variance of Y.

Claim 2.2.10. E[Y2] ⪯ 𝜖2

32 log(rank(A)/𝛿)
I.

Proof. The proof is a simple but tedious calculation:

E[Y2] = 𝑡 · E[X2
𝑗 ] =

1

𝑡

∑︁
𝑖

𝑝𝑖 ·
(︂

1

𝑝2𝑖
Σ−1U𝑇a𝑖a

𝑇
𝑖 UΣ−2U𝑇a𝑖a

𝑇
𝑖 UΣ−1

−2
1

𝑝𝑖
Σ−1U𝑇a𝑖a

𝑇
𝑖 UΣ−2U𝑇AA𝑇UΣ−1 +Σ−1U𝑇AA𝑇UΣ−2U𝑇AA𝑇UΣ−1

)︂
⪯ 1

𝑡

∑︁
𝑖

[︃∑︀
𝑖 ℓ̃𝑖

ℓ̃𝑖
· ℓ𝑖(A) ·Σ−1Ua𝑖a

𝑇
𝑖 UΣ−1

]︃
− 1

𝑡
Σ−1U𝑇AA𝑇UΣ−1

⪯ 𝜖2

32 log(rank(A)/𝛿)
Σ−1U𝑇AA𝑇UΣ−1 ⪯ 𝜖2

32 log(rank(A)/𝛿)
I.

We can plug the bounds of Claims 2.2.9 and 2.2.10 into Theorem 7.3.1 of [Tro15],

45



to give for 𝜖, 𝛿 ∈ (0, 1/2]:

P [‖Y‖2 ≥ 𝜖/2] ≤ 4 · rank(A) · 𝑒
−𝜖2/8

( 𝜖2

32 log(rank(A)/𝛿)
(1+𝜖/6))

≤ 4 · rank(A) · 𝑒−
48
13

log(rank(A)/𝛿)

≤ 𝛿.

The last bound follows from the fact that

log(4 rank(A)/𝛿) = log(4) + log(rank(A)/𝛿)

≤ 3 log(rank(A)/𝛿)

<
48

13
log(rank(A)/𝛿)

since rank(A)/𝛿 ≥ 2 by the restriction that 𝛿 ≤ 1/2. This gives the Lemma by Claim
2.2.7.

Lemma 2.2.6 also gives an easy Corollary for the approximation obtained when
sampling with ridge leverage scores. In comparison to Lemma 2.2.6 this approxima-
tion is weaker – since it included an additive 𝜖𝜆I term. However, as discussed, since
the sum of ridge leverage scores is smaller than the sum of standard leverage scores,
this approximation requires sampling fewer columns. Bounds similar to Corollary
2.2.11 have also appeared, for example, in [AM15b, CMM17, AKM+17].

Corollary 2.2.11 (Ridge Leverage Scores Sampling Spectral Approximation). For
any A ∈ R𝑛×𝑑, for all 𝑖 ∈ [𝑑], let 𝜏𝜆𝑖 ≥ 𝜏𝜆𝑖 (A) be an overestimate for A’s 𝑖𝑡ℎ 𝜆 column
ridge leverage score (Definition 2.2.1). Let 𝑝𝑖 =

𝜏𝜆𝑖∑︀
𝑖 𝜏

𝜆
𝑖

and for any 𝜖, 𝛿 ∈ (0, 1/2],

𝑡 ≥ 32 log(rank(A)/𝛿)
𝜖2

∑︀
𝑖 𝜏

𝜆
𝑖 . Construct C by sampling 𝑡 columns of A, each set to 1√

𝑡𝑝𝑖
a𝑖

with probability 𝑝𝑖. With probability ≥ 1− 𝛿:

(1− 𝜖)CC𝑇 − 𝜖𝜆I ⪯ AA𝑇 ⪯ (1 + 𝜖)CC𝑇 + 𝜖𝜆I. (2.15)

Proof. We can instantiate Lemma 2.2.6 with [A,
√
𝜆I] setting ℓ̃𝑖 = 𝜏𝜆𝑖 . We simply fix

the columns of the identity to appear in our sample. All calculations go through, and
with probability ≥ 1− 𝛿:

(1− 𝜖)[C,
√
𝜆I][C,

√
𝜆I]𝑇 ⪯ [A,

√
𝜆I][A,

√
𝜆I]𝑇 ⪯ (1 + 𝜖)[C,

√
𝜆I][C,

√
𝜆I]𝑇 ,

which gives the desired bound if we subtract 𝜆I from all sides.

46



We note that it is possible to tighten Corollary 2.2.11. The rank(A) term in the
log can be replaced by

∑︀
𝑖 𝜏

𝜆
𝑖 , which, for example, for the rank-𝑘 ridge leverage scores

of Definition 2.2.2 is bounded by 2𝑘 by Lemma 2.2.3. However, in the applications of
this chapter, this stronger bound will not be necessary. See Theorem 5 of [CMM17]
for a proof of the stronger bound.

Approximation Bounds for Regression and Low-Rank Approximation

Using the basic spectral approximation bounds of Lemma 2.2.6 and Corollary 2.2.11,
it is possible to show that sampling by a matrix’s (ridge) leverage scores gives a sketch
of this matrix that can be used to approximately solve a number of fundamental low-
rank approximation and regression problems.

For low-rank approximation, using the slight strengthening of Corollary 2.2.11 that
we prove in [CMM17], it is possible to show that sampling by the rank-𝑘 ridge leverage
scores yields a projection-cost-preserving sketch (PCP) of A (Definition 2.1.3):

Lemma 2.2.12 (Theorem 6 of [CMM17]). For any A ∈ R𝑛×𝑑, for all 𝑖 ∈ [𝑑], let
𝜏 𝑘𝑖 ≥ 𝜏 𝑘𝑖 (A) be an overestimate for A’s 𝑖𝑡ℎ rank-𝑘 ridge leverage score (Definition
2.2.2). Let 𝑝𝑖 =

𝜏𝑘𝑖∑︀
𝑖 𝜏

𝑘
𝑖

and for any 𝜖, 𝛿 ∈ (0, 1/2], 𝑡 ≥ 𝑐 log(𝑘/𝛿)
𝜖2

∑︀
𝑖 𝜏

𝑘
𝑖 for sufficiently

large constant 𝑐. Construct C by sampling 𝑡 columns of A, each independently set to
1√
𝑡𝑝𝑖
a𝑖 with probability 𝑝𝑖. Then with probability ≥ 1 − 𝛿, C as an (𝜖, 𝑘)-PCP of A

(Definition 2.1.3).

We do not prove Lemma 2.2.12 here, although its proof follows a similar pattern
to the proofs of Lemmas 2.4.1 and 2.4.3, which we present in Section 2.4.

Since the distance ‖A−PA‖2𝐹 from A to any rank-𝑘 projection of A is preserved
by C, any near-optimal low-rank approximation of C yields a near-optimal low-rank
approximation of A. Further, C is much smaller than A, so such a low-rank approx-
imation can be computed quickly. Specifically, if each 𝜏 𝑘𝑖 is an 𝑂(1) approximation
to 𝜏 𝑘𝑖 (A), then by Lemma 2.2.3,

∑︀
𝑖 𝜏

𝑘
𝑖 (A) ≤ 2𝑘 so

∑︀
𝑖 𝜏𝑖 = 𝑂(𝑘) and C has just

𝑡 = �̃�(𝑘/𝜖2) columns.
In addition to Lemma 2.2.12 we make use of a well known result on approximate

regression via leverage score sampling, which we state and reprove here for com-
pleteness. See Theorem 38 of [CW13] and [DMM08] for earlier work showing similar
results. In this result and throughout the rest of the chapter we write a subset of
rows or columns of a matrix as the product of that matrix and a weighted sampling
matrix defined below:

47



Definition 2.2.13 (Sampling Matrix). A weighted sampling matrix S ∈ R𝑛×𝑑 is any
matrix with each row a scalar multiple of one of the standard basis vectors e1, ..., e𝑛.

We have:

Lemma 2.2.14 (Approximate Regression Via Leverage Score Sampling). For any
A ∈ R𝑛×𝑑 and Y ∈ R𝑛×𝑑′, for all 𝑖 ∈ [𝑛] let ℓ̃𝑖 ≥ ℓ𝑖(A) be an overestimate for A’s
𝑖𝑡ℎ row leverage score (Definition 2.2.4). Let 𝑝𝑖 = ℓ̃𝑖∑︀

𝑖 ℓ̃𝑖
and for 𝜖, 𝛿 ∈ (0, 1/2], let

𝑡 = 𝑐
(︀
log(rank(A)) + 1

𝛿·𝜖

)︀
·
∑︀

𝑖 ℓ̃𝑖 for some sufficiently large constant 𝑐. Let S ∈ R𝑛×𝑡

be the sampling matrix whose 𝑖𝑡ℎ column is set independently to 1√
𝑡𝑝𝑖
e𝑖 with probability

𝑝𝑖. Then with probability ≥ 1− 𝛿, letting

X̃ = argmin
X∈R𝑑×𝑑′

‖S𝑇AX− S𝑇Y‖2𝐹 ,

we have:

‖AX̃−Y‖2𝐹 ≤ (1 + 𝜖) min
X∈R𝑑×𝑑′

‖AX−Y‖2𝐹 .

Proof. We first note that we can assume without loss of generality that A has or-
thonormal columns. This is because if the lemma holds for A with orthonormal
columns, for general A, we can consider an orthonormal span U ∈ R𝑛×rank(A) for the
columns of A. We can write AX̃ = UZ̃ for some Z̃ ∈ Rrank(A)×𝑑′ and have

Z̃ = argmin
X∈Rrank(A)×𝑑′

‖S𝑇UX− S𝑇Y‖2𝐹 .

Further, by Lemma 2.2.5, the leverage scores of U are equal to those of A and so,
with probability ≥ 1− 𝛿, we have:

‖UZ̃−Y‖2𝐹 ≤ (1 + 𝜖) min
X∈Rrank(A)×𝑑′

‖UX−Y‖2𝐹 . (2.16)

Again since U spans the columns of A we have:

min
X∈Rrank(A)×𝑑′

‖UX−Y‖2𝐹 = min
X∈R𝑑×𝑑′

‖AX−Y‖2𝐹 .

So (2.16) combined with the fact that UZ̃ = AX̃ gives:

‖AX̃−Y‖2𝐹 ≤ (1 + 𝜖) min
X∈R𝑑×𝑑′

‖AX−Y‖2𝐹 ,

48



which gives the lemma.

Proof for Orthonormal A. Thus, we prove the lemma for A with orthonormal
columns. Let X* = argminX∈R𝑑×𝑑′ ‖AX−Y‖2𝐹 . We first have:

Claim 2.2.15. With probability ≥ 1− 𝛿, both:

1. 1
2
A𝑇SS𝑇A ⪯ A𝑇A ⪯ 3

2
A𝑇SS𝑇A.

2. ‖A𝑇SS𝑇 (Y −AX*)‖𝐹 ≤
√︀
𝜖/2‖Y −AX*‖𝐹 .

Proof. Since ℓ̃𝑖 ≥ ℓ𝑖(A) and since 𝑡 ≥ 𝑐 log(rank(A)/𝛿) ·
∑︀

𝑖 ℓ̃𝑖, by Lemma 2.2.6, if 𝑐
is set large enough, the first bound holds with probability ≥ 1 − 𝛿/2. To prove the
second bound, we apply a standard approximate matrix multiplication result. We
reprove this result here for completeness.

Lemma 2.2.16 (Approximate Matrix Multiplication, based on [DKM06]). Given
M ∈ R𝑛×𝑑 and N ∈ R𝑝×𝑑 with columns m𝑖 and n𝑖 respectively, for 𝑖 ∈ [𝑑] let 𝛾𝑖 ≥
‖m𝑖‖22 be an overestimate for the 𝑖𝑡ℎ squared column norm of M. Let 𝑝𝑖 = 𝛾𝑖∑︀

𝑖 𝛾𝑖
, and

𝑡 satisfy 𝑡 ≥ 1
𝛿·𝜖2 ·

∑︀
𝑖 𝛾𝑖. Construct weighted sampling matrix S ∈ R𝑑×𝑡, whose 𝑗𝑡ℎ

column is set to 1√
𝑡𝑝𝑖
e𝑖 with probability 𝑝𝑖. Then, with probability ≥ 1− 𝛿,

‖MN𝑇 −MSS𝑇N𝑇‖𝐹 ≤ 𝜖‖N‖𝐹 .

Proof. We will bound E
[︀
‖MN𝑇 −MSS𝑇N𝑇‖2𝐹

]︀
and then apply Markov’s inequality

to give the theorem. Applying Lemma 4 of [DKM06] we have:

E
[︀
‖MN𝑇 −MSS𝑇N𝑇‖2𝐹

]︀
=

𝑛∑︁
𝑖=1

‖m𝑖‖22‖n𝑖‖22
𝑡𝑝𝑖

− 1

𝑡
‖MN𝑇‖2𝐹

≤
𝑛∑︁
𝑖=1

‖m𝑖‖22‖n𝑖‖22
1
𝛿𝜖2

· 𝛾𝑖
,

which by the assumption that for all 𝑖 ∈ [𝑑], 𝛾𝑖 ≥ ‖m𝑖‖22 gives:

E
[︀
‖MN𝑇 −MSS𝑇N𝑇‖2𝐹

]︀
≤ 𝛿𝜖2‖N‖2𝐹 .

Thus, by Markov’s inequality, with probability ≥ 1− 𝛿,

‖MN𝑇 −MSS𝑇N𝑇‖2𝐹 ≤ 𝜖2‖N‖2𝐹

and so ‖MN𝑇 −MSS𝑇N𝑇‖𝐹 ≤ 𝜖‖N‖𝐹 , giving the lemma.

49



Since A is orthonormal, by Lemma 2.2.5 we have ℓ𝑖(A) = ‖a𝑖‖22, where a𝑖 is the
𝑖𝑡ℎ row of A. Thus by Lemma 2.2.16, since 𝑡 ≥ 𝑐

𝛿·𝜖 ·
∑︀

𝑖 ℓ̃𝑖, if 𝑐 is large enough, with
probability ≥ 1− 𝛿/2,

‖A𝑇SS𝑇 (AX* −Y)−A𝑇 (AX* −Y)‖𝐹 ≤
√︀
𝜖/2‖Y −AX*‖𝐹 .

This gives the second bound of Claim 2.2.15 after noting that

A𝑇 (AX* −Y) = A𝑇 (AA𝑇Y −Y) = A𝑇Y −A𝑇Y = 0.

By a union bound, both the first and second bounds hold with probability ≥ 1 − 𝛿,
completing the claim.

Now, since A has orthonormal columns, X* = A𝑇Y. We can write AX̃ − Y =

(AX*−Y)+A(X̃−X*). (AX*−Y) = (AA𝑇 − I)A and so has columns orthogonal
to the column span of A. So by Pythagorean theorem:

‖AX̃−Y‖2𝐹 = ‖AX* −Y‖2𝐹 + ‖A(X̃−X*)‖2𝐹 .

Thus to show the lemma, it suffices to prove that

‖A(X̃−X*)‖2𝐹 ≤ 𝜖‖AX* −Y‖2𝐹 . (2.17)

Since A has orthonormal columns we have ‖A(X̃−X*)‖2𝐹 = ‖X̃−X*‖2𝐹 . Further, by
conclusion (1) of Claim 2.2.15, since A𝑇A = I, we have I ⪯ 3

2
A𝑇SS𝑇A. This gives:

‖A(X̃−X*)‖2𝐹 ≤ 3

2
· ‖A𝑇SS𝑇A(X̃−X*)‖2𝐹 . (2.18)

Since X̃ = argminX∈R𝑑×𝑑′ ‖S𝑇AX − S𝑇Y‖2𝐹 , the columns of S𝑇Y − S𝑇AX̃ are or-
thogonal to the columns of S𝑇A. Thus we can write:

‖A𝑇SS𝑇A(X̃−X*)‖2𝐹 = ‖A𝑇S(STAX̃− S𝑇Y + S𝑇Y − S𝑇AX*)‖2𝐹
= ‖A𝑇S(S𝑇Y − S𝑇AX*)‖2𝐹
= ‖A𝑇SS𝑇 (Y −AX*)‖2𝐹 .

By conclusion (2) of 2.2.15 we have ‖A𝑇SS𝑇 (Y −AX*)‖2𝐹 ≤ 𝜖
2
‖Y −AX*‖2𝐹 . Com-

50



bined with (2.18) this gives:

‖A(X̃−X*)‖2𝐹 ≤ 3

2
· 𝜖
2
‖Y −AX*‖2𝐹 ≤ 𝜖‖Y −AX*‖2𝐹 ,

which gives (2.17) and thus completes the lemma.

2.2.3 Fast Ridge Leverage Score Approximation

With Lemma 2.2.12 established, the difficulty remains in computing the approximate
leverage scores. To do this, we use our main result from [MM17], which applies to
computing the leverage scores of A1/2 for any PSD A. Recall that letting the SVD
of A be A = UΣU𝑇 , we define A1/2 = UΣ1/2U𝑇 .

Lemma 2.2.17 (Corollary of Theorem 20 of [MM17]). There is an algorithm that
given any PSD matrix A ∈ R𝑛×𝑛, 𝑘 ∈ Z≥1, and 𝛿 ∈ (0, 1/2] runs in 𝑂(𝑛(𝑘 log(𝑘/𝛿))�̄�−1)

time, accesses 𝑂(𝑛𝑘 log(𝑘/𝛿)) entries of A, and returns for each 𝑖 ∈ [𝑛], 𝜏 𝑘𝑖 (A1/2) such
that with probability ≥ 1− 𝛿, for all 𝑖:

𝜏 𝑘𝑖 (A
1/2) ≤ 𝜏 𝑘𝑖 (A

1/2) ≤ 3𝜏 𝑘𝑖 (A
1/2).

Proof. In Theorem 20 of [MM17] we show that by using a recursive ridge leverage
score sampling algorithm, it is possible to return (with probability ≥ 1−𝛿) a sampling
matrix S ∈ R𝑛×𝑠 with 𝑠 = 𝑂 (𝑘 log(𝑘/𝛿)) such that, letting 𝜆 = 1

𝑘
‖A1/2 −A

1/2
𝑘 ‖2𝐹 :

1

2
(A+ 𝜆I) ⪯

(︀
A1/2SS𝑇A1/2 + 𝜆I

)︀
⪯ 3

2
(A+ 𝜆I) . (2.19)

If we set 𝜏 𝑘𝑖 (A1/2) = 2 · x𝑇𝑖
(︀
A1/2SS𝑇A1/2 + 𝜆I

)︀+
x𝑖, where x𝑖 is the 𝑖𝑡ℎ column of

A1/2 we have the desired bound. Of course, we cannot directly compute this value
without factoring A to form A1/2. However, as we show in Lemma 6 of [MM17], for
𝜆 > 0: 10

x𝑇𝑖
(︀
A1/2SS𝑇A1/2 + 𝜆I

)︀−1
x𝑖 =

1

𝜆

(︀
A−AS(S𝑇AS+ 𝜆I)−1S𝑇A

)︀
𝑖,𝑖
. (2.20)

Computing (S𝑇AS + 𝜆I)−1 requires 𝑂(𝑠2) = 𝑂((𝑘 log(𝑘/𝛿))2) accesses to A and
𝑂(𝑠�̄�) = 𝑂((𝑘 log(𝑘/𝛿))�̄�) time. Computing all 𝑛 diagonal entries of AS(S𝑇AS +

10For the rank-𝑘 ridge leverage scores, 𝜆 > 0 unless A has rank ≤ 𝑘. In this case 𝜆 = 0 and (2.20)
does not hold. However, by (2.19), the columns of S already span the column space of A. Thus, we
can compute M ∈ R𝑛×𝑘 whose columns span those of S and then directly project to these columns
to compute an optimal low-rank approximation of A as in Steps 7-8 of Algorithm 2.5.1.

51



𝜆𝐼)−1S𝑇A then requires 𝑂(𝑛𝑘 log(𝑘/𝛿)) accesses to A and 𝑂(𝑛(𝑘 log(𝑘/𝛿))�̄�−1) time.
With these entries in hand we can simply subtract from the diagonal entries of A
and rescale to give the final leverage score approximation. Critically, this calculation
always reads all diagonal entries of A, allowing it to identify rows containing large
off-diagonal entries and skirt the nnz(A) time lower bound for general matrices.

Note that the stated runtime in [MM17] for outputting S is �̃�(𝑛𝑘) accesses to A

(kernel evaluations in the language of [MM17]) and �̃�(𝑛𝑘2) runtime. However this
runtime is improved to �̃�(𝑛𝑘�̄�−1) using fast matrix multiplication.

2.3 Column Sampling

To apply Lemmas 2.2.12 and 2.2.17 to low-rank approximation of A, we now show
that the ridge leverage scores of A1/2 coarsely upper bound those of A. As shown
in Corollary 2.3.3, we can then sample columns of A by these scores to obtain an
(𝜖, 𝑘)-PCP C, which can be further sampled to efficiently obtain a near-optimal low-
rank approximation of A. We note that the idea of simultaneously sampling rows
and columns from A to form an approximation is analogous to existing work on
CUR matrix approximation [DMM08, MD09] and Nyström approximation of positive
semidefinite matrices [WS01, GM13].

Lemma 2.3.1 (Ridge Leverage Score Bound). For any PSD matrix A ∈ R𝑛×𝑛 and
any 𝑘 ≤ 𝑛:

𝜏 𝑘𝑖 (A) ≤ 2

√︂
𝑛

𝑘
· 𝜏 𝑘𝑖 (A1/2).

Proof. We write A1/2 in its singular value decomposition A1/2 = UΣ1/2U𝑇 . Letting
x𝑖 denote the 𝑖𝑡ℎ column of A1/2 we have:

𝜏 𝑘𝑖 (A
1/2) = x𝑇𝑖

(︃
A+

‖A1/2 −A
1/2
𝑘 ‖2𝐹

𝑘
I

)︃−1

x𝑖

= x𝑇𝑖 UΣ̄U𝑇x𝑖, (2.21)

52



where Σ̄𝑖,𝑖
def
= 1

𝜎𝑖(A)+ 1
𝑘

∑︀𝑛
𝑗=𝑘+1 𝜎𝑗(A)

. We can similarly write:

𝜏 𝑘𝑖 (A) = a𝑇𝑖

(︂
A2 +

‖A−A𝑘‖2𝐹
𝑘

I

)︂−1

a𝑖

= x𝑇𝑖 A
1/2

(︂
A2 +

‖A−A𝑘‖2𝐹
𝑘

𝐼

)︂−1

A1/2x𝑖

= x𝑇𝑖 UΣ̂U𝑇x𝑖, (2.22)

where Σ̂𝑖,𝑖
def
= 𝜎𝑖(A)

𝜎𝑖(A)2+ 1
𝑘

∑︀𝑛
𝑗=𝑘+1 𝜎𝑗(A)2

. We have:

Claim 2.3.2. If Σ̂ ⪯ 2
√︀

𝑛
𝑘
· Σ̄ then for all 𝑖, 𝜏 𝑘𝑖 (A) ≤ 2

√︀
𝑛
𝑘
· 𝜏 𝑘𝑖 (A1/2).

Proof. Σ̂ ⪯ 2
√︀

𝑛
𝑘
· Σ̄ gives that for any x ∈ Rrank(A),

x𝑇 Σ̂x ≤ 2

√︂
𝑛

𝑘
· x𝑇 Σ̄x.

For any 𝑖, setting x = U𝑇x𝑖 and applying (2.21) and (2.22) then gives

𝜏 𝑘𝑖 (A) ≤ 2

√︂
𝑛

𝑘
· 𝜏 𝑘𝑖 (A1/2).

By Claim 2.3.2 it just remains to show Σ̂ ⪯ 2
√︀

𝑛
𝑘
·Σ̄ to give the lemma. Specifically

we must show, for all 𝑖, Σ̂𝑖,𝑖 ≤ 2
√︀

𝑛
𝑘
· Σ̄𝑖,𝑖. After cross-multiplying, this is equivalent

to:

𝜎𝑖(A)2 +
1

𝑘
· 𝜎𝑖(A) ·

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A) ≤ 2

√︂
𝑛

𝑘

(︃
𝜎𝑖(A)2 +

1

𝑘

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A)2

)︃
. (2.23)

We show (2.23) for every 𝑖 by considering two cases:

Case 1: First consider the relatively large singular values. Say we have 1
𝑘

∑︀𝑛
𝑗=𝑘+1 𝜎𝑗(A) ≤√︀

𝑛
𝑘
· 𝜎𝑖(A). Then:

𝜎𝑖(A)2 +
1

𝑘
· 𝜎𝑖(A) ·

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A) ≤
(︂
1 +

√︂
𝑛

𝑘

)︂
𝜎𝑖(A)2,

which gives (2.23) since (1 +
√︀
𝑛/𝑘) ≥ 2.

53



Case 2: Next consider small singular values with 1
𝑘

∑︀𝑛
𝑗=𝑘+1 𝜎𝑗(A) ≥

√︀
𝑛
𝑘
· 𝜎𝑖(A). In

this case:

𝜎𝑖(A)2 +
1

𝑘
· 𝜎𝑖(A) ·

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A) ≤ 𝜎𝑖(A)2 +
1√

𝑛 · 𝑘3/2

(︃
𝑛∑︁

𝑗=𝑘+1

𝜎𝑗(A)

)︃2

≤ 𝜎𝑖(A)2 +
1√

𝑛 · 𝑘3/2
· 𝑛

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A)2

(Norm bound: ‖ · ‖21 ≤ 𝑛‖ · ‖22)

≤
√︂
𝑛

𝑘

(︃
𝜎𝑖(A)2 +

1

𝑘

𝑛∑︁
𝑗=𝑘+1

𝜎𝑗(A)2

)︃
,

which gives (2.23), completing the proof.

Combining Lemmas 2.2.3, 2.2.12, 2.2.17, 2.3.1 we have our first column sampling
result for PSD matrices.

Corollary 2.3.3 (Fast PSD Ridge Leverage Score Sampling). There is an algorithm
that given any PSD matrix A ∈ R𝑛×𝑛, 𝑘 ∈ Z≥1, and 𝜖, 𝛿 ∈ (0, 1/2], runs in �̃�(𝑛𝑘�̄�−1)

time, accesses �̃�(𝑛𝑘) entries of A, and with probability ≥ 1 − 𝛿 outputs a weighted

sampling matrix S1 ∈ R𝑛×�̃�
(︁√

𝑛𝑘
𝜖2

)︁
such that C = AS1 is an (𝜖,𝑘)-PCP of A.

Proof. By Lemma 2.2.17 we can compute constant factor approximations to the ridge
leverage scores of A1/2 in time �̃�(𝑛𝑘�̄�−1). Applying Lemma 2.3.1, if we scale these
scores up by 2

√︀
𝑛/𝑘 they will be overestimates of the ridge leverage scores of A. If

we set 𝑡 = 𝑐 · log(𝑘/𝛿)
𝜖2

·
∑︀
𝜏 𝑘𝑖 for sufficiently large 𝑐, and generate S1 ∈ R𝑛×𝑡 by sampling

𝑡 columns of A with probabilities proportional to these estimated scores, by Lemma
2.2.12, AS1 will be an (𝜖, 𝑘)-PCP of A with probability ≥ 1 − 𝛿. By Lemma 2.2.3,∑︀𝑛

𝑖=1 𝜏
𝑘
𝑖 (A

1/2) ≤ 2𝑘. So we have 𝑡 = �̃�(
∑︀
𝜏 𝑘𝑖 /𝜖

2) = �̃�(
√
𝑛𝑘/𝜖2).

Forming AS1 requires reading just �̃�(𝑛3/2
√
𝑘/𝜖2) entries of A. At this point,

we could employ any input sparsity time algorithm to find a near-optimal rank-𝑘
projection P for approximating AS1 in 𝑂(nnz(AS1))+𝑛 poly(𝑘/𝜖) = 𝑛3/2 ·poly(𝑘/𝜖)
time. This would in turn yield a near-optimal low-rank approximation of A. However,
as we will see in the next section, by further sampling the rows of AS1, we can
significantly improve the 𝑛 dependence in this runtime.

54



2.4 Row Sampling

To achieve near linear dependence on 𝑛, our algorithm will sample roughly
√
𝑛𝑘 rows

from AS1, producing an even smaller matrix S𝑇2AS1 that we can afford to fully read
and from which we can form a near-optimal low-rank approximation to AS1 and
consequently to A (since AS1 will be an (𝜖, 𝑘)-PCP of A with high probability).
However, sampling rows from AS1 is challenging: we cannot employ input sparsity
time methods as we cannot afford to read the full matrix – it has dimensions 𝑛 ×
Θ̃
(︁√

𝑛𝑘
𝜖2

)︁
and so contains up to Ω(𝑛3/2) nonzero entries. Further, since AS1 is no

longer PSD, we cannot apply the same approach we used for A, approximating the
ridge leverage scores with those of A1/2 (which can be computed very efficiently via
Lemma 2.2.17).

2.4.1 Approximating the Ridge Leverage Scores of AS1

Rewriting the formula for the rank-𝑘 ridge leverage scores of AS1 (Definition 2.2.2)
using the SVD AS1 = UΣV𝑇 (and transposing AS1 to give row instead of column
scores) we see that the row rank-𝑘 ridge leverage scores are the diagonal entries of:

AS1

(︂
S𝑇1A

𝑇AS1 +
‖AS1 − (AS1)𝑘‖2𝐹

𝑘
I

)︂+

S𝑇1A
𝑇 = UΣ̄U𝑇 ,

where Σ̄ is the diagonal matrix with:

Σ̄𝑖,𝑖 =
𝜎𝑖(AS1)

2

𝜎𝑖(AS1)2 +
‖AS1−(AS1)𝑘‖2𝐹

𝑘

.

We can see from this computation that the row ridge leverage scores depend only on
the column span U of AS1 and its singular value spectrum. Since AS1 is a column
PCP of A this gives hope that the two matrices have similar row ridge leverage scores,
both of which can be approximated using the leverage scores of A1/2.

Unfortunately, this is not the case. It is possible to have rows in AS1 with ridge
leverage scores significantly higher than in A. Thus, even if we knew the ridge
leverage scores of A, we would have to scale them up significantly to sample from
AS1. As an example, consider A with relatively uniform rank-𝑘 ridge leverage scores:
𝜏 𝑘𝑖 (A) ≈ 𝑘/𝑛 for all 𝑖. When a column is selected to be included in AS1 in the
sampling scheme of Lemma 2.2.12 it will be reweighted by roughly a factor of

√︀
𝑛/𝑘.

Now, append a large number of rows to A each with very small norm and just a

55



containing single non-zero entry. These rows will have little effect on the ridge leverage
scores if their norms are small enough. However, if the column corresponding to the
nonzero in a row is selected, the row will appear in AS1 with

√︀
𝑛/𝑘 times the weight

that it appears in A, and its ridge leverage score will be roughly a factor 𝑛/𝑘 times
higher.

2.4.2 Projection-Cost-Preserving Row Sampling

Fortunately, while we cannot approximate the row ridge leverage scores of AS1, we
are still able to show that sampling the rows of AS1 by the rank-𝑘′ leverage scores
of A1/2 scaled up by a

√︀
𝑛/𝑘′ factor for 𝑘′ = 𝑂(𝑘/𝜖) yields a row PCP for this

matrix (of the form introduced in Definition 2.1.4). Our proof works not with the
ridge scores of AS1 but with the standard leverage scores of a near-optimal low-rank
approximation to this matrix – specifically the approximation given by projecting
onto the top singular vectors of A.

Note that our bound does not show that the rank-𝑘′ leverage scores of A1/2 actually
approximate any the rank-𝑘 ridge leverage scores of AS1. However, we can still show
the needed PCP property, which gives error in the Frobenius norm distance from any
rank-𝑘 projection, of the form in Definition 2.1.4.

Lemma 2.4.1 (Frobenius Row PCP). For any PSD A ∈ R𝑛×𝑛 and 𝜖, 𝛿 ∈ (0, 1/2] let
𝑘′ = ⌈𝑐𝑘/𝜖⌉ and for all 𝑖 ∈ [𝑛] let 𝜏 𝑘′𝑖 (A1/2) ≥ 𝜏 𝑘

′
𝑖 (A1/2) be an overestimate for the

𝑖𝑡ℎ rank-𝑘′ ridge leverage score of A1/2. Let ℓ̃𝑖 =
√︁

16𝑛
𝑘′

· 𝜏 𝑘′𝑖 (A1/2), 𝑝𝑖 = ℓ̃𝑖∑︀
𝑖 ℓ̃𝑖

, and

𝑡 ≥ 𝑐′ log𝑛
𝛿·𝜖2

∑︀
𝑖 ℓ̃𝑖. Construct weighted sampling matrices S1,S2 ∈ R𝑛×𝑡 each whose 𝑗𝑡ℎ

column is set to 1√
𝑡𝑝𝑖
e𝑖 with probability 𝑝𝑖.

For sufficiently large constants 𝑐, 𝑐′, with probability ≥ 1− 𝛿, we have:

∙ AS1 is an (𝜖, 𝑘)-PCP of A (Definition 2.1.3).

∙ Ã = S𝑇2AS1 is an (𝜖, 18/𝛿, 𝑘)-PCP (Definition 2.1.4) of AS1.

By Lemma 2.2.3, the sum of rank-𝑘′ ridge leverage scores can be bounded by∑︁
𝑖

𝜏 𝑘
′

𝑖 (A1/2) = 𝑂(𝑘/𝜖). (2.24)

56



So if each 𝜏 𝑘′𝑖 (A1/2) is a constant factor approximation to 𝜏 𝑘′𝑖 (A1/2), we can set:

𝑡 =
𝑐′ log 𝑛

𝛿 · 𝜖2
·
∑︁
𝑖

ℓ̃𝑖

=
𝑐′ log 𝑛

𝛿 · 𝜖2
·
∑︁
𝑖

(︃√︂
16𝑛𝜖

𝑘
𝜏 𝑘

′

𝑖 (A1/2)

)︃

= 𝑂

(︃
log 𝑛

𝛿 · 𝜖1.5
·
√︂
𝑛

𝑘
·
∑︁
𝑖

𝜏 𝑘
′

𝑖 (A1/2)

)︃

= 𝑂

(︃√
𝑛𝑘 log 𝑛

𝛿 · 𝜖2.5

)︃
, (2.25)

where the last step follows from plugging in (2.24).
Fixing 𝛿 = Θ(1), by applying an input sparsity time low-rank approximation

algorithm to Ã (which by (2.25) has dimensions �̃�(
√
𝑛𝑘/𝜖2.5)× �̃�(

√
𝑛𝑘/𝜖2.5) and so

has just �̃�
(︀
𝑛𝑘
𝜖5

)︀
entries) we can find a near-optimal low-rank approximation of AS1,

and thus for A in 𝑛 · poly(𝑘/𝜖) time. However, in our final algorithm, we take a
somewhat different approach. We are able to show that using appropriate sampling
probabilities, we can in fact sample Ã that is a projection-cost-preserving sketch of
AS1 for spectral norm error. As we will see, recovering a near-optimal spectral norm
low-rank approximation to AS1 suffices to recover a near-optimal Frobenius norm
approximation to A, and allows us to improve 𝜖 dependencies in our final runtime.
We first define this notation of projection-cost-preservation:

Definition 2.4.2 (Spectral Norm Projection-Cost-Preserving Sketch). R ∈ R𝑛′×𝑑 is
an (𝜖, 𝛼, 𝑘)-spectral PCP of C ∈ R𝑛×𝑑 if for all rank-𝑘 projection matrices P ∈ R𝑑×𝑑:

(1− 𝜖)‖C−CP‖22 − 𝛼 ≤ ‖R−RP‖22 ≤ (1 + 𝜖)‖C−CP‖2𝐹 + 𝛼.

We then give show that sampling using the 𝑘′ = 𝑂(𝑘/𝜖) ridge leverage scores of
A1/2 yield such a spectral PCP of AS1 with good probability.

Lemma 2.4.3 (Spectral Norm Row PCP). For any PSD A ∈ R𝑛×𝑛, and 𝜖, 𝛿 ∈
(0, 1/2] let 𝑘′ = ⌈𝑐𝑘/𝜖2⌉ and for all 𝑖 ∈ [𝑛] let 𝜏 𝑘′𝑖 (A1/2) ≥ 𝜏 𝑘

′
𝑖 (A1/2) be an overestimate

for the 𝑖𝑡ℎ rank-𝑘′ ridge leverage score of A1/2. Let ℓ̃𝑖 =
√︁

16𝑛
𝑘′

· 𝜏 𝑘′𝑖 (A1/2), 𝑝𝑖 = ℓ̃𝑖∑︀
𝑖 ℓ̃𝑖

,

and 𝑡 ≥ 𝑐′ log(𝑛/𝛿)
𝜖2

·
∑︀

𝑖 ℓ̃𝑖. Construct weighted sampling matrices S1,S2 ∈ R𝑛×𝑡, each
whose 𝑗𝑡ℎ column is set to 1√

𝑡𝑝𝑖
e𝑖 with probability 𝑝𝑖.

For sufficiently large constants 𝑐, 𝑐′, with probability ≥ 1 − 𝛿, Ã = S𝑇2AS1 is an
(𝜖, 𝛼, 𝑘)-spectral PCP of AS1 with 𝛼 = 𝜖

𝑘
‖A−A𝑘‖2𝐹 .

57



In Lemma 2.4.3, 𝑘′ = 𝑂(𝑘/𝜖2), so again applying Lemma 2.2.3, the sum of rank-𝑘′

ridge leverage scores is bounded by∑︁
𝑖

𝜏 𝑘
′

𝑖 (A1/2) = 𝑂(𝑘/𝜖2). (2.26)

Note that if each 𝜏 𝑘
′

𝑖 (A1/2) is a constant factor approximation to 𝜏 𝑘
′

𝑖 (A1/2), we
can use sample size:

𝑡 =
𝑐′ log(𝑛/𝛿)

𝜖2
·
∑︁
𝑖

ℓ̃𝑖

=
𝑐′ log(𝑛/𝛿)

𝜖2
·
∑︁
𝑖

(︂
4𝜖

√︂
𝑛

𝑘
· 𝜏 𝑘′𝑖 (A1/2)

)︂

= 𝑂

(︃
log(𝑛/𝛿)

𝜖

√︂
𝑛

𝑘
·
∑︁
𝑖

𝜏 𝑘
′

𝑖 (A1/2)

)︃

= 𝑂

(︃√
𝑛𝑘 log(𝑛/𝛿)

𝜖3

)︃
,

where the last step follows from plugging in (2.26).

2.4.3 Spectral Norm Projection-Cost-Preservation

In this section we prove Lemma 2.4.3. In Section 2.4.4 we prove Lemma 2.4.1 using
similar techniques. Both proofs are similar to proofs of projection-cost-preservation
that we gave in [CEM+15] and [CMM17], e.g., the proof of Lemma 2.2.12. However,
we must deal with some complications since we are not sampling using approximations
to the actual ridge leverage scores of AS1.

Proof of Lemma 2.4.3. For conciseness write C
def
= AS1 and write the singular value

decomposition A = UΣU𝑇 . We first show a claim that allows us to reduce proving
the desired PCP property to showing a straightforward approximation bound between
Ã and C.

Claim 2.4.4. If for all rank-𝑘 orthogonal projection matrices P ∈ R𝑛×𝑛,

‖(I−P)(Ã𝑇 Ã−C𝑇C)(I−P)‖2 ≤ 𝜖‖C(I−P)‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 (2.27)

then Ã is an (𝜖, 𝛼, 𝑘)-spectral PCP of C = AS1 with 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

58



Proof. Applying the triangle inequality we have:

‖Ã(I−P)‖22 = ‖(I−P)Ã𝑇 Ã(I−P)‖2
= ‖(I−P)[C𝑇C+ (Ã𝑇 Ã−C𝑇C)](I−P)‖2
≤ ‖C(I−P)‖22 + ‖(I−P)(Ã𝑇 Ã−C𝑇C)(I−P)‖2.

Symmetrically we have:

‖Ã(I−P)‖22 ≥ ‖C(I−P)‖22 − ‖(I−P)(Ã𝑇 Ã−C𝑇C)(I−P)‖2.

Thus, if (2.27) holds,

‖Ã(I−P)‖22 ≤ (1 + 𝜖)‖C(I−P)‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 (2.28)

and

‖Ã(I−P)‖22 ≥ (1− 𝜖)‖C(I−P)‖22 −
𝜖

𝑘
‖A−A𝑘‖2𝐹 . (2.29)

Together, (2.28) and (2.29) give that Ã is an (𝜖, 𝛼, 𝑘)-spectral PCP of C = AS1 with
𝛼 = 𝜖

𝑘
‖A−A𝑘‖2𝐹 by Definition 2.4.2, giving the claim.

With Claim 2.4.4 in place, to prove the lemma, it suffices to show that (2.27) holds
for all rank-𝑘 projection matrices with probability ≥ 1 − 𝛿. We will in fact show a
stronger statement – that (2.27) holds for all projection matrices, with rank up to 𝑛.
However, we do not need this stronger result in our final application of the lemma.

Let 𝑚 be the largest index with 𝜎𝑚(A)2 ≥ 𝜖2

𝑘
‖A−A𝑘‖2𝐹 (and let 𝑚 = 0 if no such

singular value exists). Let U𝐻 ∈ R𝑛×𝑚 contain the top 𝑚 ‘head’ singular vectors of
A (the first 𝑚 columns of U and let U𝑇 ∈ Rrank(A)−𝑚 contain the remaining ‘tail’
singular vectors (the last rank(A) − 𝑚 columns of U). Let C𝐻 = U𝐻U

𝑇
𝐻C and

C𝑇 = U𝑇U
𝑇
𝑇C. C𝐻 is the projection of C onto A’s top singular vectors. C𝑇 is

correspondingly the projection onto A’s bottom singular vectors. Further, since the
column span of C is a subset of that of A we have:

C𝐻 +C𝑇 = C.

59



Applying the triangle inequality we can bound the left hand side of (2.27) by:

‖(I−P)(Ã𝑇 Ã−C𝑇C)(I−P)‖2 ≤ ‖(I−P)(C𝑇
𝐻S2S

𝑇
2C𝐻 −C𝑇

𝐻C𝐻)(I−P)‖2
+‖(I−P)(C𝑇

𝑇S2S
𝑇
2C𝑇 −C𝑇

𝑇C𝑇 )(I−P)‖2
+2‖(I−P)C𝑇

𝐻S2S
𝑇
2C𝑇 (I−P)‖2. (2.30)

We bound each of the terms in the above sum separately. Specifically we show:

Claim 2.4.5 (Head Term). With probability ≥ 1− 𝛿/4, for all orthogonal projection
matrices P ∈ R𝑛×𝑛,

‖(I−P)(C𝑇
𝐻S2S

𝑇
2C𝐻 −C𝑇

𝐻C𝐻)(I−P)‖2 ≤ 𝜖‖C(I−P)‖22.

Claim 2.4.6 (Tail Term). With probability ≥ 1 − 𝛿/4, for all orthogonal projection
matrices P ∈ R𝑛×𝑛,

‖(I−P)(C𝑇
𝑇S2S

𝑇
2C𝑇 −C𝑇

𝑇C𝑇 )(I−P)‖2 ≤
13𝜖2

𝑘
‖A−A𝑘‖2𝐹 .

Claim 2.4.7 (Cross Term). With probability ≥ 1− 𝛿/2, for all orthogonal projection
matrices P ∈ R𝑛×𝑛,

‖(I−P)C𝑇
𝐻S2S

𝑇
2C𝑇 (I−P)‖2 ≤

10𝜖

𝑘
‖A−A𝑘‖2𝐹 + 4𝜖‖C(I−P)‖2𝐹 .

Combining these three bounds, after adjusting constant factors on 𝜖 by making
the constants 𝑐 and 𝑐′ in the rank parameter 𝑘′ and sample size 𝑡 large enough, will
give that (2.27) holds with probability ≥ 1− 𝛿 and thus the lemma via Claim 2.4.4.
For the remainder of the proof we thus fix 𝑐 = 1 so 𝑘′ = ⌈𝑘/𝜖2⌉.

Head Term:

We start by proving Claim 2.4.5. We first show that the ridge scores of A1/2 upper
bound the row norms of U𝐻 (which by Lemma 2.2.5 are equal to its leverage scores
since it has orthonormal columns) and therefore the leverage scores of C𝐻 , since its
columns lie within the column span of U𝐻 .

Claim 2.4.8. For any 𝑝 with 𝜎𝑝(A)2 ≥ 1
𝑘
‖A−A𝑘‖2𝐹 :√︂

16𝑛

𝑘
· 𝜏 𝑘𝑖 (A1/2) ≥ ‖(U𝑝)𝑖‖22, (2.31)

60



where U𝑝 ∈ R𝑛×𝑝 has columns equal to the top 𝑝 singular vectors of A (the first 𝑝
columns of U) and (U𝑝)𝑖 is its 𝑖𝑡ℎ row.

Proof. If 𝑝 = 0 and so U𝑝 contains no singular vectors, (2.31) is true vacuously since
all row norms are 0 and all leverage scores are ≥ 0. Otherwise we write:

𝜏 𝑘𝑖 (A) = a𝑇𝑖

(︂
A2 +

‖A−A𝑘‖2𝐹
𝑘

𝐼

)︂−1

a𝑖

= e𝑇𝑖 UΣ̂U𝑇e𝑖,

where Σ̂ is a diagonal matrix with Σ̂𝑗,𝑗 =
𝜎𝑗(A)2

𝜎𝑗(A)2+
‖A−A𝑘‖2

𝐹
𝑘

. We can then write:

𝜏 𝑘𝑖 (A) =
𝑛∑︁
𝑗=1

U2
𝑖,𝑗 · Σ̂𝑗,𝑗

≥
𝑝∑︁
𝑗=1

U2
𝑖,𝑗 · Σ̂𝑗,𝑗 (truncate sum)

≥
𝑝∑︁
𝑗=1

(︂
U2
𝑖,𝑗 ·

𝜎𝑗(A)2

2𝜎𝑗(A)2

)︂
(By assumption, 𝜎𝑗(A)2 ≥ 𝜎𝑝(A)2 ≥ 1

𝑘
‖A−A𝑘‖2𝐹 )

≥ 1

2

𝑚∑︁
𝑗=1

U2
𝑖,𝑗 =

1

2
‖(U𝑝)𝑖‖22.

This gives the claim since by Lemma 2.3.1 𝜏 𝑘𝑖 (A) ≤ 2
√︀

𝑛
𝑘
𝜏 𝑘𝑖 (A

1/2) so

‖(U𝑝)𝑖‖22 ≤ 2𝜏 𝑘𝑖 (A) ≤ 4

√︂
𝑛

𝑘
𝜏 𝑘𝑖 (A

1/2).

With Claim 2.4.8 in place we can now prove our head term bound, Claim 2.4.5.

Proof of Claim 2.4.5. We apply Lemma 2.4.8 with 𝑘′ = ⌈𝑘/𝜖2⌉. Recall that we chose
𝑚 such that 𝜎𝑚(A)2 ≥ 𝜖2

𝑘
‖A −A𝑘‖2𝐹 and so 𝜎2

𝑚(A) ≥ 1
𝑘′
‖A −A𝑘′‖2𝐹 . Additionally,

we set in the statement of Lemma 2.4.3, ℓ̃𝑖 =
√︁

16𝑛
𝑘′

· 𝜏 𝑘′𝑖 (A1/2). So Claim 2.4.8 gives:

ℓ̃𝑖 =

√︂
16𝑛

𝑘′
· 𝜏 𝑘′𝑖 (A1/2) ≥ ‖(U𝑚)𝑖‖22 = ‖(U𝐻)𝑖‖22. (2.32)

As shown in Lemma 2.2.5, since C𝐻 is spanned by the columns of U𝐻 , its row leverage
scores are upper bounded by the row norms of U𝐻 . Formally:

61



Corollary 2.4.9. ℓ𝑖(C𝐻) ≤ ‖(U𝐻)𝑖‖22.

Corollary 2.4.9 combined with (2.32) gives ℓ̃𝑖 ≥ ℓ𝑖(C𝐻). Further, 𝑡 ≥ 𝑐′ log(𝑛/𝛿)
𝜖2

·∑︀
𝑖 ℓ̃𝑖 so if we set 𝑐′ large enough, we have by the matrix Chernoff bound of Lemma

2.2.6, with probability ≥ 1− 𝛿/4:

(1− 𝜖)C𝑇
𝐻C𝐻 ⪯ C𝑇

𝐻S2S
𝑇
2C𝐻 ≺ (1 + 𝜖)C𝑇

𝐻C𝐻 . (2.33)

This in turn gives that for any P ∈ R𝑛×𝑛,

‖(I−P)(C𝑇
𝐻S2S

𝑇
2C𝐻 −C𝑇

𝐻C𝐻)(I−P)‖2 ≤ 𝜖‖(I−P)C𝑇
𝐻C𝐻(I−P)‖2

= 𝜖‖C𝐻(I−P)‖22
≤ 𝜖‖C(I−P)‖22, (2.34)

yielding Claim 2.4.5

Note that while C𝐻 is a random variable that depends on the choice of the column
sampling matrix S1, Claim 2.4.5 holds for any S1.

Tail Term:

We next prove the tail bound of Claim 2.4.6.

Proof of Claim 2.4.6. We can loosely bound via the triangle inequality and the fact
that for any projection matrix P, ‖I−P‖2 ≤ 1:

‖(I−P)(C𝑇
𝑇S2S

𝑇
2C𝑇 −C𝑇

𝑇C𝑇 )(I−P)‖2 ≤ ‖C𝑇
𝑇S2S

𝑇
2C𝑇 −C𝑇

𝑇C𝑇‖2
≤ ‖S2C𝑇‖22 + ‖C𝑇‖22. (2.35)

Since 𝑘′ = ⌈𝑘/𝜖2⌉, recalling that we let x𝑖 denote the 𝑖𝑡ℎ column of A1/2:

ℓ̃𝑖 =

√︂
16𝑛

𝑘′
· 𝜏 𝑘′𝑖 (A1/2) =

√︂
16𝑛

𝑘′
x𝑇𝑖

(︃
A+

‖A1/2 −A
1/2
𝑘′ ‖2𝐹

𝑘′

)︃+

x𝑖

≥ x𝑇𝑖

(︃
A+

‖A1/2 −A
1/2
𝑘 ‖2𝐹√

𝑛𝑘′

)︃+

x𝑖

= 𝜏𝑖,𝜆(A
1/2)

for 𝜆 =
‖A1/2−A

1/2
𝑘 ‖2𝐹√

𝑛𝑘′
≤ 𝜖‖A1/2−A

1/2
𝑘 ‖2𝐹√

𝑛𝑘
by Definition 2.2.1 Thus for S = S1 or S = S2,

for sufficiently large 𝑐′ in our sample size 𝑡 ≥ 𝑐′ log(𝑛/𝛿)
𝜖2

·
∑︀

𝑖 ℓ̃𝑖, by the ridge leverage

62



score matrix Chernoff bound of Corollary 2.2.11, with probability ≥ 1− 𝛿/4,

(1− 𝜖)A1/2SS𝑇A1/2 −
𝜖‖A1/2 −A

1/2
𝑘 ‖2𝐹√

𝑛𝑘
⪯ A ⪯ (1 + 𝜖)A1/2SS𝑇A1/2 +

𝜖‖A1/2 −A
1/2
𝑘 ‖2𝐹√

𝑛𝑘
.

(2.36)

If (2.36) holds, which occurs with probability ≥ 1− 𝛿/4, we have:

𝜎2
1(S

𝑇A1/2(I−U𝑇U
𝑇
𝑇 )) ≤ (1 + 𝜖)𝜎2

1(A
1/2(I−U𝑇U

𝑇
𝑇 )) +

𝜖‖A1/2 −A
1/2
𝑘 ‖2𝐹√

𝑛𝑘

and so,

‖S𝑇2C𝑇‖22 = ‖S𝑇2 (I−U𝑇U
𝑇
𝑇 )AS1‖22

≤ 𝜎2
1(S

𝑇
2A

1/2(I−U𝑇U
𝑇
𝑇 )) · 𝜎2

1((I−U𝑇U
𝑇
𝑇 )A

1/2S1)

≤ 2(1 + 𝜖)2𝜎4
1(A

1/2(I−U𝑇U𝑇 )
𝑇 ) +

2𝜖2‖A1/2 −A
1/2
𝑘 ‖4𝐹

𝑛𝑘

≤ 8‖A(I−U𝑇U
𝑇
𝑇 )‖22 +

2𝜖2‖A−A𝑘‖2𝐹
𝑘

≤ 10𝜖2‖A−A𝑘‖2𝐹
𝑘

. (2.37)

The first bound is via submultiplicativity of the spectral norm. The second is via the
arithmetic-geometric mean inequality. The third follows from the fact that ‖A1/2 −
A

1/2
𝑘 ‖4𝐹 ≤ 𝑛‖A − A𝑘‖2𝐹 by an ℓ1/ℓ2 bound and the last follows from the fact that

‖A(I−U𝑇U
𝑇
𝑇 )‖22 ≤

𝜖2‖A−A𝑘‖2𝐹
𝑘

by our choice of 𝑚 and hence of U𝐻 and U𝑇 . Similarly:

‖C𝑇‖22 = 𝜎2
1((I−U𝑇U

𝑇
𝑇 )AS1)

≤ 𝜎2
1(S

𝑇
1A

1/2(I−U𝑇U
𝑇
𝑇 )) · 𝜎2

1(A
1/2(I−U𝑇U

𝑇
𝑇 ))

≤ (1 + 𝜖)𝜎4
1(A

1/2(I−U𝑇U
𝑇
𝑇 )) +

𝜖‖A1/2 −A
1/2
𝑘 ‖2𝐹√

𝑛𝑘
· 𝜎2

1(A
1/2(I−U𝑇U

𝑇
𝑇 ))

≤ 3𝜖2‖A−A𝑘‖2𝐹
𝑘

. (2.38)

Overall, plugging (2.37) and (2.38) back into (2.35) gives, for every projection matrix
P ∈ R𝑛×𝑛:

‖(I−P)(C𝑇
𝑇S2S

𝑇
2C𝑇 −C𝑇

𝑇C𝑇 )(I−P)‖2 ≤
13𝜖2

𝑘
‖A−A𝑘‖2𝐹 . (2.39)

This bound holds as long as (2.36) does, which happens with probability ≥ 1− 𝛿/4,

63



yielding the claim.

Cross Term:

We finally prove our cross term bound, Claim 2.4.7.

Proof of Claim 2.4.7. By submultiplicativity of the spectral norm:

‖(I−P)C𝑇
𝑇S2S

𝑇
2C𝐻(I−P)‖2 ≤ ‖C𝑇

𝑇S2‖2 · ‖S𝑇2C𝐻(I−P)‖2. (2.40)

As shown above for our tail bound, if (2.36) holds (which happens with probability

≥ 1−𝛿/4, ‖C𝑇
𝑇S2‖2 ≤

√︁
10𝜖2

𝑘
‖A−A𝑘‖𝐹 . Further, if (2.33) holds, which also happens

with probability ≥ 1− 𝛿/4, then for any P ∈ R𝑛×𝑛,

‖S𝑇2C𝐻(I−P)‖2 ≤ (1 + 𝜖)‖C𝐻(I−P)‖2.

Plugging these bounds back into (2.40), with probability ≥ 1− 𝛿/2:

‖(I−P)C𝑇
𝑇S2S

𝑇
2C𝐻(I−P)‖2 ≤

√︂
10𝜖2

𝑘
‖A−A𝑘‖𝐹 · (1 + 𝜖)‖C𝐻(I−P)‖2

≤ 10𝜖

𝑘
‖A−A𝑘‖2𝐹 + 4𝜖‖C(I−P)‖22, (2.41)

where the last bound follows form the arithmetic-geometric mean inequality.

Completing the proof of Lemma 2.4.3:

With Claims 2.4.5, 2.4.6, and 2.4.7 in place, by a union bound, with probability
≥ 1− 𝛿, using the decomposition of (2.30) we have:

‖(I−P)(Ã𝑇 Ã−C𝑇C)(I−P)‖2 ≤ ‖(I−P)(C𝑇
𝐻S2S

𝑇
2C𝐻 −C𝑇

𝐻C𝐻)(I−P)‖2
+‖(I−P)(C𝑇

𝑇S2S
𝑇
2C𝑇 −C𝑇

𝑇C𝑇 )(I−P)‖2
+2‖(I−P)C𝑇

𝐻S2S
𝑇
2C𝑇 (I−P)‖2

≤ 𝜖‖C(I−P)‖22 +
13𝜖2

𝑘
‖A−A𝑘‖2𝐹 +

20𝜖

𝑘
‖A−A𝑘‖2𝐹 + 8𝜖‖C(I−P)‖2𝐹

≤ 9𝜖‖C(I−P)‖22 +
33𝜖

𝑘
‖A−A𝑘‖2𝐹 .

By Claim 2.4.4 this gives that Ã is a (33𝜖, 𝛼, 𝑘)-spectral PCP of C = AS1 with
𝛼 = 33𝜖

𝑘
‖A−A𝑘‖2𝐹 . This gives Lemma 2.4.3 after adjusting constants on 𝜖 by setting

𝑐, 𝑐′ in the lemma statement sufficiently large.

64



2.4.4 Frobenius Norm Projection-Cost-Preservation

We now prove Lemma 2.4.1, showing that, with probability ≥ 1 − 𝛿, AS1 is an
(𝜖, 𝑘)-PCP of A (Definition 2.1.3) and in turn S𝑇2AS1 is an (𝜖, 18/𝛿, 𝑘)-PCP of AS1

(Definition 2.1.4). The proof is quite similar to that of Lemma 2.4.3.

Proof of Lemma 2.4.1. Again denote C = AS1 and write the singular value decom-
position A = UΣU𝑇 . Let 𝑚 be the largest index with 𝜎𝑚(A)2 ≥ 𝜖

𝑘
‖A − A𝑘‖2𝐹 .

Let U𝐻 ∈ R𝑛×𝑚 contain the top 𝑚 singular of A (the first 𝑚 columns of U and let
U𝑇 ∈ R𝑛×rank(A)−𝑚 contain the remaining ‘tail’ singular vectors. Let C𝐻 = U𝐻U

𝑇
𝐻C

and C𝑇 = U𝑇U
𝑇
𝑇C and note that C𝐻 + C𝑇 = C. Again, throughout the proof we

fix 𝑐 = 1 so 𝑘′ = ⌈𝑘/𝜖⌉. We prove the result up to constant factors on 𝜖, which we
can then remove by setting 𝑐, 𝑐′ large enough.

We first claim that AS1 is an (𝜖, 𝑘)-PCP of A.

Claim 2.4.10. With probability ≥ 1−𝛿/8, C = AS1 is an (𝜖, 𝑘)-PCP of A (Definition
2.1.3).

Proof. ℓ̃𝑖 =
√︁

16𝑛
𝑘′
𝜏 𝑘

′
𝑖 (A1/2). By the assumption that 𝜏 𝑘′𝑖 (A1/2) ≥ 𝜏 𝑘

′
𝑖 (A1/2) for all 𝑖

and Lemma 2.3.1 this gives, for all 𝑖

ℓ̃𝑖 ≥
√︂

16𝑛

𝑘′
𝜏 𝑘

′

𝑖 (A1/2) ≥ 𝜏 𝑘
′

𝑖 (A) ≥ 𝜏 𝑘𝑖 (A).

By Lemma 2.2.12, since S1 samples 𝑡 ≥ 𝑐′ log𝑛
𝛿·𝜖2

∑︀
𝑖 ℓ̃𝑖 columns, if 𝑐′ is large enough,

with probability ≥ 1− 𝛿/8, C = AS1 is an (𝜖, 𝑘)-PCP of A.

We also use the following bound, which holds if C is an (𝜖, 𝑘)-PCP of A.

Claim 2.4.11. If C is an (𝜖, 𝑘)-PCP of A then:

1. ‖A−A𝑘‖2𝐹 ≤ (1 + 2𝜖)‖C−C𝑘‖2𝐹 .

2. ‖C𝑇‖2𝐹 ≤ (1 + 7𝜖)‖C−C𝑘‖2𝐹 .

Proof. We prove the two conclusions of the claim separately.

Conclusion 1: Letting Z ∈ R𝑛×𝑘 contain as its columns C’s top 𝑘 singular vectors,
we have from Definition 2.1.3:

‖(I− ZZ𝑇 )A‖2𝐹 ≤ 1

1− 𝜖
‖(I− ZZ𝑇 )C‖2𝐹

≤ (1 + 2𝜖)‖C−C𝑘‖2𝐹

65



for 𝜖 ∈ (0, 1/2]. The conclusion follows since ‖A−A𝑘‖2𝐹 ≤ ‖(I−ZZ𝑇 )A‖2𝐹 since A𝑘

is the best rank-𝑘 approximation to A.

Conclusion 2: Recall that 𝑚 is set to the largest index with 𝜎𝑚(A)2 ≥ 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

Consider first the case in which 𝑚 ≥ 𝑘. In this case:

‖A−U𝐻U
𝑇
𝐻A‖2𝐹 = ‖A−A𝑚‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 . (2.42)

Next consider the case in which 𝑚 ≤ 𝑘. In this case since, by definition, 𝜎𝑚(A)2 ≤
𝜖
𝑘
‖A−A𝑘‖2𝐹 ,

‖A−U𝐻U
𝑇
𝐻A‖2𝐹 = ‖A−A𝑚‖2𝐹 ≤ ‖A−A𝑘‖2𝐹 + (𝑘 −𝑚)𝜎𝑚(A)2

≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 . (2.43)

Using Definition 2.1.3 we have since U𝐻U
𝑇
𝐻 is a rank-𝑘 projection matrix:

‖C𝑇‖2𝐹 = ‖C−C𝐻‖2𝐹 = ‖C−U𝐻U
𝑇
𝐻C‖2𝐹

≤ (1 + 𝜖)‖A−U𝐻U
𝑇
𝐻A‖2𝐹

≤ (1 + 𝜖)2‖A−A𝑘‖2𝐹 . (2.44)

where the last bound follows from (2.42) and (2.43) Let Z ∈ R𝑛×𝑘 contain as its
columns C’s top 𝑘 singular vectors. Again using Definition 2.1.3 and (2.44) we have:

‖C𝑇‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹
≤ (1 + 𝜖)2‖(I− ZZ𝑇 )A‖2𝐹

≤ (1 + 𝜖)2

1− 𝜖
‖(I− ZZ𝑇 )C‖2𝐹

≤ (1 + 7𝜖)‖C−C𝑘‖2𝐹 (2.45)

for 𝜖 ∈ (0, 1/2]. This completes the claim.

We next show that S𝑇2AS1 is a PCP for C = AS1 with high probability. By the
Pythagorean theorem:

‖C(I−P)‖2𝐹 = ‖C𝐻(I−P)‖2𝐹 + ‖C𝑇 (I−P)‖2𝐹 .

66



Expanding using the identity ‖M‖2𝐹 = tr(M𝑇M) we can write

‖Ã(I−P)‖2𝐹 = ‖S𝑇2C𝐻(I−P)‖2𝐹 + ‖S𝑇2C𝑇 (I−P)‖2𝐹
+ 2 tr

(︀
(I−P)C𝑇

𝐻S2S
𝑇
2C𝑇 (I−P)

)︀
. (2.46)

As in the proof of Lemma 2.4.3 we bound each of the terms in (2.46) separately.
Specifically we show:

Claim 2.4.12 (Head Term). With probability ≥ 1 − 𝛿/8, for all rank-𝑘 orthogonal
projection matrices P ∈ R𝑛×𝑛,

(1− 𝜖)‖C𝐻(I−P)‖2𝐹 ≤ ‖S𝑇2C𝐻(I−P)‖2𝐹 ≤ (1 + 𝜖)‖C𝐻(I−P)‖2𝐹 .

Claim 2.4.13 (Tail Term). With probability ≥ 1 − 𝛿/2, there is some fixed 𝐸 with
|𝐸| ≤ 18/𝛿 · ‖C−C𝑘‖2𝐹 such that, for all rank-𝑘 projection matrices P ∈ R𝑛×𝑛,

‖C𝑇 (I−P)‖2𝐹 − 40𝜖‖C−C𝑘‖2𝐹 ≤ ‖S𝑇2 C𝑇 (I−P)‖2𝐹 + 𝐸 ≤ ‖C𝑇 (I−P)‖2𝐹 + 40𝜖‖C−C𝑘‖2𝐹 .

Claim 2.4.14 (Cross Term). With probability ≥ 1 − 𝛿/4, for all rank-𝑘 orthogonal
projection matrices P ∈ R𝑛×𝑛,

| tr
(︀
(I−P)C𝑇

𝐻S2S
𝑇
2C𝑇 (I−P)

)︀
| ≤ 5𝜖‖C(I−P)‖2𝐹 .

Head Term:

Proof of Claim 2.4.12. By Claim 2.4.8 applied to 𝑘′ = ⌈𝑘/𝜖⌉, since by definition
𝜎𝑚(A)2 ≥ 𝜖

𝑘
‖A−A𝑘‖2𝐹 ≥ 1

𝑘′
‖A−A𝑘′‖2𝐹 :

ℓ̃𝑖 =

√︂
16𝑛𝜖

𝑘
· 𝜏 𝑘′𝑖 (A1/2)

≥
√︂

16𝑛

𝑘′
· 𝜏 𝑘′𝑖 (A1/2)

≥ ‖(U𝐻)𝑖‖22. (2.47)

Further, by Corollary 2.4.9 since U𝐻 is an orthonormal matrix that spans the columns
of C𝐻 we have ℓ𝑖(C𝐻) ≤ ‖(U𝐻)𝑖‖22 for all 𝑖. Thus ℓ̃𝑖 ≥ ℓ𝑖(C𝐻) for all 𝑖. Since
𝑡 ≥ 𝑐′ log𝑛

𝛿·𝜖2 ·
∑︀

𝑖 ℓ̃𝑖, if we set 𝑐′ large enough, by the matrix Chernoff bound of Lemma

67



2.2.6, with probability ≥ 1− 𝛿/8:

(1− 𝜖)C𝑇
𝐻C𝐻 ⪯ C𝑇

𝐻S2S
𝑇
2C𝐻 ≺ (1 + 𝜖)C𝑇

𝐻C𝐻 .

This gives, for every P ∈ R𝑛×𝑛:

(1− 𝜖)‖C𝐻(I−P)‖2𝐹 ≤ ‖S𝑇2C𝐻(I−P)‖2𝐹 ≤ (1 + 𝜖)‖C𝐻(I−P)‖2𝐹 ,

yielding the claim.

Tail Term:

Proof of Claim 2.4.13. To prove the claim we need to show that, with probability
≥ 1−𝛿/2, there is some fixed 𝐸 with |𝐸| ≤ 18/𝛿 · ‖C−C𝑘‖2𝐹 such that, for all rank-𝑘
orthogonal projection matrices P ∈ R𝑛×𝑛,

‖C𝑇 (I−P)‖2𝐹 − 40𝜖‖C−C𝑘‖2𝐹 ≤ ‖S𝑇2 C𝑇 (I−P)‖2𝐹 + 𝐸 ≤ ‖C𝑇 (I−P)‖2𝐹 + 40𝜖‖C−C𝑘‖2𝐹 .

We again split using Pythagorean theorem,

‖S𝑇2C𝑇 (I−P)‖2𝐹 = ‖S𝑇2C𝑇‖2𝐹 − ‖S𝑇2C𝑇P‖2𝐹 . (2.48)

We set 𝐸 = ‖C𝑇‖2𝐹 − ‖S𝑇2C𝑇‖2𝐹 . We have

E[‖S2C𝑇‖2𝐹 ] = ‖C𝑇‖2𝐹 ≤ (1 + 7𝜖)‖C−C𝑘‖2𝐹 ,

where the last bound follows from Claim 2.4.11 if C is an (𝜖, 𝑘)-PCP for A. Thus by
a Markov bound, with probability ≥ 1− 𝛿/4,

|𝐸| ≤ 4

𝛿
· (1 + 7𝜖)‖C−C𝑘‖2𝐹

≤ 18

𝛿
‖C−C𝑘‖2𝐹

since 𝜖 ∈ (0, 1/2]. Additionally, we have, with probability ≥ 1− 𝛿/8,

‖C𝑇‖22 ≤
10𝜖

𝑘
‖A−A𝑘‖2𝐹 and ‖S𝑇2C𝑇‖22 ≤

10𝜖

𝑘
‖A−A𝑘‖2𝐹

by an identical argument to that used for Claim 2.4.6. This gives, for every rank-𝑘

68



projection P:

⃒⃒
‖S𝑇2C𝑇P‖2𝐹 − ‖C𝑇P‖2𝐹

⃒⃒
≤ 𝑘(‖S𝑇2C𝑇‖22 + ‖C𝑇‖22)

≤ 20𝜖‖A−A𝑘‖2𝐹
≤ 40𝜖‖C−C𝑘‖2𝐹 , (2.49)

where the last bound follows from conclusion (1) of Claim 2.4.11 if C is an (𝜖, 𝑘)-PCP
of A. Overall, union bounding over the probability that |𝐸| ≤ 18

𝛿
‖C−C𝑘‖2𝐹 , that C

is an (𝜖, 𝑘)-PCP for A, and that (2.49), we have with probability ≥ 1 − 𝛿/2, for all
rank-𝑘 projection matrices P:

‖S𝑇2C𝑇 (I−P)‖2𝐹 = ‖S𝑇2C𝑇‖2𝐹 − ‖S𝑇2C𝑇P‖2𝐹
= ‖C𝑇‖2𝐹 − 𝐸 − ‖C𝑇P‖2𝐹 − (‖S𝑇2C𝑇P‖2𝐹 − ‖C𝑇P‖2𝐹 )

= ‖C𝑇 (I−P)‖2𝐹 − 𝐸 − (‖S𝑇2C𝑇P‖2𝐹 − ‖C𝑇P‖2𝐹 ).

Applying (2.49) then yields the claim.

Cross Term:

Proof of Claim 2.4.14. We want to show that, with probability ≥ 1 − 𝛿/4, for all
rank-𝑘 orthogonal projection matrices P ∈ R𝑛×𝑛,

| tr
(︀
(I−P)C𝑇

𝐻S2S
𝑇
2C𝑇 (I−P)

)︀
| ≤ 2𝜖‖C(I−P)‖2𝐹 . (2.50)

We can write:

⃒⃒
tr
(︀
(I−P)C𝑇

𝑇S2S
𝑇
2C𝐻(I−P)

)︀⃒⃒
=
⃒⃒
tr
(︀
C𝑇
𝑇S2S

𝑇
2C𝐻(I−P)

)︀⃒⃒
=
⃒⃒
tr
(︀
C𝑇
𝑇S2S

𝑇
2C𝐻(C

𝑇C)+(C𝑇C)(I−P)
)︀⃒⃒
,

where the first step follows from the cyclic property of trace and the fact that (I−P) =

(I − P)2 since P is a projection matrix. The second step follows from inserting
(C𝑇C)+(C𝑇C), which is the projection onto the row span of C has no effect as the
rows of C𝐻 = U𝐻U

𝑇
𝐻C already lie in this span. ⟨M,N⟩ = tr(M(C𝑇C)+N𝑇 ) is a

semi-inner product since C𝑇C is positive semidefinite, so by Cauchy-Schwarz:

⃒⃒
tr
(︀
(I−P)C𝑇

𝑇S2S
𝑇
2 C𝐻(I−P)

)︀⃒⃒
≤ ‖C𝑇

𝑇S2S
𝑇
2 C𝐻(C

𝑇C)+/2‖𝐹 · ‖C(I−P)‖𝐹 . (2.51)

69



Using the singular value decomposition C = XSY𝑇 , we can rewrite (2.51) as:

⃒⃒
tr
(︀
C𝑇
𝑇S2S

𝑇
2C𝐻(I−P)

)︀⃒⃒
≤ ‖C𝑇

𝑇S2S
𝑇
2U𝐻U

𝑇
𝐻X‖𝐹 · ‖C(I−P)‖𝐹

≤ ‖C𝑇
𝑇S2S

𝑇
2U𝐻‖𝐹 · ‖C(I−P)‖𝐹 . (2.52)

As shown in (2.47) in the proof of Claim 2.4.12, ℓ̃𝑖 ≥ ‖(U𝐻)𝑖‖22. Further, 𝑡 ≥ 𝑐′

𝛿𝜖2
.

If 𝑐′ is large enough, then applying the approximate matrix multiplication result of
Lemma 2.2.16, with probability ≥ 1− 𝛿/8:

‖C𝑇
𝑇S2S

𝑇
2U𝐻‖𝐹 ≤ 𝜖‖C𝑇‖𝐹 .

Plugging this bound into (2.51) and (2.52) we have, with probability ≥ 1− 𝛿/8,

⃒⃒
tr
(︀
(I−P)C𝑇

𝑇S2S
𝑇
2C𝐻(I−P)

)︀⃒⃒
≤ 𝜖‖C𝑇‖𝐹 · ‖C(I−P)‖𝐹 .

Further, since by Claim 2.4.10, with probability ≥ 1− 𝛿/8, C = AS1 is an (𝜖, 𝑘)-
PCP of A, using conclusion (2) of Claim 2.4.11, for any rank-𝑘 P,

‖C𝑇‖𝐹 ≤ (1 + 7𝜖)‖C−C𝑘‖𝐹
≤ (1 + 7𝜖)‖C(I−P)‖𝐹 .

Via a union bound, we thus have that with probability ≥ 1− 𝛿/4:

⃒⃒
tr
(︀
(I−P)C𝑇

𝑇S2S
𝑇
2C𝐻(I−P)

)︀⃒⃒
≤ 𝜖(1 + 7𝜖)‖C(I−P)‖2𝐹
≤ 5𝜖‖C(I−P)‖2𝐹 ,

for 𝜖 ∈ (0, 1/2], which completes the claim.

Completing the Proof of Lemma 2.4.1:

We now complete the lemma using Claims 2.4.10, 2.4.12, 2.4.13, and 2.4.14. Via
a union bound, with probability ≥ 1− 𝛿, the bounds in all claims hold. We thus have
using (2.46), for 𝐸 with |𝐸| ≤ 18/𝛿‖C−C𝑘‖2𝐹 :

‖Ã(I−P)‖2𝐹 = ‖S𝑇2 C𝐻(I−P)‖2𝐹 + ‖S𝑇2 C𝑇 (I−P)‖2𝐹
+ 2 tr

(︀
(I−P)C𝑇

𝐻S2S
𝑇
2 C𝑇 (I−P)

)︀
≤ (1 + 𝜖)‖C𝐻(I−P)‖2𝐹 + ‖C𝑇 (I−P)‖2𝐹 + 𝐸 + 40𝜖‖C−C𝑘‖2𝐹 + 10𝜖‖C(I−P)‖2𝐹
≤ (1 + 51𝜖)‖C(I−P)‖2𝐹 + 𝐸.

70



Similarly,

‖Ã(I−P)‖2𝐹 ≥ (1− 𝜖)‖C𝐻(I−P)‖2𝐹 + ‖C𝑇 (I−P)‖2𝐹 + 𝐸 − 40𝜖‖C−C𝑘‖2𝐹 − 10𝜖‖C(I−P)‖2𝐹
≥ (1− 51𝜖)‖C(I−P)‖2𝐹 + 𝐸.

This gives the lemma by adjusting constants on 𝜖 by making 𝑐 and 𝑐′ large enough.

2.5 Full Low-Rank Approximation Algorithm

We are finally ready to give our main algorithm for relative error low-rank approx-
imation of PSD matrices in �̃�(𝑛 poly(𝑘/𝜖)) time, Algorithm 1. In Section 2.5.1 we
give pseudocode for and an analysis of the basic algorithm. In Section 2.5.2 we show
how this algorithm can be modified to satisfy the stronger requirement that the out-
putted low-rank approximation is itself PSD. This requirement is often desired in
applications, such as in kernel methods in machine learning [DM05, GM13].

2.5.1 Basic Algorithm

For constants 𝑐, 𝑐′, we set 𝑘1
def
= ⌈𝑐𝑘/𝜖⌉ and estimate the both the rank-𝑘 and rank-𝑐′𝑘1

ridge leverage scores of A1/2 using the algorithm of Lemma 2.2.17 (Step 1). If 𝑐, 𝑐′

are sufficiently large, sampling by the sum of these scores (Steps 2-3) ensures that
AS1 is an (𝜖, 𝑘)-PCP for A and simultaneously, by applying Lemmas 2.4.1 and 2.4.3
that Ã = S𝑇2AS1 is a row PCP in both spectral and Frobenius norm with rank 𝑘1

and error 𝜖 = 1/2 for AS1.
In conjunction, these guarantees ensure that we can apply an input sparsity time

algorithm to Ã (Step 4) to find a rank-𝑘1 Z ∈ R𝑑×𝑘1 satisfying:

‖AS1 −AS1ZZ
𝑇‖22 = 𝑂

(︂
‖AS1 − (AS1)𝑘1‖22 +

1

𝑘1
‖A−A𝑘‖2𝐹

)︂
= 𝑂

(︁ 𝜖
𝑘
‖A−A𝑘‖2𝐹

)︁
,

where the final bound holds since 𝑘1 = Θ(𝑘/𝜖). It is not hard to show that, due to
this strong spectral norm bound, projecting AS1 to Z and taking the best rank-𝑘 ap-
proximation in the span gives a near-optimal Frobenius norm low-rank approximation
to AS1 and hence A since AS1 is an (𝜖, 𝑘)-PCP of A.

We still cannot afford to read AS1 in its entirety, so we employ a number of
standard leverage score sampling techniques to perform this projection approximately.

71



In Step 5, we sample �̃�(𝑘/𝜖2) columns of AS1 using the leverage scores of Z (its row
norms since it is an orthonormal matrix) to form AS1S3. We argue that there is
a good rank-𝑘 approximation to AS1 lying in both the column span of AS1S3 and
the row span of Z𝑇 . In Step 6 we find a near-optimal such approximation by further
sampling �̃�(𝑘/𝜖4) rows AS1 by the leverage scores of AS1S3 (the row norms of V,
an orthonormal basis for its span), and computing the best rank-𝑘 approximation to
the sampled matrix falling in the column span of AS1S3 and the row span of Z𝑇 .

Finally, in Step 7 we approximately project A itself to the span of this rank-𝑘
approximation by first sampling by the leverage scores of the approximation (the row
norms of M) and projecting.

The main result of this section bounds the runtime and approximation guarantees
of Algorithm 1:

Theorem 2.5.1 (Sublinear Time Low-Rank Approximation). Given any PSD A ∈
R𝑛×𝑛, for sufficiently large constants 𝑐, 𝑐′, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, for any 𝑘 ∈ Z≥1 and 𝜖, 𝛿 ∈
(0, 1/2], Algorithm 1 accesses 𝑂

(︁
𝑛·𝑘 log2(𝑛)
𝛿2·𝜖2.5 +

√
𝑛𝑘1.5 · log 𝑛 · log 𝑘 · poly(1/𝜖, 1/𝛿)

)︁
en-

tries of A, runs in

�̃�

(︂
𝑛𝑘�̄�−1

𝛿2 · 𝜖2(�̄�−1)
+
√
𝑛𝑘�̄�−.5 · poly(1/𝜖, 1/𝛿)

)︂
time, and with probability ≥ 1− 𝛿 outputs 𝑀,𝑁 ∈ R𝑛×𝑘 with:

‖A−MN𝑇‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

72



Algorithm 1 PSD Low-Rank Approximation

1. Let 𝑘1 = ⌈𝑐𝑘/𝜖⌉. Compute, with probability ≥ 1 − 𝛿/5, using the algorithm of
Lemma 2.2.17, 𝜏𝑘𝑖 (A

1/2) and 𝜏 𝑐
′𝑘1
𝑖 (A1/2) satisfying for all 𝑖 ∈ [𝑛]:

∙ 𝜏𝑘𝑖 (A
1/2) ≤ 𝜏𝑘𝑖 (A

1/2) ≤ 3𝜏𝑘𝑖 (A
1/2).

∙ 𝜏 𝑐
′𝑘1
𝑖 (A1/2) ≤ 𝜏 𝑐

′𝑘1
𝑖 (A1/2) ≤ 3𝜏 𝑐

′𝑘1
𝑖 (A1/2).

2. Set ℓ
(1)
𝑖 =

√︀
𝑛
𝑘 𝜏

𝑘
𝑖 (A

1/2) +
√︁

𝑛𝜖4

𝑘1
𝜏 𝑐

′𝑘1
𝑖 (A1/2) and ℓ

(2)
𝑖 =

√︁
𝑛
𝑘1
𝜏 𝑐

′𝑘1
𝑖 (A1/2). Set 𝑝

(1)
𝑖 =

ℓ
(1)
𝑖∑︀
𝑖 ℓ

(1)
𝑖

and 𝑝
(2)
𝑖 =

ℓ
(2)
𝑖∑︀
𝑖 ℓ

(2)
𝑖

.

3. Set 𝑡1 = 𝑐1 log𝑛
𝛿·𝜖2

∑︀
𝑖 ℓ

(1)
𝑖 and 𝑡2 = 𝑐2 log𝑛

𝛿

∑︀
𝑖 ℓ

(2)
𝑖 . Sample S1 ∈ R𝑛×𝑡1 whose 𝑗𝑡ℎ

column is set to 1√︁
𝑡𝑝

(1)
𝑖

e𝑖 with probability 𝑝
(1)
𝑖 . Sample S2 ∈ R𝑛×𝑡2 analogously

using 𝑝
(2)
𝑖 .

4. Let Ã = S𝑇2 AS1, and use an input sparsity time algorithm [CW13] to compute
orthonormal Z ∈ R𝑡1×𝑘1 satisfying, with probability ≥ 1 − 𝛿/5 the spectral guar-
antee:

‖Ã− ÃZZ
𝑇 ‖22 ≤ 2‖Ã− Ã𝑘1‖22 +

𝛿

𝑘1
‖Ã− Ã𝑘1‖2𝐹 .

5. Let 𝑡3 = 𝑐3

(︁
𝑘 log(𝑘/𝜖)

𝜖 + 𝑘
𝛿·𝜖2

)︁
, set 𝑝

(3)
𝑖 =

‖z𝑖‖22
‖Z‖2𝐹

, and sample S3 ∈ R𝑡1×𝑡3 where the

𝑗𝑡ℎ column is set to 1√︁
𝑡3𝑝

(3)
𝑖

e𝑖 with probability 𝑝
(3)
𝑖 . Compute V ∈ R𝑛×𝑡3 which is

an orthonormal basis for the column span of AS1S3.

6. Let 𝑝
(4)
𝑖 =

‖v𝑖‖22
‖V‖2𝐹

and 𝑡4 = 𝑐4

(︁
𝑡3 log 𝑡3
𝜖2

+ 𝑡3
𝛿·𝜖2

)︁
. Sample S4 ∈ R𝑛×𝑡4 where the 𝑗𝑡ℎ

column is set to 1√︁
𝑡4𝑝

(4)
𝑖

e𝑖 with probability 𝑝
(4)
𝑖 . Compute W ∈ R𝑡3×𝑡1 satisfying:

W = argmin
W| rank(W)=𝑘

‖S𝑇4 AS1S3WZ𝑇 − S𝑇4 AS1‖2𝐹 .

7. Compute an orthonormal basis M ∈ R𝑛×𝑘 for the column span of AS1S3W. Let
𝑡5 = 𝑐5

(︀
𝑘 log 𝑘 + 𝑘

𝛿·𝜖
)︀
, set 𝑝

(5)
𝑖 =

‖m𝑖‖22
‖M‖2𝐹

. Sample S5 ∈ R𝑛×𝑡5 where the 𝑗𝑡ℎ column

is set of 1√︁
𝑡5𝑝

(5)
𝑖

e𝑖 with probability 𝑝
(5)
𝑖 . Solve:

N = argmin
N∈R𝑛×𝑘

‖S𝑇5 MN𝑇 − S𝑇5 A‖2𝐹 .

8. Return M,N ∈ R𝑛×𝑘.

73



The proof of Theorem 2.5.1 breaks down into a number of steps. We first show:

Lemma 2.5.2. For sufficiently large constants 𝑐′, 𝑐1, 𝑐2, with probability ≥ 1− 𝛿/5,

1. AS1 is an (𝜖, 𝑘)-PCP of A (Definition 2.1.3).

2. Ã = S𝑇2AS1 is a (1/2, 𝑐6/𝛿, 𝑘1)-PCP of AS1 (Definition 2.1.4) for some con-
stant 𝑐6.

3. Ã = S𝑇2AS1 is a (1/2, 𝛼, 𝑘1)-spectral PCP of AS1 with 𝛼 = 1
2𝑘1

‖A − A𝑘‖2𝐹
(Definition 2.4.2).

Proof. We prove that each of the three conclusions holds with probability ≥ 1−𝛿/15,
giving the lemma via a union bound.

Conclusion 1. In Step 3 of Algorithm 1, S1 is sampled using probabilities propor-
tional to the scores

ℓ
(1)
𝑖 =

√︂
𝑛

𝑘
𝜏 𝑘𝑖 (A

1/2) +

√︃
𝑛𝜖4

𝑘1
𝜏 𝑐

′𝑘1
𝑖 (A1/2). (2.53)

It contains 𝑡1 = 𝑐1 log𝑛
𝛿·𝜖2 ·

∑︀
𝑖 ℓ

(1)
𝑖 columns.

Applying Lemma 2.3.1, we have that for all 𝑖, ℓ(1)𝑖 ≥ 𝜏𝑘𝑖 (A)

2
. Thus, for sufficiently

large 𝑐1, with probability ≥ 1− 𝛿/15, AS1 is an (𝜖, 𝑘)-PCP of A.

Conclusion 2. Letting 𝑘′ = 𝑐′𝑘1, we have by (2.53), for all 𝑖, ℓ(1)𝑖 ≥ 𝜖2 ·
√︁

𝑛
𝑘1
𝜏 𝑘

′
𝑖 (A1/2).

If we define ℓ̄(1)𝑖 = 1
𝜖2
· ℓ(1)𝑖 we have ℓ̄(1)𝑖 = Ω

(︀√︀
𝑛
𝑘′
𝜏 𝑘

′
𝑖 (A1/2)

)︀
and 𝑡1 = 𝑐1 log𝑛

𝛿

∑︀
𝑖 ℓ̄

(1)
𝑖 .

Similarly,

ℓ
(2)
𝑖

√︂
𝑛

𝑘1
𝜏 𝑐

′𝑘1
𝑖 (A1/2) = Ω

(︂√︂
𝑛

𝑘′
𝜏 𝑘

′

𝑖 (A1/2)

)︂
(2.54)

and 𝑡2 = 𝑐2 log𝑛
𝛿

∑︀
𝑖 ℓ

(2)
𝑖 . In combination, by Lemma 2.4.1, if 𝑐, 𝑐1, 𝑐2 are set large

enough, with probability ≥ 1− 𝛿/15, Ã = S𝑇2AS1 is a (1/2, 𝑐6/𝛿, 𝑘1)-PCP of AS1 for
some constant 𝑐6.

Conclusion 3. Again letting 𝑘′ = 𝑐′𝑘1 and ℓ̄
(1)
𝑖 = 1

𝜖2
· ℓ(1)𝑖 , ℓ̄(1)𝑖 = Ω

(︁√︁
𝑛
𝑘1
𝜏 𝑘

′
𝑖 (A1/2)

)︁
and ℓ(2)𝑖 = Ω

(︁√︁
𝑛
𝑘1
𝜏 𝑘

′
𝑖 (A1/2)

)︁
. We also have 𝑡1 = 𝑐1 log𝑛

𝛿

∑︀
𝑖 ℓ̄

(1)
𝑖 and 𝑡2 = 𝑐2 log𝑛

𝛿

∑︀
𝑖 ℓ

(2)
𝑖 ,

so if 𝑐′, 𝑐1, 𝑐2 are set large enough, by Lemma 2.4.3, with probability ≥ 1 − 𝛿/15, Ã
is a (1/2, 𝛼, 𝑘1)-spectral PCP of AS1 with 𝛼 = 1

2𝑘1
‖A−A𝑘‖2𝐹 .

We can use the PCP properties shown in Lemma 2.5.2 to show:

74



Lemma 2.5.3. For sufficiently large constants 𝑐, 𝑐′, 𝑐1, 𝑐2, with probability ≥ 1 −
2𝛿/5, all bounds of Lemma 2.5.2 hold and further, Steps 1-4 of Algorithm 1 produce
orthonormal Z ∈ R𝑡1×𝑘1 satisfying:

‖AS1 −AS1ZZ
𝑇‖22 ≤

𝜖

𝑘
‖A−A𝑘‖2𝐹 .

Proof. With probability ≥ 1 − 𝛿/5, all three conclusions of Lemma 2.5.2 hold. Let
V𝑘1 contain the top 𝑘1 row singular vectors of AS1 so (AS1)𝑘1 = AS1V𝑘1V

𝑇
𝑘1

. By
conclusion (2), for some constant 𝑐6:

‖Ã− Ã𝑘1‖2𝐹 ≤ ‖Ã− ÃV𝑘1V
𝑇
𝑘1
‖2𝐹

≤ 3

2
‖AS1 − (AS1)𝑘1‖2𝐹 − 𝐸

≤ (3/2 + 𝑐6/𝛿)‖AS1 − (AS1)𝑘1‖2𝐹 . (2.55)

By conclusion (1), AS1 is an (𝜖, 𝑘)-PCP of A, which gives:

Claim 2.5.4. If AS1 is an (𝜖, 𝑘)-PCP of A then:

‖AS1 − (AS1)𝑘‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

Proof. Letting Z contain as its columns A’s top 𝑘 left singular vectors,

‖AS1 − (AS1)𝑘‖2𝐹 ≤ ‖AS1 − ZZ𝑇AS1‖2𝐹
≤ (1 + 𝜖)‖A− ZZ𝑇A‖2𝐹
= (1 + 𝜖)‖A−A𝑘‖2𝐹 ,

which gives the claim.

Combining Claim 2.5.4 with (2.55) we have:

‖Ã− Ã𝑘1‖2𝐹 ≤ (3/2 + 𝑐6/𝛿)‖AS1 − (AS1)𝑘1‖2𝐹
≤ (3/2 + 𝑐6/𝛿)‖AS1 − (AS1)𝑘‖2𝐹
≤ (3/2 + 𝑐6/𝛿)(1 + 𝜖)‖A−A𝑘‖2𝐹 . (2.56)

Further, via conclusion (3) of Lemma 2.5.2, for any rank-𝑘1 orthogonal projection

75



matrix P ∈ R𝑛×𝑛:

1

2
‖AS1(I−P)‖22 −

1

2𝑘1
‖A−A𝑘1‖2𝐹 ≤ ‖Ã(I−P)‖22 ≤

3

2
‖AS1(I−P)‖22 +

1

2𝑘1
‖A−A𝑘1‖2𝐹 .

(2.57)

By (2.57), letting V𝑘1 contain the top 𝑘1 row singular vectors of AS1:

‖Ã− Ã𝑘1‖22 ≤ ‖Ã− ÃV𝑘1V
𝑇
𝑘1
‖22

≤ 3

2
‖AS1 − (AS1)𝑘1‖22 +

1

2𝑘1
‖A−A𝑘1‖2𝐹

≤ 3𝜖

𝑘
‖A−A𝑘‖2𝐹 , (2.58)

where the final bound follows because if we set 𝑐 ≥ 2, 𝑘1 ≥ ⌈2𝑘/𝜖⌉ so

‖AS1 − (AS1)𝑘1‖22 ≤
𝜖

𝑘
‖AS1 − (AS1)𝑘‖2𝐹 ≤ (1 + 𝜖) · 𝜖

𝑘
‖A−A𝑘‖2𝐹

by Claim 2.5.4. For 𝜖 ∈ (0, 1/2] this gives:

3

2
‖AS1−(AS1)𝑘1‖22+

1

2𝑘1
‖A−A𝑘1‖2𝐹 ≤

(︂
3(1 + 𝜖)

2
+

1

2

)︂
· 𝜖
𝑘
‖A−A𝑘‖2𝐹 ≤ 3𝜖

𝑘
‖A−A𝑘‖2𝐹 .

With (2.56) and (2.58) in place, applying (2.57) again, if we compute Z ∈ R𝑡1×𝑘1

satisfying the guarantee of Step 4 with probability ≥ 1 − 𝛿/5, then via a union
bound, with probability ≥ 1− 2𝛿/5:

‖AS1 −AS1ZZ
𝑇‖22 ≤ 2‖Ã− ÃZZ

𝑇‖22 +
1

𝑘1
‖A−A𝑘1‖2𝐹

≤ 4‖Ã− Ã𝑘1‖22 +
2

𝛿 · 𝑘1
‖Ã− Ã𝑘1‖2𝐹 +

1

𝑘1
‖A−A𝑘1‖2𝐹

(By the guarantee on Z in Step 4)

≤ (3 + 𝛿 · (3/2 + 𝑐6/𝛿)(1 + 𝜖) + 1) · 𝜖
𝑘
· ‖A−A𝑘‖2𝐹

≤ (2𝑐6 + 7) · 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

The lemma follows after adjusting constants on 𝜖 by making 𝑐, 𝑐′, 𝑐1 and 𝑐2 sufficiently
large.

Lemma 2.5.3 ensures that the rank-𝑘 matrix W computed in Step 6 gives a near-
optimal low-rank approximation of AS1. Specifically:

76



Lemma 2.5.5. With probability ≥ 1−4𝛿/5, all bounds of Lemma 2.5.2 and 2.5.3 hold
and further, for sufficiently large 𝑐, 𝑐′, 𝑐1, 𝑐2, 𝑐3, 𝑐4, Step 5 of Algorithm 1 produces W

such that, letting M ∈ R𝑛×𝑘 be an orthonormal basis for the column span of AS1S3W:

‖AS1 −MM𝑇AS1‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

Proof. We first consider the optimization problem:

T* = argmin
T| rank(T)=𝑘

‖TZ𝑇 −AS1‖2𝐹 .

We have, by Lemma 2.5.3, with probability ≥ 1− 2𝛿/5:

‖T*Z𝑇 −AS1‖2𝐹 ≤ ‖(AS1)𝑘ZZ
𝑇 −AS1‖2𝐹

= ‖[AS1 − (AS1)𝑘] + (AS1)𝑘(I− ZZ𝑇 )‖2𝐹
= ‖AS1 − (AS1)𝑘‖2𝐹 + ‖(AS1)𝑘(I− ZZ𝑇 )‖2𝐹
≤ ‖AS1 − (AS1)𝑘‖2𝐹 + 𝑘 · ‖AS1(I− ZZ𝑇 )‖22
≤ ‖AS1 − (AS1)𝑘‖2𝐹 + 𝜖‖A−A𝑘‖2𝐹
≤ (1 + 2𝜖)‖A−A𝑘‖2𝐹 , (2.59)

where the second to last step uses that ‖AS1(I−ZZ𝑇 )‖22 ≤ 𝜖
𝑘
‖A−A𝑘‖2𝐹 by Lemma

2.5.3 and the last step uses that ‖AS1− (AS1)𝑘‖2𝐹 ≤ (1+ 𝜖)‖A−A𝑘‖2𝐹 , which follows
from conclusion (1) of Lemma 2.5.2 (AS1 is an (𝜖, 𝑘)-PCP of A) and Claim 2.5.4.

Note that since it is rank-𝑘 we can write T* = Y*N* where Y* ∈ R𝑛×𝑘 and
N* ∈ R𝑘×𝑘1 has orthonormal rows (spanning the rows of T*). Y* is the solution to
the unconstrained low-rank approximation problem:

Y* = argmin
Y∈R𝑛×𝑘

‖YN*Z𝑇 −AS1‖2𝐹 .

Since both N* and Z𝑇 (for Z computed in Step 4) have orthonormal rows, so does
N*Z𝑇 . so its column norms are its leverage scores. S3 is sampled using the column
norms of Z𝑇 , which upper bound those of N*Z𝑇 . Since ‖Z‖2𝐹 = 𝑘1 = ⌈𝑐𝑘/𝜖⌉ and
since rank(N*Z𝑇 ) ≤ rank(Z) = 𝑘1 = ⌈𝑐𝑘/𝜖⌉, we have

𝑡3 = Ω

(︂
‖Z‖2𝐹 · log(rank(N*Z𝑇 )) +

‖Z‖2𝐹
𝛿 · 𝜖

)︂
.

77



Thus, by the approximate regression result of Lemma 2.2.14 if we set:

Ỹ = argmin
Y∈R𝑛×𝑘

‖YN*Z𝑇S3 −AS1S3‖2𝐹

if the constant 𝑐3 is large enough, with probability ≥ 1− 𝛿/5:

‖ỸN
*
Z𝑇 −AS1‖2𝐹 ≤ (1 + 𝜖)‖Y*N*Z𝑇 −AS1‖2𝐹 . (2.60)

Given N*, Ỹ can be computed in closed form as Ỹ = AS1S3(N
*Z𝑇S3)

+, which
is in the column span of AS1S3. Thus (2.60) demonstrates that, with probability
≥ 1− 3𝛿/5 there is some rank-𝑘 T in this span satisfying

‖TZ𝑇 −AS1‖2𝐹 ≤ (1 + 𝜖)‖T*Z𝑇 −AS1‖2𝐹 ≤ (1 + 4𝜖)‖A−A𝑘‖2𝐹

by (2.59) and a union bound over the probability that (2.59) and (2.60) hold. Thus
if we compute

W* = argmin
W| rank(W)=𝑘

‖AS1S3WZ𝑇 −AS1‖2𝐹

then we have with probability ≥ 1− 3𝛿/5:

‖AS1S3W
*Z𝑇 −AS1‖2𝐹 ≤ (1 + 4𝜖)‖A−A𝑘‖2𝐹 . (2.61)

We compute W* approximately in Step 6 by sampling the rows of AS1S3 by their
leverage scores. By Lemma 2.2.5, these are given by the row norms of the orthonormal
basis V as computed in Step 5 and sampled with to obtain S4 in Step 6. We claim:

Claim 2.5.6. For

W̃ = argmin
W| rank(W)=𝑘

‖S𝑇4AS1S3WZ𝑇 − S𝑇4AS1‖2𝐹 ,

with probability ≥ 1− 𝛿/5,

‖AS1S3WZ𝑇 −AS1‖2𝐹 ≤ (1 + 𝜖)‖AS1S3W
*Z𝑇 −AS1‖2𝐹 .

Proof. For any W, by the Pythagorean theorem, since V spans AS1S3,

‖AS1S3WZ𝑇 −AS1‖2𝐹 = ‖AS1S3WZ𝑇 −VV𝑇AS1‖2𝐹 + ‖(I−VV𝑇 )AS1‖2𝐹 . (2.62)

78



Similarly

‖S𝑇4 AS1S3WZ𝑇 − S𝑇4 AS1‖2𝐹 = ‖S𝑇4 AS1S3WZ𝑇 − S𝑇4 VV𝑇AS1‖2𝐹 + ‖S𝑇4 (I−VV𝑇 )AS1‖2𝐹
+ 2 tr

(︀
(ZW𝑇S𝑇3 S

𝑇
1 A

𝑇 − S𝑇1 A
𝑇VV𝑇 )S4S

𝑇
4 (I−VV𝑇 )AS1

)︀
.

(2.63)

For the first term, since S4 is sampled via the leverage scores of AS1S3 and
𝑡4 = 𝑐4

(︀
𝑡3 log 𝑡3
𝜖2

+ 𝑡3
𝛿·𝜖2
)︀
, by Lemma 2.2.6, if 𝑐4 is sufficiently large, S4 gives a subspace

embedding for the column span of AS1S3 with probability ≥ 1− 𝛿/10. That is,

‖S𝑇4AS1S3WZ𝑇 − S𝑇4VV𝑇AS1‖2𝐹 ∈ (1± 𝜖)‖AS1S3WZ𝑇 −VV𝑇AS1‖2𝐹 . (2.64)

For the cross term, again since V spans the columns of AS1S3 we have:

tr
(︀
(ZW𝑇S𝑇3 S

𝑇
1A

𝑇 − S𝑇1A
𝑇VV𝑇 )S4S

𝑇
4 (I−VV𝑇 )AS1

)︀
= tr

(︀
(ZW𝑇S𝑇3 S

𝑇
1A

𝑇 − S𝑇1A
𝑇 )VV𝑇S4S

𝑇
4 (I−VV𝑇 )AS1

)︀
≤ ‖AS1S3WZ𝑇 −AS1‖𝐹 · ‖VV𝑇S4S

𝑇
4 (I−VV𝑇 )AS1‖𝐹

≤ ‖AS1S3WZ𝑇 −AS1‖𝐹 · 𝜖‖(I−VV𝑇 )AS1‖𝐹 ,

where the last bound holds with probability ≥ 1 − 𝛿/10 if 𝑐4 is set large enough by
the approximate matrix multiplcaiton result of Lemma 2.2.16. We can bound

‖(I−VV𝑇 )AS1‖𝐹 ≤ ‖AS1S3W
*Z𝑇 −AS1‖𝐹 ≤ ‖AS1S3WZ𝑇 −AS1‖𝐹

and so overall, with probability ≥ 1− 𝛿/10:

tr
(︀
(ZW𝑇S𝑇3 S

𝑇
1 A

𝑇 − S𝑇1 A
𝑇VV𝑇 )S4S

𝑇
4 (I−VV𝑇 )AS1

)︀
≤ 𝜖‖AS1S3WZ𝑇 −AS1‖2𝐹 .

(2.65)

Combining (2.62), (2.63), (2.64), and (2.65), with probability ≥ 1− 𝛿/5 for all W,

‖S𝑇4AS1S3WZ𝑇 − S𝑇4AS1‖2𝐹 ∈ (1± 3𝜖)‖AS1S3WZ𝑇 −AS1‖2𝐹 +Δ,

where Δ = ‖S𝑇4 (I−VV𝑇 )AS1‖2𝐹 − ‖(I−VV𝑇 )AS1‖2𝐹 is fixed independent of W.

Thus, since W̃ = ‖S𝑇4AS1S3WZ𝑇 − S𝑇4AS1‖2𝐹 , with probability ≥ 1− 𝛿/5,

‖AS1S3W̃Z𝑇 −AS1‖2𝐹 ≤ (1 + 3𝜖)

(1− 3𝜖)
‖AS1S3W

*Z𝑇 −AS1‖2𝐹 ,

79



which gives the claim after adjusting constants on 𝜖 by making 𝑐4 sufficiently large.

Combining Claim 2.5.6 with (2.61) gives that, with probability ≥ 1− 4𝛿/5:

‖AS1S3W̃Z𝑇 −AS1‖2𝐹 ≤ (1 + 𝜖)(1 + 4𝜖)‖A−A𝑘‖2𝐹 .

Further, since M ∈ R𝑛×𝑘 is an orthonormal span of AS1S3W,

‖AS1 −MM𝑇AS1‖2𝐹 ≤ ‖AS1 −AS1S3W̃Z𝑇‖2𝐹 ≤ (1 + 𝜖)(1 + 4𝜖)‖A−A𝑘‖2𝐹 .

This gives the lemma after adjusting constants on 𝜖 by making 𝑐, 𝑐′, 𝑐1, 𝑐2, 𝑐3, 𝑐4 large
enough.

We finally can prove our main theorem, showing the correctness and runtime of
Algorithm 1.

Proof of Theorem 2.5.1. We first show the correctness of the algorithm with high
probability. We then discuss its runtime.

Correctness

With probability ≥ 1−4𝛿/5 all bounds of Lemmas 2.5.2, 2.5.3 and 2.5.5 hold. By the
bound of Lemma 2.5.5, and conclusion (1) of Lemma 2.5.2 (that AS1 is an (𝜖, 𝑘)-PCP
of A),

‖A−MM𝑇A‖2𝐹 ≤ 1 + 𝜖

1− 𝜖
‖A−A𝑘‖2𝐹 .

In Step 7 we sample 𝑐5
(︀
𝑘 log 𝑘 + 𝑘

𝛿·𝜖

)︀
rows of M by their standard leverage scores

(their row norms) and so by the approximate regression result of Lemma 2.2.14, if 𝑐5
is set large enough, have with probability ≥ 1− 𝛿/5:

‖MN𝑇 −A‖2𝐹 ≤ (1 + 𝜖) min
Y∈R𝑛×𝑘

‖MY𝑇 −A‖2𝐹

= (1 + 𝜖)‖A−MM𝑇A‖2𝐹

≤ (1 + 𝜖)2

1− 𝜖
‖A−A𝑘‖2𝐹 .

After adjusting constants on 𝜖 by setting 𝑐, 𝑐′, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 large enough, and union
bounding, with probability ≥ 1− 𝛿, ‖MN𝑇 −A‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 , which gives
the correctness of the algorithm.

80



Runtime and Query Complexity

It just remains to discuss Algorithm 1’s runtime and query complexity. We begin
with the query complexity:

∙ In Step 1 computing the leverage score approximations requires𝑂(𝑛𝑘1 log(𝑘1/𝛿)) =
𝑂
(︁
𝑛𝑘 log(𝑘/(𝛿𝜖))

𝜖

)︁
accesses to A by Lemma 2.2.17.

∙ In Step 4 forming Ã = S𝑇2AS1 requires accessing 𝑡1 · 𝑡2 = 𝑂
(︁
𝑛𝑘 log2 𝑛
𝛿2·𝜖2.5

)︁
entries

of A.

∙ In Step 5, forming AS1S3 requires accessing 𝑛 · 𝑡3 = 𝑂
(︁
𝑛𝑘 log(𝑘/𝜖)

𝜖
+ 𝑛𝑘

𝛿·𝜖2

)︁
entries

of A.

∙ In Step 6, forming S𝑇4AS1 requires 𝑡1 · 𝑡4 accesses to A. We have

𝑡4 = 𝑂

(︂
𝑡3 log 𝑡3
𝜖2

+
𝑡3
𝛿 · 𝜖2

)︂
= 𝑂

(︂
𝑘 log(𝑘/𝜖)

𝛿2𝜖2

)︂

and so 𝑡1 · 𝑡4 = 𝑂
(︁√

𝑛𝑘1.5 log(𝑘/𝜖) log𝑛
𝛿3·𝜖6

)︁
. When 𝑛 is large compared to 𝑘, 1/𝜖, and

1/𝛿 this term will be dominated by our linear in 𝑛 terms.

∙ In Step 7, forming S𝑇5A requires 𝑛 · 𝑡5 = 𝑂
(︀
𝑛𝑘 log 𝑘 + 𝑛𝑘

𝛿·𝜖

)︀
accesses to A.

Overall the access complexity is dominated by the accesses in Step 4 and potentially
Step 6, giving us total access complexity

𝑂

(︂
𝑛 · 𝑘 log2(𝑛)
𝛿2 · 𝜖2.5

+
√
𝑛𝑘1.5 · log 𝑛 · log 𝑘 · poly(1/𝜖, 1/𝛿)

)︂
.

We next consider time complexity:

∙ In Step 1, computing the leverage score approximations requires

𝑂(𝑛(𝑘1 log(𝑘1/𝛿))
�̄�−1) = �̃�

(︂
𝑛𝑘�̄�−1

𝜖�̄�−1

)︂
time by Lemma 2.2.17.

∙ In Step 4, computing Z can be done using an input sparsity time algorithm
for spectral norm error with rank 𝑘1 and error parameter 𝜖′ = Θ(𝛿). By Theo-
rem 27 of [CEM+15] or using input sparsity time ridge leverage score sampling

81



[CMM17] in conjunction with the spectral norm PCP result of Lemma 2.6.2,
the total runtime required is:

𝑂(nnz(Ã))+�̃�
(︀√

𝑛𝑘�̄�−1 · poly(1/𝜖, 1/𝛿)
)︀
= 𝑂

(︂
𝑛𝑘 log2(𝑛)

𝛿2 · 𝜖2.5
+
√
𝑛𝑘�̄�−1 · poly(1/𝜖, 1/𝛿)

)︂
.

∙ In Step 5, V can be computed in 𝑂(𝑛𝑡�̄�−1
3 ) = �̃�

(︁
𝑛𝑘�̄�−1

𝛿�̄�−1·𝜖2(�̄�−1)

)︁
time.

∙ In Step 6, we can compute W by first multiplying S𝑇4AS1 by Z and then
multiplying by (S𝑇4AS1S3)

+ and taking the best rank-𝑘 approximation of the
result. The total runtime is

�̃�
(︀
𝑡1 · 𝑘�̄�−1 + 𝑘�̄�

)︀
· poly(1/𝜖, 1/𝛿) = �̃�(

√
𝑛𝑘�̄�−.5) · poly(1/𝜖, 1/𝛿).

∙ In Step 7 we can compute M by first computing a 𝑡3 × 𝑘 span of the column
space of W, multiplying this by AS1S3, and then taking an orthonormal basis
for the result. This requires total time

�̃�(𝑘�̄� · poly(1/𝜖, 1/𝛿)) +𝑂

(︂
𝑛𝑘�̄�−1

(︂
log(𝑘/𝜖)

𝜖
+

1

𝛿 · 𝜖2

)︂
+ 𝑛𝑘�̄�−1

)︂
.

The final regression problem can be solved by forming the pseudoinverse of S𝑇5M
in 𝑂

(︀
𝑘�̄�
(︀
log 𝑘 + 1

𝛿·𝜖

)︀)︀
time and applying it to S𝑇5A in 𝑂

(︀
𝑛𝑘�̄�−1

(︀
log 𝑘 + 1

𝛿·𝜖

)︀)︀
time.

Overall our runtime cost with linear dependence on 𝑛 is dominated by the costs of
Steps 4 and 5, which we can upper bound by

�̃�

(︂
𝑛𝑘�̄�−1

𝛿2𝜖2(�̄�−1)

)︂
.

We additionally must add the �̃�(
√
𝑛𝑘�̄�−.5) · poly(1/𝜖, 1/𝛿) term from Step 6, which

only dominates if 𝑛 is relatively small. This completes the proof of the theorem.

2.5.2 Outputting a PSD Matrix

In many applications it is desirable that the low-rank approximation to A is also
symmetric and positive semidefinite. This is equivalent to restricting M = N in
Problem 2.1.1.

82



It is not hard to see that a modification to Algorithm 1 can satisfy this constraint
also in �̃�(𝑛 poly(𝑘/𝜖)) time. The upshot is:

Theorem 2.5.7 (Sublinear Time Low-Rank Approximation – PSD Output). There
is an algorithm that given any PSD A ∈ R𝑛×𝑛, 𝑘 ∈ Z≥1, and 𝜖, 𝛿 ∈ (0, 1/2] accesses
�̃�
(︁
𝑛𝑘2

𝛿·𝜖2 +
𝑛𝑘
𝛿2𝜖3

)︁
entries of A, runs in

�̃�

(︂
𝑛𝑘�̄�

𝛿𝜖�̄�
+

𝑛𝑘�̄�−1

(𝛿2 · 𝜖3)(�̄�−1)
+ (

√
𝑛𝑘�̄�−1 + 𝑘�̄�+1) · poly(1/𝜖, 1/𝛿)

)︂
time, and with probability ≥ 1− 𝛿 outputs M ∈ R𝑛×𝑘 with:

‖A−MM𝑇‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

We start with the following lemma, which shows that, if we have a good low-
rank subspace for approximating A in the spectral norm (computable using Theorem
2.6.3), then we can quickly find a near-optimal PSD low-rank approximation:

Lemma 2.5.8. Given PSD A ∈ R𝑛×𝑛, 𝑘 ∈ Z≥1, 𝜖, 𝛿 ∈ (0, 1/2], and orthonormal
Z ∈ R𝑛×𝑚 with ‖A − AZZ𝑇‖22 ≤ 𝜖

𝑘
‖A − A𝑘‖2𝐹 , there is an algorithm that accesses

𝑂
(︁
𝑛𝑚 log𝑚/𝛿

𝛿2𝜖2

)︁
entries of A, runs in �̃�

(︁
𝑛𝑚�̄�−1

(𝛿𝜖)2(�̄�−1)

)︁
time, and outputs M ∈ R𝑛×𝑘 that

with probability ≥ 1− 𝛿 satisfies, for some fixed constant 𝑐:

‖A−MM𝑇‖2𝐹 ≤ (1 + 𝑐𝜖)‖A−A𝑘‖2𝐹 .

Proof. By Lemma 10 of [CW17a], there exists some fixed constant 𝑐 such that, for
any orthonormal Z ∈ R𝑛×𝑚 with ‖A−AZZ𝑇‖22 ≤ 𝜖

𝑘
‖A−A𝑘‖2𝐹 ,

min
X:𝑟𝑎𝑛𝑘(X)=𝑘,X⪰0

‖A− ZXZ𝑇‖2𝐹 ≤ (1 + 𝑐𝜖)‖A−A𝑘‖2𝐹 . (2.66)

As in Algorithm 1 we can find a near-optimal X with good probability by further
sampling Z using its leverage scores. W will sample 𝑡1 = 𝑐1

(︁
𝑚 log𝑚/𝛿
𝛿2𝜖2

)︁
rows of Z by

their leverage scores (their norms since Z is orthonormal) to form S1 ∈ R𝑛×𝑡1 . By
Theorem 39 of [CW13], since 𝑡1 = Ω

(︁
𝑚 log𝑚/𝛿

𝜖2
+ 1

𝛿·𝜖2

)︁
if 𝑐1 is set large enough, with

probability ≥ 1 − 𝛿/4 we will have an affine embedding of Z. Specifically, letting
B* = argminB ‖A− ZB‖2𝐹 and E* = A− ZB*, for any B we have with probability

83



≥ 1− 𝛿/4:

‖S𝑇1 A− S1ZB‖2𝐹 +
(︀
‖E*‖2𝐹 − ‖S𝑇1 E*‖2𝐹

)︀
∈
[︀
(1− 𝜖)‖A− ZB‖2𝐹 , (1 + 𝜖)‖A− ZB‖2𝐹

]︀
.

(2.67)

Note that this is similar to the embedding property used in the proof of Theorem 2.5.1
to show that W computed in Step 6 of Algorithm 1 gave a near-optimal low-rank
approximation to AS1.

By a Markov bound, since E ‖S𝑇1E*‖2𝐹 = ‖E*‖2𝐹 , with probability ≥ 1− 𝛿/4,

⃒⃒
‖E*‖2𝐹 − ‖S𝑇1E*‖2𝐹

⃒⃒
≤ 4

𝛿
‖E*‖2𝐹 = 𝑂(1/𝛿) · ‖A−A𝑘‖2𝐹 , (2.68)

where the last bound follows from (2.66). Together, (2.67) and (2.68) guarantee that a
(1+𝜖𝛿) approximation to the sketched problem gives a (1+𝑂(𝜖)) approximation to the
original. That is, with probability ≥ 1 − 𝛿/2 (union bounding over the probabilities
of (2.67) and (2.68) holding) for any PSD X̃ with rank(X̃) = 𝑘, and

‖S𝑇1A− S1ZX̃Z
𝑇‖2𝐹 ≤ (1 + 𝜖𝛿) min

X:rank(X)=𝑘,X⪰0
‖S𝑇1A− S1ZXZ𝑇‖2𝐹 (2.69)

we have

‖A− ZX̃Z
𝑇‖2𝐹 ≤ (1 +𝑂(𝜖))‖A−A𝑘‖2𝐹 . (2.70)

Thus we must show how to efficiently compute X̃ satisfying 2.69. Following [CW17a],
we write S𝑇1Z in its SVD S𝑇1Z = U𝑧Σ𝑧V

𝑇
𝑧 . Since S1ZXZ𝑇 falls in the column span

of S𝑇1Z and the row span of Z𝑇 , we write Δ
def
= ‖(I−U𝑧U

𝑇
𝑧 )S

𝑇
1A‖2𝐹 +‖U𝑧U

𝑇
𝑧 S

𝑇
1A(I−

ZZ𝑇 )‖2𝐹 and by Pythagorean theorem have for any X:

‖S𝑇1A− S1ZXZ𝑇‖2𝐹 = ‖U𝑧U
𝑇
𝑧 S1AZZ𝑇 −U𝑧Σ𝑧V

𝑇
𝑧XZ𝑇‖2𝐹 +Δ

= ‖U𝑇
𝑧 S

𝑇
1AZ−Σ𝑧V

𝑇
𝑧X‖2𝐹 +Δ

= ‖Σ𝑧V
𝑇
𝑧

(︀
V𝑧Σ

−1
𝑧 U𝑇

𝑧 S
𝑇
1AZ−X

)︀
‖2𝐹 +Δ. (2.71)

Since S1 is sampled via Z’s leverage scores, and since 𝑡1 = 𝑐1

(︁
𝑚 log𝑚/𝛿
𝛿2𝜖2

)︁
, if 𝑐1 is set

large enough, then with probability ≥ 1− 𝛿/4:

(1− 𝛿𝜖)I ⪯ S𝑇1Z ⪯ (1 + 𝛿𝜖)I

and so with probability ≥ 1−3𝛿/4, union bounding with the probability (2.71) holds,

84



we have for any X:

‖S𝑇1A− S1ZXZ𝑇‖2𝐹 ∈ (1± 𝜖)‖V𝑇
𝑧Σ

−1
𝑧 U𝑇

𝑧 S
𝑇
1AZ−X‖2𝐹 +Δ. (2.72)

Finally, following [CW17a], letting B = V𝑇
𝑧Σ

−1
𝑧 U𝑇

𝑧 S
𝑇
1AZ, we can compute

X̃ = argmin
X|X⪰0,rank(X)=𝑘

‖B−X‖2𝐹 =
(︀
B/2 +B𝑇/2

)︀
𝑘,+

where N𝑘,+ has all but the top 𝑘 positive eigenvalues of N set to 0. By (2.72) and
(2.70):

‖A− ZX̃Z
𝑇‖2𝐹 ≤ (1 +𝑂(𝜖))‖A−A𝑘‖2𝐹 .

Thus, if we output M = ZX̃1/2, we have ‖A−MM𝑇‖2𝐹 ≤ (1 +𝑂(𝜖))‖A−A𝑘‖2𝐹 ,
which gives the requires bound.

Overall, the above algorithm requires accessing 𝑂
(︁
𝑛𝑚 log𝑚/𝛿

𝛿𝜖2

)︁
entries of A (the

entries of AS1) and has runtime �̃�
(︁

𝑛𝑚�̄�−1

(𝛿𝜖)2(�̄�−1)

)︁
giving the lemma.

Theorem 2.5.7 follows directly from Lemma 2.5.8:

Proof of Theorem 2.5.7. We can obtain Z with rank 𝑚 = Θ(𝑘/𝜖) that, with proba-
bility ≥ 1− 𝛿/2, satisfies:

‖A−AZZ𝑇‖2𝐹 = 𝑂
(︁ 𝜖
𝑘

)︁
‖A−A𝑘‖2𝐹 .

by applying Theorem 2.6.3 (proven in Section 2.6) with rank 𝑘′ = Θ(𝑘/𝜖) and error
parameter 𝜖′ = Θ(1). This requires accessing 𝑂(𝑛·𝑘 log

2 𝑛
𝛿2·𝜖 + 𝑛𝑘2

𝛿·𝜖2 ) entries of A, along
with �̃�

(︁
𝑛𝑘�̄�

𝛿𝜖�̄�
+ 𝑛𝑘

𝛿2·𝜖 + (
√
𝑛𝑘�̄�−1 + 𝑘�̄�+1) · poly(1/𝜖, 1/𝛿)

)︁
runtime.

Applying Lemma 2.5.8 with error Θ(𝜖) and failure probability 𝛿/2 then gives the
theorem via a union bound. This requires 𝑂

(︁
𝑛𝑘 log 𝑘/(𝛿𝜖)

𝛿2𝜖3

)︁
accesses to A, along with

�̃�
(︁

𝑛𝑘�̄�−1

(𝛿2·𝜖3)(�̄�−1)

)︁
runtime. Overall, the algorithm requires �̃�

(︁
𝑛𝑘
𝛿2·𝜖3 +

𝑛𝑘2

𝛿·𝜖2

)︁
accesses to A

and �̃�
(︁
𝑛𝑘�̄�

𝛿𝜖�̄�
+ 𝑛𝑘�̄�−1

(𝛿2·𝜖3)(�̄�−1) + (
√
𝑛𝑘�̄�−1 + 𝑘�̄�+1) · poly(1/𝜖, 1/𝛿)

)︁
runtime.

2.6 Spectral Norm Error Bounds

In this section we show how to modify Algorithm 1 to solve the following spectral
norm low-rank approximation problem for PSD A:

85



Problem 2.6.1 (Near-Optimal Low-Rank Approximation – Spectral Norm). Given
any A ∈ R𝑛×𝑑, rank parameter 𝑘 ∈ Z≥1, and accuracy parameter 𝜖 ≥ 0, output
M ∈ R𝑛×𝑘, N ∈ R𝑑×𝑘 such that, letting B = MN𝑇 ,

‖A−B‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 , (2.73)

where A𝑘 = argminrank-𝑘 B ‖A−B‖2 = argminrank-𝑘 B ‖A−B‖𝐹 .

This can be significantly stronger than the Frobenius guarantee of Problem 2.1.1
when ‖A − A𝑘‖2𝐹 is large, and, for example is critical in our application to ridge
regression, discussed in Section 2.6.3.

2.6.1 Algorithmic Approach

It is not hard to see that since additive error in the Frobenius norm upper bounds
additive error in the spectral norm (see e.g. Theorem 3.4 of [Gu14]) that for B

satisfying the Frobenius norm guarantee of Problem 2.1.1, ‖A−B‖2𝐹 ≤ (1 + 𝜖)‖A−
A𝑘‖2𝐹 , we immediately have the spectral bound ‖A−B‖22 ≤ ‖A−A𝑘‖22+𝜖‖A−A𝑘‖2𝐹 .
Thus, we can solve Problem 2.6.1 simply by running Algorithm 1 with error parameter
𝜖/𝑘. However, this approach is suboptimal. Applying Theorem 2.5.1, our query
complexity would be Ω

(︁
𝑛𝑘3.5 log2 𝑛
𝛿2·𝜖2.5

)︁
. We improve this 𝑘 dependence significantly in

Algorithm 2. Since Problem 2.6.1 is often applied (see for example Section 2.6.3)
with 𝑘′ = 𝑘/𝜖 and 𝜖 = Θ(1) to give ‖A − B‖22 ≤ 𝑂

(︀
𝜖
𝑘
‖A−A𝑘‖2𝐹

)︀
, optimizing the

dependence on 𝑘 is especially important.
We first give an extension of the projection-cost-preserving sketch result of Lemma

2.2.12 to the spectral norm case. This lemma provides the column sampling analog
to Lemma 2.4.3.

Lemma 2.6.2 (Spectral Norm PCP). For any A ∈ R𝑛×𝑑, for all 𝑖 ∈ [𝑑], let 𝜏 𝑘𝑖 ≥
𝜏 𝑘𝑖 (A) be an overestimate for the 𝑖𝑡ℎ rank-𝑘 ridge leverage score. Let 𝑝𝑖 =

𝜏𝑘𝑖∑︀
𝑖 𝜏

𝑘
𝑖

and

𝑡 = 𝑐 log(𝑘/𝛿)
𝜖2

∑︀
𝑖 𝜏

𝑘
𝑖 for any 𝜖, 𝛿 ∈ (0, 1/2] and sufficiently large constant 𝑐. Construct

C by sampling 𝑡 columns of A, each set to 1√
𝑡𝑝𝑖
a𝑖 with probability 𝑝𝑖. With probability

≥ 1− 𝛿, C is an (𝜖, 𝛼, 𝑘)-spectral PCP of A for 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹 (Definition 2.4.2).

That is, for any orthogonal projection P ∈ R𝑛×𝑛,

(1− 𝜖)‖A−PA‖22 −
𝜖

𝑘
‖A−A𝑘‖2𝐹 ≤ ‖C−PC‖22 ≤ (1 + 𝜖)‖A−PA‖22 +

𝜖

𝑘
‖A−A𝑘‖2𝐹 .

Proof. The lemma follows rather directly from Corollary 2.2.11. If 𝑐 is set large
enough, with probability ≥ 1− 𝛿, sampling by the rank-𝑘 ridge leverage scores gives

86



C satisfying:

(1− 𝜖)CC𝑇 − 𝜖

𝑘
‖A−A𝑘‖2𝐹 I ⪯ AA𝑇 ⪯ (1 + 𝜖)CC𝑇 +

𝜖

𝑘
‖A−A𝑘‖2𝐹 I. (2.74)

We can write for any M, ‖M‖22 = maxx:‖x‖22=1 x
𝑇Mx. When ‖x‖22 = 1, ‖(I −

P)x‖22 ≤ 1 so by (2.74) we have for any unit norm x:

x𝑇 (I−P)CC𝑇 (I−P)x ≤ x𝑇 (I−P)AA𝑇 (I−P)x+
𝜖

𝑘
‖A−A𝑘‖2𝐹

≤ ‖A−PA‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 ,

which gives ‖C−PC‖22 ≤ 1
1−𝜖‖A−PA‖22 + 𝜖

(1−𝜖)𝑘‖A−A𝑘‖2𝐹 . Similarly we have:

x𝑇 (I−P)AA𝑇 (I−P)𝑥 ≤ (1 + 𝜖)x𝑇 (I−P)CC𝑇 (I−P)x+
𝜖

𝑘
‖A−A𝑘‖2𝐹

≤ (1 + 𝜖)‖C−PC‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 ,

which gives 1
1+𝜖

‖A − PA‖22 − 𝜖
(1+𝜖)𝑘

‖A − A𝑘‖2𝐹 ≤ ‖C − PC‖22. The lemma follows
from combining these upper and lower bounds after adjusting constant factors on 𝜖

(by making 𝑐 large enough).

2.6.2 Basic Algorithm

We now use Lemma 2.6.2, along with its row sampling counterpart, Lemma 2.4.3, to
give an algorithm (Algorithm 2) for computing a near-optimal spectral norm low-rank
approximation to A.

In Steps 1-3 we sample both rows and columns of A via the rank-Θ(𝑘/𝜖2) ridge
leverage scores of A1/2, ensuring with high probability that AS1 is an (𝜖, 𝛼, 𝑘)-spectral
PCP of A with 𝛼 = 𝜖

𝑘
‖A−A𝑘‖2𝐹 and that Ã is in turn an (𝜖, 𝛼, 𝑘)-spectral row PCP

of AS1. Thus, if we compute (using an input sparsity time algorithm) a span Z

that gives a near-optimal spectral norm low-rank approximation to Ã (Step 3), this
span will also be nearly optimal for AS1. Since we cannot afford to fully read AS1,
we approximately project it to Z by further sampling its columns using Z’s leverage
scores (Step 4). We use leverage score sampling again in Step 5 to approximately
project A to the span of the result. This yields our final approximation, using the
fact that AS1 is a spectral PCP for A.

87



Algorithm 2 PSD Low-Rank Approximation – Spectral Error

1. Let 𝑘1 = ⌈𝑐𝑘/𝜖2⌉. Compute, with probability ≥ 1− 𝛿/5 using the algorithm
of Lemma 2.2.17, 𝜏 𝑘1𝑖 (A1/2) satisfying for all 𝑖 ∈ [𝑛]:

∙ 𝜏 𝑘1𝑖 (A1/2) ≤ 𝜏 𝑘1𝑖 (A1/2) ≤ 3𝜏 𝑘1𝑖 (A1/2).

2. Set ℓ(1)𝑖 = 4𝜖
√︀

𝑛
𝑘
𝜏 𝑘1𝑖 (A1/2). Set 𝑝(1)𝑖 =

ℓ
(1)
𝑖∑︀
𝑖 ℓ

(1)
𝑖

and 𝑡1 = 𝑐1 log𝑛
𝛿·𝜖2

∑︀
𝑖 ℓ

(1)
𝑖 . Sample

S1,S2 ∈ R𝑛×𝑡1 each whose 𝑗𝑡ℎ column is set to 1√︁
𝑡𝑝

(1)
𝑖

e𝑖 with probability 𝑝(1)𝑖 .

3. Let Ã = S𝑇2AS1, and use an input sparsity time algorithm to compute
orthonormal Z ∈ R𝑡1×𝑘 satisfying with probability ≥ 1− 𝛿/5 both:

∙ ‖Ã− ÃZZ
𝑇‖2𝐹 ≤ (1 + 𝛿)‖Ã− Ã𝑘‖2𝐹 .

∙ ‖Ã− ÃZZ
𝑇‖22 ≤ (1 + 𝜖)‖Ã− Ã𝑘‖22 + 𝜖

𝑘
‖Ã− Ã𝑘‖2𝐹 .

4. Let 𝑡3 = 𝑐3

(︁
𝑘 log 𝑘 + 𝑘2

𝛿·𝜖

)︁
, set 𝑝(3)𝑖 =

‖z𝑖‖22
‖Z‖2𝐹

, and sample S3 ∈ R𝑡1×𝑡3 where the

𝑗𝑡ℎ column is set to 1√︁
𝑡3𝑝

(3)
𝑖

e𝑖 with probability 𝑝(3)𝑖 . Solve:

W = argmin
W∈R𝑛×𝑘

‖AS1S3 −WZ𝑇S3‖2𝐹 .

5. Compute an orthonormal basis M ∈ R𝑛×𝑘 for the column span of W. Let
𝑡4 = 𝑐4

(︁
𝑘 log 𝑘 + 𝑘2

𝛿·𝜖

)︁
, set 𝑝(4)𝑖 =

‖m𝑖‖22
‖M‖2𝐹

, and sample S4 ∈ R𝑛×𝑡4 where the 𝑗𝑡ℎ

column is set to 1√︁
𝑡4𝑝

(4)
𝑖

e𝑖 with probability 𝑝(4)𝑖 . Solve:

N = argmin
N∈R𝑛×𝑘

‖S𝑇4MN𝑇 − S𝑇4A‖2𝐹 .

6. Return M,N ∈ R𝑛×𝑘.

Theorem 2.6.3 (Sublinear Time Low-Rank Approximation – Spectral Norm Error).
Given any PSD A ∈ R𝑛×𝑛, for sufficiently large constants 𝑐, 𝑐1, 𝑐2, 𝑐3, 𝑐4, for any
𝑘 ∈ Z≥1 and 𝜖, 𝛿 ∈ (0, 1], Algorithm 2 accesses 𝑂(𝑛·𝑘 log

2 𝑛
𝛿2·𝜖6 + 𝑛𝑘2

𝛿·𝜖 ) entries of A, runs in

�̃�

(︂
𝑛𝑘�̄�

𝛿𝜖
+

𝑛𝑘

𝛿2 · 𝜖6
+ (

√
𝑛𝑘�̄�−1 + 𝑘�̄�+1) · poly(1/𝜖, 1/𝛿)

)︂
88



time and with probability ≥ 1− 𝛿 outputs M,N ∈ R𝑛×𝑘 with:

‖A−MN𝑇‖22 ≤ (1 + 𝜖)‖A−A𝑘‖22 +
𝜖

𝑘
‖A−A𝑘‖2𝐹 .

Proof. We begin with the following claim, which shows that AS1 and Ã satisfy both
spectral and Frobenius norm PCP bounds.

Claim 2.6.4. With probability ≥ 1− 3𝛿/5 we simultaneously have:

∙ AS1 is an (𝜖, 𝛼, 𝑘)-spectral PCP of A with 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

∙ Ã is an (𝜖, 𝛼, 𝑘)-spectral row PCP of AS1 with 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

∙ AS1 is an (𝜖, 𝑘)-PCP of A.

∙ Ã is an (𝜖, 𝑐5/𝛿, 𝑘)-PCP for AS1 for some constant 𝑐5.

Proof. ℓ(1)𝑖 = 4𝜖
√︀

𝑛
𝑘
𝜏 𝑘1𝑖 (A1/2), which by Lemma 2.3.1 is within a constant factor of

upper bounding the rank 𝑘1 = ⌈𝑐𝑘/𝜖2⌉ ridge leverage scores of A. As long as 𝑐 ≥ 1,
these scores upper bound the rank-𝑘 ridge leverage scores. So by Lemma 2.6.2, if 𝑐1
is set large enough, with probability ≥ 1 − 𝛿/5, AS1 is an (𝜖, 𝛼, 𝑘)-spectral PCP of
A with 𝛼 = 𝜖

𝑘
‖A−A𝑘‖2𝐹 . Additionally, by Lemma 2.4.3, with probability ≥ 1− 𝛿/5,

Ã is an (𝜖, 𝛼, 𝑘)-spectral row PCP of AS1 with 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹 .

By Lemma 2.4.1, since 𝑡1 = 𝑐1 log𝑛
𝛿·𝜖2

∑︀
𝑖 ℓ

(1)
𝑖 , if 𝑐1 is set large enough, with probability

≥ 1− 𝛿/5 we have simultaneously that AS1 is an (𝜖, 𝑘1)-PCP of A and that Ã is an
(𝜖, 𝑐5/𝛿, 𝑘1)-PCP for AS1 for some constant 𝑐5. These bounds immediately give that
AS1 is an (𝜖, 𝑘)-PCP for A and Ã is an (𝜖, 𝑐6/𝛿, 𝑘1)-PCP for AS1. The claim follows
via a union bound.

Assuming the bounds of Claim 2.6.4 hold, from bound (3) and (4) we have:

‖Ã− Ã𝑘‖2𝐹 ≤ 𝑐6‖A−A𝑘‖2𝐹 (2.75)

for some constant 𝑐6. Overall, with probability ≥ 1− 3𝛿/5 both the above Frobenius
norm PCP bounds as well as the spectral PCP bounds hold. By (2.75), assuming that
Ã is in fact an (𝜖, 𝛼, 𝑘)-spectral PCP of AS1 with 𝛼 = 𝜖

𝑘
‖A−A𝑘‖2𝐹 , for Z computed

89



in Step 3 of Algorithm 2 we have:

‖AS1 −AS1ZZ
𝑇‖22 ≤

(1 + 𝜖)

(1− 𝜖)

(︁
‖Ã− Ã𝑘‖22 +

𝜖

𝑘
‖Ã− Ã𝑘‖2𝐹

)︁
+

𝜖

𝑘(1− 𝜖)
‖A−A𝑘‖2𝐹

≤ (1 + 3𝜖)‖Ã− Ã𝑘‖22 +
(3𝑐6 + 2)𝜖

𝑘
‖A−A𝑘‖2𝐹

≤ (1 + 3𝜖)(1 + 𝜖)‖AS1 − (AS1)𝑘‖22 +
(3𝑐6 + 2 + 1)𝜖

𝑘
‖A−A𝑘‖2𝐹 ,

(2.76)

where we use that 𝜖 ≤ 1/2.

Now, by the approximate regression result of Lemma 2.2.14, since S3 is sampled
by the leverage scores of Z, and since 𝑡3 = 𝑐3

(︀
𝑘 log 𝑘 + 𝑘

𝛿·𝜖′
)︀

for 𝜖′ = 𝜖/𝑘, if 𝑐3 is set
large enough, for W computed in Step 4, with probability ≥ 1− 𝛿/5:

‖AS1 −WZ𝑇‖2𝐹 ≤
(︁
1 +

𝜖

𝑘

)︁
‖AS1 −AS1ZZ

𝑇‖2𝐹 . (2.77)

This Frobenius norm bound also implies a spectral norm bound. Specifically, we can
write:

‖AS1 −WZ𝑇‖2𝐹 = ‖AS1ZZ
𝑇 −WZ𝑇‖2𝐹 + ‖AS1(I− ZZ𝑇 )‖2𝐹

so by (2.77) we must have ‖AS1ZZ
𝑇 −WZ𝑇‖2𝐹 ≤ 𝜖

𝑘
‖AS1(I− ZZ𝑇 )‖2𝐹 . This gives:

‖AS1 −WZ𝑇‖22 ≤ ‖AS1ZZ
𝑇 −WZ𝑇‖22 + ‖AS1(I− ZZ𝑇 )‖22

≤ ‖AS1(I− ZZ𝑇 )‖22 + ‖AS1ZZ
𝑇 −WZ𝑇‖2𝐹

≤ ‖AS1(I− ZZ𝑇 )‖22 +
𝜖

𝑘
‖AS1(I− ZZ𝑇 )‖2𝐹 . (2.78)

Note that by the Frobenius norm guarantee required in Step 3, (2.75), and the fact
that Ã is an (𝜖, 𝑐5/𝛿, 𝑘) PCP for AS1,

‖AS1 −AS1ZZ
𝑇‖2𝐹 = 𝑂(‖A−A𝑘‖2𝐹 ).

Combined with (2.75) and (2.78) the above implies that for M spanning the columns
of W,

‖AS1 −MM𝑇AS1‖22 ≤ ‖AS1 −WZ𝑇‖22
≤ (1 +𝑂(𝜖))‖AS1 − (AS1)𝑘‖22 +𝑂

(︁ 𝜖
𝑘

)︁
‖A−A𝑘‖2𝐹 .

90



Assuming that AS1 is in fact an (𝜖, 𝛼, 𝑘)-spectral PCP for A with 𝛼 = 𝜖
𝑘
‖A−A𝑘‖2𝐹

we also have

‖A−MM𝑇A‖22 ≤ (1 +𝑂(𝜖))‖A−A𝑘‖22 +𝑂
(︁ 𝜖
𝑘

)︁
‖A−A𝑘‖2𝐹 . (2.79)

Union bounding over the probability that Claim 2.6.4 holds (≥ 1 − 3𝛿/5) and that
(2.77) holds (≥ 1− 𝛿/5), (2.79) holds with probability ≥ 1− 4𝛿/5.

Finally, we apply an identical approximate regression argument for N computed
in Step 5 to show that, with probability ≥ 1− 𝛿/5, assuming that (2.79) holds,

‖A−MN𝑇‖22 ≤ (1 + 𝜖)‖A−MM𝑇A‖22 +
𝜖

𝑘
‖A−MM𝑇A‖2𝐹

= (1 +𝑂(𝜖))‖A−A𝑘‖22 +𝑂
(︁ 𝜖
𝑘

)︁
‖A−A𝑘‖2𝐹 .

By a union bound, this holds with probability ≥ 1− 𝛿. Adjusting constants on 𝜖 by
making 𝑐, 𝑐1, 𝑐2, 𝑐3, 𝑐4 large enough yields the final bound.

Runtime and Sample Complexity

It just remains to discuss runtime and sample complexity.
Step 1 requires accessing 𝑂

(︁
𝑛𝑘 log(𝑘/(𝜖𝛿))

𝜖2

)︁
entries of A by Lemma 2.2.17. Con-

structing S𝑇2AS1 in Step 3 requires reading 𝑡21 = 𝑂
(︁
𝑛𝑘 log2 𝑛
𝛿2·𝜖6

)︁
entries of A. Con-

structing AS1S3 in Step 4 and AS4 in Step 5 both require reading 𝑂
(︁
𝑛𝑘 log 𝑘 + 𝑛𝑘2

𝛿·𝜖

)︁
entries.

For runtime, computing Z in Step 3 requires𝑂(nnz(Ã))+�̃�(
√
𝑛𝑘�̄�−1·poly(1/𝜖, 1/𝛿))

time using an input sparsity time algorithm (e.g., by Theorem 27 of [CEM+15] or us-
ing input sparsity time ridge leverage score sampling [CMM17] in conjunction with
the spectral PCP result of Lemma 2.6.2). Computing M in Step 4 and N in Step
5 both require computing the pseudoinverse of a 𝑘 ×𝑂

(︁
𝑘 log 𝑘 + 𝑘2

𝛿·𝜖

)︁
matrix, which

takes �̃�(𝑘�̄�+1 poly(1/𝜖, 1/𝛿)) time, and then applying this to an 𝑛×𝑂
(︁
𝑘 log 𝑘 + 𝑘2

𝛿𝜖

)︁
matrix, which requires �̃�

(︁
𝑛𝑘�̄�

𝛿𝜖

)︁
time.

2.6.3 Sublinear Time Ridge Regression

We now demonstrate how Theorem 2.6.3 can be leveraged to give a sublinear time,
relative error algorithm for approximately solving the following ridge regression prob-
lem for PSD A:

91



Problem 2.6.5 (Ridge Regression). Given any A ∈ R𝑛×𝑑, y ∈ R𝑛, regularization
parameter 𝜆 ≥ 0, and error parameter 𝜖 ≥ 0, compute x̃ satisfying:

‖Ax̃− y‖22 + 𝜆‖x̃‖22 ≤ (1 + 𝜖) · min
x∈R𝑛

‖Ax− y‖22 + 𝜆‖x‖22. (2.80)

We begin with a lemma showing that for PSD A, any approximation to A with
small spectral norm error can be used to approximately solve (2.80) up to relative
error.

Lemma 2.6.6 (Ridge Regression via Spectral Norm Low-Rank Approximation). For
any PSD A ∈ R𝑛×𝑛, y ∈ R𝑛, regularization parameter 𝜆 ≥ 0 and B with ‖A−B‖22 ≤
𝜖2𝜆, let x̃ ∈ R𝑛 be any vector satisfying:

‖Bx̃− y‖22 + 𝜆‖x̃‖22 ≤ (1 + 𝛼) · min
x∈R𝑛

‖Bx− y‖22 + 𝜆‖x‖22.

Then:

‖Ax̃− y‖22 + 𝜆‖x̃‖22 ≤ (1 + 𝛼)(1 + 5𝜖) min
x∈R𝑛

‖Ax− y‖22 + 𝜆‖x‖22.

Proof. For any x ∈ R𝑛 we have:

‖Bx− y‖22 + 𝜆‖x‖22 = ‖Ax− y‖22 + ‖(B−A)x‖22 + 2x𝑇 (B−A)𝑇 (Ax− y) + 𝜆‖x‖22.

By the requirement that ‖A − B‖22 ≤ 𝜖2𝜆, we have ‖(B − A)x‖22 ≤ 𝜖2𝜆‖x‖22 and
further:

|2x𝑇 (B−A)𝑇 (Ax− y)| ≤ 2‖(A−B)x‖2‖Ax− y‖2
≤ 2𝜖

√
𝜆‖x‖2‖Ax− y‖2

≤ 𝜖
(︀
‖Ax− y‖22 + 𝜆‖x‖22

)︀
.

So for any x ∈ R𝑛,

‖Bx− y‖22 + 𝜆‖x‖22 ∈ [(1− 2𝜖)
(︀
‖Ax− y‖22 + 𝜆‖x‖22

)︀
, (1 + 2𝜖)

(︀
‖Ax− y‖22 + 𝜆‖x‖22

)︀
],

which gives the lemma since any nearly optimal x̃ for the ridge regression problem
on B will also be nearly optimal for A.

Combining Lemma 2.6.6 with Theorem 2.6.3 gives the following:

92



Theorem 2.6.7 (Sublinear Time Ridge Regression). Given any PSD A ∈ R𝑛×𝑛, reg-
ularization parameter 𝜆 ≥ 0, y ∈ R𝑛, 𝜖, 𝛿 ∈ (0, 1/2] and upper bound 𝑠𝜆 on the statis-
tical dimension 𝑠𝜆

def
=tr((A2+𝜆I)−1A2), there is an algorithm accessing �̃�

(︁
𝑛𝑠2𝜆
𝛿·𝜖4 +

𝑛𝑠𝜆
𝛿2·𝜖2

)︁
entries of A and running in �̃�

(︁
𝑛𝑠�̄�𝜆
𝛿·𝜖2�̄� + 𝑛𝑠𝜆

𝛿2𝜖2
+ (

√
𝑛𝑠�̄�−1

𝜆 + 𝑠�̄�+1
𝜆 ) · poly(1/𝜖, 1/𝛿)

)︁
time,

that outputs x̃ satisfying with probability ≥ 1− 𝛿:

‖Ax̃− y‖22 + 𝜆‖x̃‖22 ≤ (1 + 𝜖) · min
x∈R𝑛

‖Ax− y‖22 + 𝜆‖x‖22.

When 𝑠𝜆 ≪ 𝑛 as is often the case, the above significantly improves upon state-of-
the-art input sparsity time runtimes for general matrices [ACW16].

Proof. Let 𝑘 = 𝑐𝑠𝜆
𝜖2

for sufficiently large constant 𝑐. We have:

𝑠𝜆 =
𝑛∑︁
𝑖=1

𝜎2
𝑖 (A)

𝜎2
𝑖 (A) + 𝜆

≥
∑︁

𝑖:𝜎2
𝑖 (A)≥𝜖2𝜆

𝜎2
𝑖 (A)

(1 + 1/𝜖2)𝜎2
𝑖 (A)

≥ 𝜖2

2
· |{𝑖 : 𝜎2

𝑖 (A) ≥ 𝜖2𝜆}|.

So |{𝑖 : 𝜎2
𝑖 (A) ≥ 𝜖2𝜆}| ≤ 2𝑠𝜆

𝜖2
and for large enough 𝑐 and 𝑘 = 𝑐𝑠𝜆

𝜖2
≥ 𝑐𝑠𝜆

𝜖2
we have

‖A−A𝑘‖22 ≤ 𝜖2𝜆
2

and can run Algorithm 2 with error parameter 𝜖 = Θ(1) and failure
probability 1− 𝛿 to find M,N ∈ R𝑛×𝑘 with ‖A−MN𝑇‖22 ≤ 𝜖2𝜆. We can then apply
Lemma 2.6.6 – solving x̃ = minx∈R𝑛 ‖MN𝑇x − y‖22 + 𝜆‖x‖22 exactly using an SVD
in 𝑂(𝑛𝑘�̄�−1) time. x̃ will be a (1 + 𝑂(𝜖)) approximate solution for A, which, after
adjusting constants on 𝜖, gives the lemma. The runtime follows from Theorem 2.6.3
with 𝑘 = 𝑐𝑠𝜆/𝜖

2 and 𝜖′ = Θ(1). The 𝑂(𝑛𝑘�̄�−1) regression cost is dominated by the
cost of computing the low-rank approximation.

Note that Theorem 2.6.7 ensures that if the 𝑘 ≥ 𝑐𝑠𝜆
𝜖2

for some constant 𝑐, x̃ is
a good approximation to the ridge regression problem. Setting 𝑘 properly requires
some knowledge of an upper bound 𝑠𝜆 on 𝑠𝜆. A constant factor approximation to 𝑠𝜆
can be computed in �̃�(𝑛3/2 ·poly(𝑠𝜆)) time using, for example a column PCP as given
by Lemma 2.2.12 and binary searching for an appropriate 𝑘 value.

An interesting open question is if 𝑠𝜆 be be approximated more quickly – specifically
with linear dependence on 𝑛. This question is closely related to if it is possible to
estimate the cost ‖A−A𝑘‖2𝐹 in �̃�(𝑛 · poly(𝑘)) for PSD A, which surprisingly is also
open.

93



2.7 Query Lower Bound

We now present our lower bound on the number of accesses to A required to compute
a near-optimal low-rank approximation, matching the query complexity of Algorithm
2.5.1 up to a �̃�(1/𝜖1.5) factor.

Theorem 2.7.1. Assume that 𝑘, 𝜖 are such that 𝑛𝑘/𝜖 = 𝑜(𝑛2). Consider any (pos-
sibly randomized) algorithm 𝒜 that, given any PSD A ∈ R𝑛×𝑛, outputs a (1 + 𝜖)-
approximate rank-𝑘 approximation to A in the Frobenius norm (Problem 2.1.1) with
probability at least 2/3. Then there must be some input A of which 𝒜 reads at least
Ω(𝑛𝑘/𝜖) positions in expectation (over 𝒜’s random coin flips).

2.7.1 Lower Bound Approach

The idea behind Theorem 2.7.1 is to apply Yao’s minimax principle [Yao77], proving
a lower bound for randomized algorithms on worst-case inputs via a lower bound
for deterministic algorithms on some input distribution (a ‘hard input distribution’).
Specifically, we will draw the input A from a distribution over binary matrices. A

has all 1’s on its diagonal, along with 𝑘 randomly positioned (non-contiguous) blocks
of all 1’s, each of size

√︀
2𝜖𝑛/𝑘×

√︀
2𝜖𝑛/𝑘. In other words, A is the adjacency matrix

(plus identity) of a graph with 𝑘 cliques of size
√︀
2𝜖𝑛/𝑘, placed on random subsets

of the vertices, with all other vertices isolated.
It is easy to see that every A chosen from the above distribution is PSD since

applying a permutation yields a block diagonal matrix, each of whose blocks is a PSD
matrix (either a single 1 entry or a rank-1 all 1’s block). Additionally, for every A

chosen from the distribution, the optimal rank-𝑘 approximation to A projects off each
of the 𝑘 blocks, achieving Frobenius norm error ‖A−A𝑘‖2𝐹 = 𝑛− 𝑘

√︀
2𝜖𝑛/𝑘 ≈ 𝑛. To

match this up to a 1+ 𝜖 factor, any near-optimal rank-𝑘 approximation must at least
capture a constant fraction of the Frobenius norm mass in the blocks since this mass
is 𝑘 · 2𝜖𝑛/𝑘 = 2𝜖𝑛.

Doing so requires identifying at least a constant fraction of the blocks. However,
since block positions are chosen uniformly at random, and since the diagonal entries of
A are identical and so convey no information about the positions, to identify a single
block, any algorithm essentially must read arbitrary off-diagonal entries until it finds
a 1. There are ≈ 𝑛2 off-diagonal entries with just 2𝜖𝑛 of them 1’s, so identifying a
first block requires Ω(𝑛/𝜖) queries to A in expectation (over the random choice of
A). Since the vast majority of vertices are isolated and not contained within a block,

94



finding this first block does little to make finding future blocks easier. So overall, the
algorithm must make Ω(𝑛𝑘/𝜖) queries in expectation to find a constant fraction of the
𝑘 blocks and output a near-optimal low-rank approximation with good probability.

While the above intuition is the key idea behind the lower bound, a rigorous proof
requires a number of additional steps and modifications, detailed in the remainder of
this section. In Section 2.7.2 we introduce the notion of a primitive approximation to
a matrix, which we will employ in our lower bound for low-rank approximation. In
Section 2.7.3 we show that any deterministic low-rank approximation algorithm that
succeeds with good probability on the input distribution described above can be used
to give an algorithm that computes a primitive approximation with good probability
on a matrix drawn from a related input distribution (Lemma 2.7.8). This reduction
yields a lower bound for deterministic low-rank approximation algorithms (Theorem
2.7.11), which gives Theorem 2.7.1 after an application of Yao’s principle.

2.7.2 Primitive Approximation

We first define the notion of an 𝜖-primitive approximation to a matrix and establish
some basic properties of these approximations.

Definition 2.7.2 (𝜖-primitive Approximation). A matrix A′ ∈ R𝑚×𝑚 is said to be
𝜖-primitive for A ∈ R𝑚×𝑚 if the squared Frobenius norm of A−A′, restricted to its
off-diagonal entries is ≤ 𝜖𝑚. Note that A′ is allowed to have any rank.

We also define a distribution on matrices with a randomly placed block of all one
entries. We will later use this distribution to construct a ‘hard input distribution’ for
deterministic low-rank approximation algorithms.

Definition 2.7.3 (Random Block Matrix). For any 𝑚, 𝜖 with 𝑚/𝜖 ≤ 𝑚2, let 𝜇(𝑚, 𝜖)
be the distribution on A ∈ R𝑚×𝑚 defined as follows. We choose a uniformly random
subset 𝑆 of [𝑚] where |𝑆| =

√
16𝜖𝑚, where we assume for simplicity that |𝑆| is an

integer. We generate a random matrix A by setting for each 𝑖 ̸= 𝑗 ∈ 𝑆, A𝑖,𝑗 = 1. We
then set A𝑖,𝑖 = 1 for all 𝑖 and set all remaining entries of A to equal 0.

Note that we associate a random subset 𝑆 with the sampling of a matrix A

according to 𝜇(𝑚, 𝜖). It is clear that any A in the support of 𝜇(𝑚, 𝜖) is PSD. This is
since any A in the support of 𝜇(𝑚, 𝜖), after a permutation, is composed of an |𝑆|×|𝑆|
all ones block and an (𝑚− |𝑆|)× (𝑚− |𝑆|) identity.

If A′ is 𝜖-primitive for A in the support of 𝜇(𝑚, 𝜖), it approximates A up to
error 𝜖𝑚 on its off-diagonal entries. Let 𝑅 denote the set of off-diagonal entries of A

95



restricted to the intersection of the rows and columns indexed by 𝑆. The error on
the entries of 𝑅 is at most 𝜖𝑚. Further, restricted to these entries, A is an all ones
matrix. Thus, on the entries of 𝑅, both A and A′ look far from an identity matrix.
Formally, we show:

Lemma 2.7.4. If A′ ∈ R𝑚×𝑚 is 𝜖-primitive for an A ∈ R𝑚×𝑚 in the support of
𝜇(𝑚, 𝜖), then A′ is not 𝜖-primitive for I.

Proof. By definition, any 𝜖-primitive matrix A′ for A has squared Frobenius norm
restricted to A’s off-diagonal entries of ≤ 𝜖𝑚. Let 𝑅 denote the set of off-diagonal
entries in the intersection of the rows and columns of A indexed by 𝑆. Assuming
|𝑆| ≥ 4, which follows from the assumption in Definition 2.7.3 that 𝑚/𝜖 ≤ 𝑚2,
|𝑅| = |𝑆|2 − 𝑆 ≥ 12𝜖𝑚.

Restricted to the entries in 𝑅, A is an all ones matrix. Thus, on at least 8𝜖𝑚 of
these entries A′ must have value at least 1/2. Otherwise it would have greater than
|𝑅| − 4𝜖𝑚 ≥ 4𝜖𝑚 entries with value ≤ 1/2 and so squared Frobenius norm error on
A’s off-diagonal entries greater than 1

22
· 4𝜖𝑚 ≥ 𝜖𝑚, contradicting the assumption

that it is 𝜖-primitive for A.
Restricted to the entries in 𝑅, the identity matrix is all zero. Thus, A′ has

Frobenius norm error on these entries at least 1
22

· 8𝜖𝑚 ≥ 2𝜖𝑚. Thus A′ is not
𝜖-primitive for I, giving the lemma.

Consider A drawn from 𝜇(𝑚, 𝜖) with probability 1/2 and set to I with probability
1/2. By Lemma 2.7.4, any (possibly randomized) algorithm 𝒜 that returns an 𝜖-
primitive approximation to A with good probability can be used to distinguish with
good probability whether A is in the support of 𝜇(𝑚, 𝜖) or A = I. This is because,
by Lemma 2.7.4, the output of such an algorithm can only be correct either for some
A in the support of 𝜇(𝑚, 𝜖) or for the identity. We first define the distribution over
matrices to which this result applies:

Definition 2.7.5. For any 𝑚, 𝜖 with 𝑚/𝜖 ≤ 𝑚2, let 𝛾(𝑚, 𝜖) be the distribution on
A ∈ R𝑚×𝑚 defined as follows. With probability 1/2 draw A from 𝜇(𝑚, 𝜖) (Definition
2.7.3). Otherwise, draw A from 𝜈(𝑚), which is the distribution whose support is only
the 𝑚×𝑚 identity matrix.

Note that, as with 𝜇(𝑚, 𝜖), we associate a random subset 𝑆 with |𝑆| =
√
16𝜖𝑚 with

the sampling of a matrix A according to 𝛾(𝑚, 𝜖). 𝑆 is not used in the construction
of A in the case that it is drawn from 𝜈(𝑚).

96



Formally, since 𝒜 can distinguish whether A is in the support of 𝜇(𝑚, 𝜖) or 𝜈(𝑚)

(i.e., A = I) with good probability we can prove that the distribution of 𝒜’s access
pattern (over randomness in the input and possible randomization in the algorithm)
is significantly different when it is given input A drawn from 𝜇(𝑚, 𝜖) than when it is
given A drawn from 𝜈(𝑚). Recall for distributions 𝛼 and 𝛽 supported on elements
𝑠 of a finite set 𝑆, that the total variation distance 𝐷𝑇𝑉 (𝛼, 𝛽) =

∑︀
𝑠∈𝑆 |𝛼(𝑠)− 𝛽(𝑠)|,

where 𝛼(𝑠) is the probability of 𝑠 in distribution 𝛼.

Corollary 2.7.6. Suppose that a (possibly randomized) algorithm 𝒜, with probability
at least 7/12 over its random coin flips and random input A ∈ R𝑛×𝑛 drawn from
𝛾(𝑚, 𝜖), outputs an 𝜖-primitive matrix for A. Further, suppose that 𝒜 reads at most
𝑟 positions of A, possibly adaptively.11 Let 𝑆 be a random variable indicating the list
of positions read and their corresponding values.12 Let 𝐿(𝜇) denote the distribution of
𝑆 conditioned on A ∼ 𝜇(𝑚, 𝜖), and let 𝐿(𝜈) denote the distribution of 𝑆 conditioned
on A ∼ 𝜈(𝑚).13 Then

𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) ≥ 1/6.

Proof. By Lemma 2.7.4, if algorithm 𝒜 succeeds then its output can be used to decide
if A ∼ 𝜇(𝑚, 𝜖) or if A ∼ 𝜈(𝑚). The success probability of any such algorithm is well-
known (see, e.g., Proposition 2.58 of [BY02]) to be at most 1/2+𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈))/2.
Making this quantity at least 7/12 and solving for 𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) proves the corol-
lary.

2.7.3 Lower Bound for Low-Rank Approximation

We now give a reduction, showing that any deterministic relative error 𝑘-rank approx-
imation algorithm that succeeds with good probability on the hard input distribution
described in Section 2.7.1 can be used to compute an 𝜖-primitive approximation to A

that is drawn from 𝛾(𝑛/(2𝑘), 𝜖) with good probability. We first formally define this
input distribution.

Definition 2.7.7 (Hard Input Distribution – Low-Rank Approximation). Suppose
2𝑛𝑘/𝜖 ≤ 𝑛2. Let 𝛾𝑏 be the distribution on A ∈ R𝑛×𝑛 determined as follows. We draw
a uniformly random subset 𝑆 of [𝑛] where |𝑆| = 𝑛/2, where we assume for simplicity

11That is, for any input A, in any random execution, 𝒜 reads at most 𝑟 entries of A.
12𝑆 is determined by the random input A and the random choices of 𝒜. Since 𝒜 reads at most 𝑟

positions of any input, we always have |𝑆| ≤ 𝑟.
13Here and throughout, we let A ∼ 𝜇(𝑚, 𝜖) denote the event that, when A is drawn from the

distribution 𝛾(𝑚, 𝜖) (Definition 2.7.5), which is a mixture of the distributions 𝜇(𝑚, 𝜖) and 𝜈(𝑚), that
A is drawn from 𝜇(𝑚, 𝜖). A ∼ 𝜈(𝑚) denotes the analogous event for 𝜈(𝑚).

97



that |𝑆| is an integer. We further partition 𝑆 into 𝑘 subsets 𝑆1, 𝑆2, ..., 𝑆𝑘 chosen
uniformly at random. For all ℓ ∈ [𝑘], |𝑆ℓ| = 𝑛/(2𝑘), which we also assume to be an
integer.

Letting Aℓ denote the entries of A restricted to the intersection of the rows and
columns indexed by 𝑆ℓ, we independently draw each Aℓ from 𝛾(𝑛/(2𝑘), 𝜖) (Definition
2.7.5).14 We then set A𝑖,𝑖 = 1 for all 𝑖 and set all remaining entries of A to equal 0.

Our reduction from 𝜖-primitive approximation to low-rank approximation is as
follows:

Lemma 2.7.8 (Reduction from Primitive Approximation to Low-Rank Approxima-
tion). Suppose that 𝑛𝑘/𝜖 = 𝑜(𝑛2) and that 𝒜 is a deterministic algorithm that, with
probability ≥ 2/3 on random input A ∈ R𝑛×𝑛 drawn from 𝛾𝑏, outputs a (1 + 𝜖/26)-
approximate rank-𝑘 approximation to A. Further suppose 𝒜 reads at most 𝑟 positions
of A, possibly adaptively.

Then there is a randomized algorithm ℬ that, with probability ≥ 7/12 over its
random coin flips and random input B drawn from 𝛾(𝑛/(2𝑘), 𝜖), outputs an 𝜖-primitive
matrix for B. Further, letting 𝐿(𝜇), 𝐿(𝜈) be as defined in Corollary 2.7.6 for ℬ,

𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) ≤
2𝜖𝑟

𝑛𝑘
.

Proof. Consider a randomized algorithm ℬ that, given B drawn from 𝛾(𝑛/(2𝑘), 𝜖)

generates a random matrix A𝑛×𝑛 drawn from 𝛾𝑏 as follows. Choose a uniformly
random subset 𝑆 of [𝑛] with |𝑆| = 𝑛/2. Partition 𝑆 into 𝑘 subsets 𝑆1, 𝑆2, ..., 𝑆𝑘

chosen uniformly at random. Note that for ℓ ∈ [𝑘] |𝑆ℓ| = 𝑛/(2𝑘). Letting Aℓ denote
the entries of A restricted to the intersection of the rows and columns indexed by
𝑆ℓ, set A1 = B, and for ℓ = 2, ..., 𝑘 independently draw Aℓ from 𝛾(𝑛/(2𝑘), 𝜖). Set
A𝑖,𝑖 = 1 for all 𝑖 and set all remaining entries of A equal to 0.

After generating A, ℬ then applies 𝒜 to A to compute a rank-k approximation
A′. ℬ then outputs (A′)1, the 𝑛/(2𝑘)× 𝑛/(2𝑘) submatrix of A′ corresponding to the
intersection of the rows and columns indexed by 𝑆1. We have the following:

Claim 2.7.9. With probability ≥ 7/12 over the random choices of ℬ and over the
random input B drawn from 𝛾(𝑛/(2𝑘), 𝜖), (A′)1 is 𝜖-primitive for B.

Proof. It is clear that A generated by ℬ is distributed according to 𝛾𝑏 (Definition
2.7.7). By construction, for any A ∼ 𝛾𝑏 there is a rank-𝑘 approximation of cost

14By the assumption that 2𝑛𝑘/𝜖 ≤ 𝑛2 we have 𝑛
2𝑘𝜖 ≤

(︀
𝑛
2𝑘

)︀2 and so this is a valid setting of the
parameters for 𝛾(𝑚, 𝜖).

98



at most 𝑛; indeed this follows by choosing the best rank-1 solution for each Aℓ.
Consequently if 𝒜 succeeds on A, then its output A′ satisfies ‖A−A′‖2𝐹 ≤ 𝑛+𝜖𝑛/26.

Note that A has A𝑖,𝑖 = 1 for all 𝑖 ∈ [𝑛]. So the squared Frobenius norm cost of
any rank-𝑘 approximation restricted to the diagonal is at least 𝑛 − 𝑘. Let 𝑐ℓ be the
squared Frobenius norm cost of A′ restricted to the off diagonal entries in Aℓ. Note
that 𝑐ℓ is a random variable. Then,

𝑛− 𝑘 +
𝑘∑︁
ℓ=1

𝑐ℓ ≤ ‖A′ −A‖2𝐹 ≤ 𝑛+ 𝜖𝑛/26.

By averaging for at least a 11/12 fraction of the blocks 𝑖,

𝑐𝑖 ≤ 12 + 12𝜖𝑛/(26𝑘) ≤ 13𝜖𝑛/(26𝑘) < 𝜖𝑛/(2𝑘),

assuming 𝜖𝑛/(26𝑘) ≥ 8, which holds if 𝜖𝑛/𝑘 = 𝜔(1), which follows from our assump-
tion that 𝑛𝑘/𝜖 = 𝑜(𝑛2).

It follows by symmetry of 𝛾𝑏 with respect to the 𝑘 blocks that with probability at
least 11/12, if 𝒜 succeeds on A, 𝑐1 ≤ 𝜖𝑛/(2𝑘). This gives that (A′)1 is 𝜖-primitive
(Definition 2.7.2) for A1 = B. This yields the claim after applying a union bound,
since 𝒜 succeeds with probability at least 2/3 on A.

It remains to bound the total variation distance between ℬ’s access pattern when
B ∼ 𝜇(𝑛/(2𝑘), 𝜖) and when B ∼ 𝜈(𝑛/(2𝑘)). We have:

Claim 2.7.10. For the algorithm ℬ defined above

𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) ≤
2𝜖𝑟

𝑛𝑘
.

Proof. Let 𝒲 denote the random variable that encompasses ℬ’s random choices in
choosing the indices in 𝑆2, ..., 𝑆𝑘 and in setting the entries in A2, ...,A𝑘. Let Ω

denote the set of all possible values of 𝒲 . Let 𝑆 denote the random subset with
|𝑆| =

√︀
𝑛/(2𝑘) · 𝜖 associated with the drawing of B from 𝛾(𝑛/(2𝑘), 𝜖) (see Definition

2.7.5). Let 𝑆 denote the set of off-diagonal entries of A in the intersection of the rows
and columns indexed by 𝑆.

If B ∼ 𝜇(𝑛/(2𝑘), 𝜖) then all entries of 𝑆 are 1. If B ∼ 𝜈(𝑛/(2𝑘)) then B = I and
so all entries of 𝑆 are 0. Outside of the entries in 𝑆, the entries of B are identical in
the two cases that B ∼ 𝜇(𝑛/(2𝑘), 𝜖) and B ∼ 𝜈(𝑛/(2𝑘)) (in particular, they are all 0
off the diagonal and 1 on the diagonal).

99



So, for any 𝑤 ∈ Ω, conditioned on 𝒲 = 𝑤, all entries outside 𝑆 are fixed. Further
conditioned on B ∼ 𝜈(𝑛/(2𝑘)), all entries in 𝑆 are 0. So all entries of A are fixed and
𝒜 always reads the same sequence of entries (𝑖𝑤,1, 𝑗𝑤,1), ..., (𝑖𝑤,𝑟, 𝑗𝑤,𝑟).

Further, for any 𝑤 ∈ Ω, conditioned on 𝒲 = 𝑤, 𝑆 is a uniform random subset of
𝑅 = [𝑛] ∖ (𝑆2 ∪ ...∪𝑆𝑘). |𝑅| = 𝑛− (𝑘− 1) ·𝑛/(2𝑘) ≥ 𝑛/2. So, for any ℓ ∈ [𝑟] we have:

P[(𝑖𝑤,ℓ, 𝑗𝑤,ℓ) ∈ 𝑆|𝒲 = 𝑤] ≤ |𝑆|
|𝑅|2

≤ |𝑆|2

𝑛2/4
≤ 2𝜖

𝑛𝑘
.

By a union bound, letting ℰ be the event that 𝒜 reads (𝑖𝑤,1, 𝑗𝑤,1), ..., (𝑖𝑤,𝑟, 𝑗𝑤,𝑟) and
does not read any entry of 𝑆 in its 𝑟 accesses to A we have for any 𝑤 ∈ Ω:

P[ℰ|𝒲 = 𝑤] ≥ 1− 2𝜖𝑟

𝑛𝑘
.

Thus, for any 𝑤 ∈ Ω, regardless of whether B ∼ 𝜈(𝑛/(2𝑘)) or B ∼ 𝜇(𝑛/(2𝑘), 𝜖), 𝒜
has access pattern (𝑖𝑤,1, 𝑗𝑤,1), ..., (𝑖𝑤,𝑟, 𝑗𝑤,𝑟) to A with probability ≥ 1 − 2𝜖𝑟

𝑛𝑘
. Corre-

spondingly, ℬ has a fixed access pattern to B with probability ≥ 1− 2𝜖𝑟
𝑛𝑘

. Thus,

𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) ≤
2𝜖𝑟

𝑛𝑘

yielding the claim.

In combination Claims 2.7.9 and 2.7.10 give Lemma 2.7.8.

We can now use Lemma 2.7.8 to argue that if a deterministic low-rank approxi-
mation algorithm succeeding with good probability on a random input drawn from
𝛾𝑏 accesses too few entries, then it can be used to give a primitive approximation
algorithm violating Corollary 2.7.6. We then prove our main lower bound, Theorem
2.7.1, by applying Yao’s minimax principle.

Theorem 2.7.11 (Lower Bound for Deterministic Algorithms). Assume that 𝑛, 𝑘, 𝜖
are such that 𝑛𝑘/𝜖 = 𝑜(𝑛2). Consider any deterministic algorithm 𝒜 that, given
random input A drawn from 𝛾𝑏, outputs a (1 + 𝜖)-approximate rank-𝑘 approximation
to A in the Frobenius norm (Problem 2.1.1) with probability at least 2/3. Further,
suppose 𝒜 reads at most 𝑟 positions of A, possibly adaptively. Then 𝑟 = Ω(𝑛𝑘/𝜖).

Proof. Assume towards a contradiction that 𝑟 = 𝑜(𝑛𝑘/𝜖). Then applying Lemma
2.7.8, 𝒜 can be used to give a randomized algorithm ℬ that with probability ≥
7/12 over its random coin flips and random input B ∈ 𝑛/(2𝑘) × 𝑛/(2𝑘) drawn from
𝛾(𝑛/(2𝑘), 𝜖), outputs an 𝜖-primitive matrix for B. Further, letting 𝐿(𝜇), 𝐿(𝜈) be

100



as defined in Corollary 2.7.6 for ℬ, by Lemma 2.7.8, 𝐷𝑇𝑉 (𝐿(𝜇), 𝐿(𝜈)) ≤ 2𝜖𝑟
𝑛𝑘
. For

𝑟 = 𝑜(𝑛𝑘/𝜖), 2𝜖𝑟
𝑛𝑘

= 𝑜(1), contradicting Corollary 2.7.6, and giving the theorem.

We finally restate and prove our main lower bound.

Theorem 2.7.1 (Lower Bound for Randomized Algorithms). Assume that 𝑛, 𝑘, 𝜖 are
such that 𝑛𝑘/𝜖 = 𝑜(𝑛2). Consider any (possibly randomized) algorithm 𝒜 that, given
any PSD A ∈ R𝑛×𝑛, outputs a (1 + 𝜖)-approximate rank-𝑘 approximation to A in
the Frobenius norm (Problem 2.1.1) with probability at least 2/3. Then there must be
some input A on which 𝒜 reads Ω(𝑛𝑘/𝜖) positions in expectation (over 𝒜’s random
coin flips).

Proof. This follows directly from applying Yao’s minimax principle ([Yao77], Theorem
3) to Theorem 2.7.11.

2.8 Low-Rank Approximation of A via A1/2

In this section we discuss computing a low-rank approximation of PSD A using a
low-rank approximation for the matrix square root A1/2. We demonstrate that, while
naively, a near-optimal low-rank approximation for A1/2 can be arbitrarily bad for
A, there is a way to convert a low-rank approximation from A1/2 to one for A.
This method gives a simple, but suboptimal, sublinear time low-rank approximation
algorithm for PSD matrices. The purpose of this section is to build intuition for PSD
low-rank approximation and connections between a PSD matrix A and its squareroot
A1/2. We leveraged these connections in a different way in designing our main low-
rank approximation algorithm, Algorithm 1, presented in Section 2.5.

2.8.1 Converting a Low-Rank Approximation of A1/2 to a Low-

Rank Approximation of A

We first observe that a low-rank approximation for A1/2 does not imply a good
low-rank approximation for A. Intuitively, if A has a large top singular value, the
low-rank approximation for A must capture the corresponding singular direction with
significantly more accuracy than a good low-rank approximation for A1/2, in which
the singular value is relatively much smaller.

Theorem 2.8.1. For any 𝑘, 𝜖 > 0 there exists a PSD matrix A and a rank-𝑘 matrix
B such that ‖A1/2 −B‖2𝐹 ≤ (1 + 𝜖)‖A1/2 − (A1/2)𝑘‖2𝐹 but for every matrix C in the

101



row span of B,

‖A−C‖2𝐹 ≥
(︂
1 + 𝜖 · (𝑛− 𝑘 − 1)𝜎1(A)

𝜎𝑘+1(A)

)︂
‖A−A𝑘‖2𝐹 .

Notably, if we B = A1/2P for some rank-𝑘 orthogonal projection P, AP can be
an arbitrarily bad low-rank approximation of A.

Proof. Let A ∈ R𝑛×𝑛 be a diagonal matrix with A𝑖,𝑖 = 𝛼2 for 𝑖 ∈ [𝑘], A𝑘+1,𝑘+1 = 0

and all other diagonal entries equal to 𝛽2, where 𝛼 > 𝛽 > 0. Let B be a rank-
𝑘 matrix that has its last 𝑛 − 𝑘 rows all zero. For 𝑖 ∈ [𝑘], let B𝑖,𝑖 = A

1/2
𝑖,𝑖 and

B1,𝑘+2 =
√︀
𝜖(𝑛− 𝑘 − 1) · 𝛽. We have: ‖A1/2 − (A1/2)𝑘‖2𝐹 = (𝑛 − 𝑘 − 1)𝛽2 and

‖A1/2−B‖2𝐹 = (1+ 𝜖)(𝑛−𝑘−1)𝛽2. Note that the first row of B, b1 aligns somewhat
well with the first row of A, a1, but as we will see, not well enough to give a good
low-rank approximation for A itself.

Let C be the projection of A onto the row span of B, which gives the optimal
low-rank approximation to A within this span. For 𝑖 = 2, ..., 𝑘, c𝑖 = a𝑖, since A and
B match exactly on these rows up to a scaling. For 𝑖 > 𝑘, c𝑖 = 0⃗. Finally, c1 =
b1

‖b1‖22
· ⟨b1, a1⟩ = b1 ·

(︁
𝛼3

𝛼2+𝜖(𝑛−𝑘−1)𝛽2

)︁
. Overall:

‖A−C‖2𝐹 = (𝑛− 𝑘 − 1)𝛽4 + (A1,1 −C1,1)
2 + (A1,𝑘+2 −C1,𝑘+2)

2

≥ (𝑛− 𝑘 − 1)𝛽4 +

(︃√︀
𝜖(𝑛− 𝑘 − 1) · 𝛽𝛼3

𝛼2 + 𝜖(𝑛− 𝑘 − 1)𝛽2

)︃2

≥ (𝑛− 𝑘 − 1)𝛽4 · (1 + 𝜖(𝑛− 𝑘 − 1)𝛼2/4𝛽2)

= (1 + 𝜖(𝑛− 𝑘 − 1)𝛼2/𝛽2) · ‖A−A𝑘‖2𝐹 .

By setting 𝛼 ≫ 𝛽 we can make this approximation arbitrarily bad. Note that 𝛼2/𝛽2 =

𝜎1(A)/𝜎𝑘+1(A). This ratio will be large whenever A is well approximated by a low-
rank matrix.

Despite the above example, we can show that for a projection P, if A1/2P is a
very near-optimal low-rank approximation of A1/2 then A1/2PA1/2 is a relative error
low-rank approximation of A:

Theorem 2.8.2. Let P ∈ R𝑛×𝑛 be an orthogonal projection matrix such that ‖A1/2−
A1/2P‖2𝐹 ≤ (1 + 𝜖/

√
𝑛)‖A1/2 − (A1/2)𝑘‖2𝐹 . Then:

‖A−A1/2PA1/2‖2𝐹 ≤ (1 + 3𝜖)‖A−A𝑘‖2𝐹 .

102



Proof. We can rewrite using the fact that (I−P) = (I−P)2 since it is a projection:

‖A−A1/2PA1/2‖2𝐹 = ‖A1/2(I−P)2A1/2‖2𝐹 = ‖A1/2(I−P)‖44.

Let 𝛿𝑖 = 𝜎𝑖(A
1/2(I−P)) denote the 𝑖𝑡ℎ singular value of A1/2(I−P). By the assump-

tion that P gives a near-optimal low-rank approximation of A1/2:

𝑛−𝑘∑︁
𝑖=1

𝛿2𝑖 ≤
𝑛∑︁

𝑖=𝑘+1

𝜎𝑖(A) + 𝜖/
√
𝑛‖A1/2 − (A1/2)𝑘‖2𝐹 .

Additionally, by Weyl’s monotonicity theorem (see e.g. Theorem 3.2 in [Gu14] and
proof of Lemma 15 in [MM17]), for all 𝑖, 𝛿𝑖 ≥ 𝜎

1/2
𝑖+𝑘(A). We thus have:

‖A−A1/2PA1/2‖2𝐹 =
𝑛−𝑘∑︁
𝑖=1

𝛿4𝑖 ≤
𝑛∑︁

𝑖=𝑘+2

𝜎𝑖(A)2 +
(︀
𝜎𝑘+1(A) + 𝜖/

√
𝑛‖A1/2 − (A1/2)𝑘‖2𝐹

)︀2
.

If 𝜎𝑘+1(A) ≥ 1/
√
𝑛 · ‖A1/2 − (A1/2)𝑘‖2𝐹 then

(︀
𝜎𝑘+1(A) + 𝜖/

√
𝑛‖A1/2 − (A1/2)𝑘‖2𝐹

)︀2 ≤ (1 + 𝜖)2𝜎2
𝑘+1(A)

≤ (1 + 3𝜖)𝜎2
𝑘+1(A)

and hence:

‖A−A1/2PA1/2‖2𝐹 ≤ (1 + 3𝜖)
𝑛∑︁

𝑖=𝑘+1

𝜎2
𝑖 (A) = (1 + 3𝜖)‖A−A𝑘‖2𝐹 .

Alternatively if 𝜎𝑘+1(A) ≤ 1/
√
𝑛 · ‖A1/2 − (A1/2)𝑘‖2𝐹 then

(︀
𝜎𝑘+1(A) + 𝜖/

√
𝑛‖A1/2 − (A1/2)𝑘‖2𝐹

)︀2 ≤ (︀(1 + 𝜖)/
√
𝑛‖A1/2 − (A1/2)𝑘‖2𝐹

)︀2
≤ (1 + 𝜖)2‖A−A𝑘‖2𝐹 ,

which also gives the theorem.

2.8.2 PSD Low-Rank Approximation in 𝑛1.69 · poly(𝑘/𝜖) Time

We now combine Theorem 2.8.2 with the ridge leverage score sampling algorithm of
Lemma 2.2.17 to give a sublinear time algorithm for low-rank approximation of A
reading 𝑛3/2 ·poly(𝑘/𝜖) entries of the matrix and running in 𝑛1.69 ·poly(𝑘/𝜖) time. We
note that this approach could also be used with adaptive sampling [DV06] or volume

103



sampling techniques [AGR16], as outlined in the introduction.

Theorem 2.8.3. There is an algorithm based off ridge leverage score sampling that,
given PSD A ∈ R𝑛×𝑛, 𝑘 ∈ Z≥1, and 𝜖, 𝛿 ∈ (0, 1/2], outputs M ∈ R𝑛×𝑘 such that, with
probability ≥ 1− 𝛿 ,

‖A−MM𝑇‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

The algorithm reads �̃�(𝑛3/2𝑘/𝜖) entries of A and runs in �̃�
(︀
𝑛(�̄�+1)/2 · (𝑘/𝜖)�̄�−1

)︀
time,

where �̃�(·) hides log(𝑛/𝛿) dependencies.

Note that for �̄� < 2.373 [LG14], 𝑛(�̄�+1)/2 ≤ 𝑛1.69. Theorem 2.8.3 follows from
Lemma 2.2.17, adapted from Theorem 8 of [MM17], which shows that it is possible
to estimate the ridge leverage scores of A1/2 with �̃�(𝑛𝑘) accesses to A and 𝑂(𝑛𝑘�̄�−1)

time. We can use these scores to sample a set of rows from A1/2 whose span contains
a near-optimal low-rank approximation. Specifically we have:

Lemma 2.8.4 (Theorem 7 of [CMM17]). For any B ∈ R𝑛×𝑛, for every 𝑖 ∈ [𝑛],
let 𝜏 𝑘𝑖 ≥ 𝜏 𝑘𝑖 (B) be an overestimate for the 𝑖𝑡ℎ rank-𝑘 ridge leverage score of B. Let
𝑝𝑖 =

𝜏𝑘𝑖∑︀
𝑖 𝜏

𝑘
𝑖

and for 𝜖, 𝛿 ∈ (0, 1/2], 𝑡 = 𝑐
(︁
log 𝑘 + log(1/𝛿)

𝜖

)︁∑︀𝑘
𝑖 𝜏

𝑘
𝑖 for some sufficiently

large constant 𝑐. Construct R ∈ R𝑛×𝑡 by sampling 𝑡 rows of B, each set to row b𝑖

with probability 𝑝𝑖. With probability ≥ 1 − 𝛿, letting PR be the projection onto the
rows of R,

‖B− (BPR)𝑘 ‖
2
𝐹 ≤ (1 + 𝜖)‖B−B𝑘‖2𝐹 .

Note that (BPR)𝑘 can be written as a row projection of B – onto the top 𝑘

singular vectors of BPR.

Proof of Theorem 2.8.3. If we compute for each 𝑖, 𝜏 𝑘𝑖 ≥ 𝜏 𝑘𝑖 (A
1/2) using Lemma 2.2.17,

set 𝜖′ = 𝜖/3
√
𝑛, and let S be a sampling matrix selecting �̃�(

∑︀
𝜏 𝑘𝑖 /𝜖

′) = �̃�(𝑘
√
𝑛/𝜖)

rows of A1/2, then by Theorems 2.8.2 and 2.8.4, letting P be the projection onto the
rows of SA1/2, with probability ≥ 1− 𝛿,

‖A− (A1/2P)𝑘(A
1/2P)𝑇𝑘 ‖2𝐹 ≤ (1 + 𝜖)‖A−A𝑘‖2𝐹 .

We can write

(A1/2P)𝑘(A
1/2P)𝑇𝑘 = (A1/2PA1/2)𝑘 = (AS(S𝑇AS)+S𝑇A)𝑘.

104



We can compute a factorization of this matrix by computing (S𝑇AS)+/2, then com-
puting AS(S𝑇AS)+/2 and taking the SVD of this matrix. Since S has �̃�(𝑘

√
𝑛/𝜖)

columns, using fast matrix multiplication this requires time �̃�(𝑛 · (𝑘
√
𝑛/𝜖)�̄�−1) =

�̃�(𝑛(�̄�+1)/2 · (𝑘/𝜖)�̄�−1) and �̃�(𝑛3/2𝑘/𝜖) accesses to A (to read the entries of AS), giv-
ing the theorem.

2.9 Discussion and Future Work

In this Chapter, we have presented sublinear time algorithms for low-rank approxi-
mation of PSD matrices (Sections 2.5 and 2.6) and ridge regression involving PSD
inputs (Section 2.6). These algorithms are based on random leverage score sampling
(Sections 2.2, 2.3, and 2.4), which allows us to rapidly reduce any PSD input to a
small subset of rows and columns from which we can compute a near-optimal low-
rank approximation to the input. We now discuss a number of research directions left
open by our work. We note that one direction we are interested in is the possibility
of randomized linear algebraic techniques being implemented in neural networks. We
defer discussion of this direction until Chapter 5, Section 5.6.

2.9.1 Sublinear Time Algorithms for PSD Matrices

Our work opens the possibility for developing sublinear time algorithms for PSD ma-
trices beyond the foundational low-rank approximation problems we have considered.

One interesting direction is to consider low-rank approximation in norms other
than the Frobenius norm, which we considered in Problem 2.1.1. For example, it
would be interesting to design algorithms achieving relative error approximation guar-
antees in general Schatten-𝑝 norms and in the entrywise ℓ1 and ℓ𝑝 norms [SWZ17,
CGK+17], which are often used as more ‘robust’ alternatives to Frobenius norm low-
rank approximation. As discussed, obtaining low-rank approximation error guaran-
tees in, for example, higher Schatten-𝑝 norms will require increased runtime. Specif-
ically, using a similar argument to the lower bound presented in Section 2.7, one can
show that relative error low-rank approximation in ‖A−B‖𝑝𝑝 =

∑︀𝑛
𝑖=1 𝜎

𝑝
𝑖 (A−B) for

𝑝 > 2 requires Ω(𝑛2−2/𝑝) queries to A (see discussion in Section 2.1.4). Understanding
if this lower bound can be matched is an interesting direction.

In general, understanding what properties of a PSD matrix can be computed in
sublinear time is interesting. For example, while we can output B satisfying ‖A −
B‖2𝐹 ≤ (1 + 𝜖)‖A − A𝑘‖2𝐹 , surprisingly it is not clear how to actually estimate the

105



value ‖A−A𝑘‖2𝐹 to within a (1±𝜖) factor. This can be achieved in 𝑛3/2 poly(𝑘/𝜖) time
using the PCP techniques described in Sections 2.3 and 2.4. However, obtaining linear
runtime in 𝑛 is open. Estimating ‖A−A𝑘‖2𝐹 seems strongly connected to estimating
other important quantities such as the statistical dimension of A, tr((A2 + 𝜆I)−1A),
for ridge regression (see Theorem 2.6.7), which we also do not know how to do in
𝑜(𝑛3/2) time.

Finally, it would be very interesting to understand if sublinear time low-rank ap-
proximation algorithms can be achieved deterministically. Even input sparsity run-
times, which are state-of-the-art for general (not necessarily PSD) matrices [CW13],
are not known to be achievable with deterministic algorithms. Studying determinis-
tic methods could lead to the development of new techniques for approximate linear
algebraic computation, outside of random sampling and sketching, with applications
beyond low-rank approximation. Alternatively, it may be possible to prove lower
bounds against deterministic algorithms. Such lower bounds information theoretic,
like the bound presented in Section 2.7, or may use reduction-based arguments similar
to those in Chapter 3.

2.9.2 Sublinear Time Algorithms for Other Matrix Types

It would also be interesting to understand if our techniques can be generalized to a
broader class of inputs, beyond PSD matrices. As discussed, in the matrix comple-
tion literature, much attention has focused on incoherent low-rank matrices [CR09,
PLSZ17], which can be approximated in sublinear time using uniform sampling tech-
niques. PSD matrices are not incoherent in general, which is highlighted by the fact
that our sampling schemes are far from uniform and very adaptive to previously seen
matrix entries. However, it would be interesting to study other parameters that char-
acterize when low-rank approximation can be performed with just a small number of
adaptive accesses to A. For example, we may consider:

∙ Measures of diagonal dominance that encompass the fact, noted in Section 2.1.1,
that for any PSD A and any 𝑖, 𝑗, |A𝑖,𝑗| ≤ max(A𝑖,𝑖,A𝑗,𝑗).

∙ Letting A = A1/2A1/2, we can think of A as containing all pairwise dot products
between the rows of A1/2. We may consider low-rank approximation of non-PSD
matrices who entries contain other pairwise similarity measurements between a
set of 𝑛-points.

∙ Matrices that are not PSD, but are close to PSD. For example, matrices that are

106



well approximated by a PSD low-rank approximation, have only a few, bounded
negative eigenvalues, or are PSD matrices with a few corrupted entries.

2.9.3 Expanding the Applications of Leverage Scores

Our sublinear time low-rank approximation algorithms critically relied on approxi-
mation bounds given by ridge leverage score sampling of matrix rows and columns
(see Section 2.2). As discussed, variations on these scores have been employed in al-
gorithms for ordinary least squares regression [DMM06a, LMP13, CLM+15], ℓ𝑝 norm
regression [CP15], kernel ridge regression [AM15a, AKM+17], CUR matrix approxi-
mation [MD09], graph sparsification [KLM+17], fast system solvers [KLP+16, KS16],
second order optimization [ABH16, LHLS17], and many other problems. In all of
these applications, leverage score sampling is used due to its ability to approximate a
matrix, typically in the sense of the spectral approximation bounds given in Lemma
2.2.6 and Corollary 2.2.11.

An important direction for future work is studying how leverage scores, and related
importance measures, can be used to approximate input data in other ways. For
example, the leverage scores are a special case of influence functions [TB17], which
generally measure how important a single data point is on the output of an algorithm.
Sampling by general influence functions may allow some of the progress made with
leverage score sampling to be extended beyond linear algebraic problems, to other
optimization problems like logistic regression or generalized linear models [McC84].
Additionally, while fast approximation algorithms for general influence functions are
not known, applying the iterative sampling techniques that have been developed to
approximate leverage scores [CLM+15, CMM17, MM17], is a promising possibility.

107



108



Chapter 3

Lower Bounds for Linear Algebraic
Computation

In Chapter 2 we showed an example of how randomization and approximation can be
used to significantly accelerate the basic linear algebraic problem of low-rank approx-
imation. As discussed, in the last decade, progress has been made on fast algorithms
for a wide range of basic problems including linear regression (linear system solving),
matrix function approximation, eigenvector approximation, and spectrum summa-
rization. In this chapter we attempt to understand the limits of this progress and
the importance of randomization and approximation in yielding faster algorithms for
linear algebraic computation.

For essentially all nontrivial linear algebraic primitives, there are no known fast,
deterministic, and exact algorithms that work for general matrices. Specifically, all
existing algorithms for primitives such as linear system solving, eigenvector compu-
tation, and determinant computation fall into one of three categories:

1. They make assumptions on the input matrix – e.g., that it is well-conditioned
(the ratio of its smallest to largest singular value is not too small), has sufficient
gaps between its singular values, or is structured (e.g., that it is tridiagonal,
triangular, Toeplitz, or symmetric diagonally dominant).

2. They are randomized and approximate, typically succeeding with high proba-
bility and achieving (1 + 𝜖) error guarantees in an appropriate metric with a
runtime depending on a low-degree polynomial in 1/𝜖.

3. They are slow, running in roughly the same time as general matrix multiplica-
tion. That is, they require Ω(𝑛𝜔) time for 𝑛 × 𝑛 inputs in theory and Ω(𝑛3)

109



time in practice, where 𝜔 < 2.373 is the greatest lower bound on the exponent
of fast matrix multiplication.1 These algorithms, known as ‘direct methods’ are
generally too slow to apply to large matrices.

As far we are aware, these classes cover all known linear algebraic algorithms.
In particular, there are no fast (i.e., 𝑜(𝑛𝜔) time) algorithms that work for general
matrices and are not randomized or approximate.

In this chapter we make a few initial steps in explaining this phenomenon via
conditional lower bounds that reduce matrix multiplication to other basic linear al-
gebraic primitives, showing that these primitives are in some sense as hard as matrix
multiplication itself. We cover work originally published in [MNS+18] that gives con-
ditional lower bounds for algorithms (both deterministic and randomized) computing
many properties of a matrix’s singular value spectrum, such as its nuclear norm, its
determinant and its SVD entropy, to high accuracy. These lower bounds demonstrate
a tradeoff between runtime and approximation accuracy in solving these fundamen-
tal problems – showing that any algorithm computing a fine enough approximation
essentially must run in matrix multiplication time. We also cover work published in
[MW17a] that gives conditional lower bounds on low-rank approximation algorithms
for kernel matrices. Aside from conditional lower bounds, in both papers we also give
algorithmic results. We do not cover these algorithmic results in detail, but state the
main bounds given and discuss how they compare to our lower bounds.

Remark: The results presented in this chapter were developed largely in collabo-
ration with David Woodruff. The lower bounds on effective resistance and leverage
score computation presented in Section 3.2.4 were also developed in collaboration
with Aaron Sidford. Aaron originally wrote up the details of these bounds; the pre-
sentation has been minorly modified in this thesis.

3.1 Background and Introduction to Results

We begin by defining the two main classes of problems we consider in this chapter
and giving background on their applications and state-of-the-art runtimes.

3.1.1 Spectral Sum Problems

Given A ∈ R𝑛×𝑑, a central primitive in numerical computation and data analysis is to
compute A’s spectrum: the singular values 𝜎1(A) ≥ . . . ≥ 𝜎𝑑(A) ≥ 0. These values

1See Section 1.3 for a formal definition of 𝜔.

110



can reveal matrix structure and low effective dimensionality, which can be exploited
in a wide range of spectral data analysis methods [Jol02, US16]. The singular val-
ues are also used as tuning parameters in many numerical algorithms performed on
A [GVL12], and in general, to determine some of the most well-studied matrix func-
tions [Hig08]. We focus in particular on conditional lower bounds for computing one
of the most widely applicable classes of matrix functions that depend on the singular
values: spectral sums.

Definition 3.1.1 (Spectral Sum). For any function 𝑓 : R+ → R+, and any matrix
A ∈ R𝑛×𝑑 define the spectral sum:

𝒮𝑓 (A)
def
=

𝑑∑︁
𝑖=1

𝑓(𝜎𝑖(A)).

Spectral sums often serve as snapshots of A’s spectrum. We list the best known
examples:

∙ The nuclear norm (also called the trace norm), denoted ‖A‖1, is given by 𝒮𝑓 (A)

for 𝑓(𝑥) = 𝑥.

∙ The Schatten 𝑝-norm, denoted ‖A‖𝑝𝑝, is given by 𝒮𝑓 (A) for 𝑓(𝑥) = 𝑥𝑝.

∙ The SVD entropy of A is given by 𝒮𝑓 (A) for 𝑓(𝑥) = 𝑥 log 𝑥.

∙ The log determinant log(det(A)) is given by 𝒮𝑓 (A) for 𝑓(𝑥) = log 𝑥.

∙ The trace exponential tr(exp(A)) is given by 𝒮𝑓 (A) for 𝑓(𝑥) = 𝑒𝑥.

∙ The trace inverse tr(A−1) is given by 𝒮𝑓 (A) for 𝑓(𝑥) = 1/𝑥.

Applications of Spectral Sums

The applications of approximate computation of the above spectral sums are broad.
The log-determinant is important in machine learning and inference applications
[Ras04, DKJ+07, FHT08]. The trace inverse is used in uncertainty quantification
[BCF09] and quantum chromodynamics [SLO13]. Computation of nuclear norm, is
required in a wide variety of applications. It is often used in place of the matrix rank
in matrix completion algorithms and other convex relaxations of rank-constrained
optimization problems [CR12, DTV11, JNS13, NNS+14]. It appears as the ‘graph

111



energy’ in theoretical chemistry [Gut92, Gut01], the ‘singular value bound’ in dif-
ferential privacy [HLM12, LM12], and in rank aggregation and collaborative ranking
[LN15].

Similar to the nuclear norm, general Schatten 𝑝-norms are used in convex relax-
ations for rank-constrained optimization [NHD12, NWC+12]. They also appear in im-
age processing applications such as denoising and background subtraction [XGL+16],
classification [LYCG14], restoration [XQT+16], and feature extraction [DHJZ15]. The
SVD entropy is used in feature selection [VGLH06, BP14], financial data analy-
sis [Car14, GXL15], and genomic data [ABB00] applications.

Fast Algorithms for Spectral Sum Approximation

Naively, any of the above spectral sums can be computed deterministically and exactly
by performing a full SVD of A, which requires Ω(𝑛𝜔) time in theory and Ω(𝑛3)

time in practice.2 The full SVD gives all of A’s singular values 𝜎1(A), ..., 𝜎𝑑(A)

from which the spectral sum can be computed explicitly. Until recently, very few
algorithms, randomized or deterministic, with runtimes faster than this approach
were known, outside a few special cases of the Schatten 𝑝-norms. For example, the
squared Frobenius norm (𝑝 = 2) is trivially computed in 𝑂(nnz(A)) time since it
equals the sum of squared entries in A.3 If randomization along with some small
probability of failure are allowed, the Schatten 𝑝-norms for even integers 𝑝 > 2, or
general integers with PSD A can be approximated in 𝑂(nnz(A) · 𝑝𝜖−2) time via trace
estimation [Woo14, BCKY16], since when 𝑝 is even or A is PSD, A𝑝 is PSD and we
have tr(A𝑝) = ‖A‖𝑝𝑝.

In [MNS+18] we use a combination of random sketching methods, stochastic iter-
ative methods, and polynomial approximation to give the first algorithms that break
the Ω(𝑛𝜔) runtime barrier for more general spectral sums, even when randomiza-
tion and some small probability of failure are allowed. Our main algorithmic result,
applying to general Schatten 𝑝-norm approximation is:

Theorem 3.1.2 (Theorem 31 of [MNS+18]). For any 𝑝 ≥ 0, 𝜖, 𝛿 > 0, there is an
algorithm that given A ∈ R𝑛×𝑛 returns 𝑋 ∈ [(1−𝜖)‖A‖𝑝𝑝, (1+𝜖)‖A‖𝑝𝑝] with probability
≥ 1− 𝛿. For 𝑝 ≥ 2 the algorithm runs in �̃�(log(1/𝛿) · 𝑝 · 𝑛2/𝜖3) time. For 𝑝 < 2 the

2 Note that an exact SVD is uncomputable even with exact arithmetic [TB97]. Nevertheless,
direct methods for the SVD obtain superlinear convergence rates and hence are often considered to
be ‘exact’.

3Recall that nnz(A) denotes the number of nonzero entries in A. See Section 1.3 for definitions
of other linear algebraic notation.

112



algorithm runs in

�̃�

(︂
log(1/𝛿) · 1

𝑝3 · 𝜖max{3,1+1/𝑝} · 𝑛
2.3729−.0994𝑝

1+.0435𝑝

)︂
time.

Note that, for 𝑝 < 2, the algorithm of Theorem 3.1.2 uses as a black box the
current fastest known matrix multiplication algorithm, which can multiply matrices in
𝑂(𝑛�̄�) time for �̄� ≈ 2.373 [LG14]. Any improvements in generic matrix multiplication
immediately give improvements to the above runtime.

There is also an algorithm that does not use fast matrix multiplication (i.e., uses
a Θ(𝑛3) time matrix multiplication routine) and runs in

�̃�

(︂
log(1/𝛿) · 1

𝑝3 · 𝜖max{3,1+1/𝑝} · 𝑛
3+𝑝/2
1+𝑝/2

)︂
time. For the important case of 𝑝 = 1 (the nuclear norm), Theorem 3.1.2 gives a
runtime of �̃�(𝑛2.18/𝜖3), or �̃�(𝑛2.33/𝜖3) if fast matrix multiplication is not used. We
note that our techniques also give algorithms for approximating the SVD entropy and
a general class of matrix Orlicz norms. We refer the reader to [MNS+18] for details.

Note that if 𝜖 is a constant, both the runtimes shown above are faster than the
fastest known matrix multiplication algorithm (𝑂(𝑛�̄�) for �̄� ≈ 2.373 [LG14]). Thus,
they are faster than the naive approach of performing a full SVD. However, for small
𝜖, the runtime dependence on 1/𝜖3 can be very expensive. It is natural to ask:

Question 3.1.3. Is possible to achieve the best of both worlds: a highly accurate
spectral sum algorithm (e.g., with log(1/𝜖) dependence), but with an 𝑜(𝑛�̄�) runtime,
where �̄� is the lowest known exponent for fast matrix multiplication? 4

3.1.2 Kernel Low-Rank Approximation

The kernel method is a popular technique used to apply linear learning and classifi-
cation algorithms to datasets with nonlinear structure [SS02, STC04]. Given training
input points a1, ..., a𝑛 ∈ R𝑑, the idea is to replace the standard Euclidean dot product
⟨a𝑖, a𝑗⟩ = a𝑇𝑖 a𝑗 with the kernel dot product 𝜓(a𝑖, a𝑗), where 𝜓 : R𝑑 × R𝑑 → R+ is
some positive semidefinite function. Popular kernel functions include e.g., the Gaus-
sian kernel with 𝜓(a𝑖, a𝑗) = 𝑒−‖a𝑖−a𝑗‖2/𝜎 for some parameter 𝜎 and the polynomial
kernel of degree 𝑞 with 𝜓(a𝑖, a𝑗) = (𝑐+ a𝑇𝑖 a𝑗)

𝑞 for some parameter 𝑐.
4See Section 1.3 for a formal definition of �̄� and the related quantity 𝜔.

113



In this chapter, we focus on kernels where 𝜓(a𝑖, a𝑗) is a function of the dot products
a𝑇𝑖 a𝑖 = ‖a𝑖‖2, a𝑇𝑗 a𝑗 = ‖a𝑗‖2, and a𝑇𝑖 a𝑗. Such functions encompass many kernels used
in practice, including the Gaussian kernel, the Laplace kernel, the polynomial kernel,
and the Matern kernels.

Any positive semidefinite function 𝜓(·, ·) can be associated with a reproducing
kernel Hilbert space ℱ such that 𝜓(a𝑖, a𝑗) = ⟨𝜑(a𝑖), 𝜑(a𝑗)⟩ℱ where 𝜑 : R𝑑 → ℱ is a
typically non-linear feature map. We let Φ = [𝜑(a1), ..., 𝜑(a𝑛)]

𝑇 denote the kernelized
dataset, whose 𝑖𝑡ℎ row is the kernelized datapoint 𝜑(a𝑖).

There is no requirement that Φ can be efficiently computed or stored – for example,
in the case of the Gaussian kernel, ℱ is an infinite dimensional space. Thus, kernel
methods typically work with the kernel matrix K ∈ R𝑛×𝑛 with K𝑖,𝑗 = 𝜓(a𝑖, a𝑗). We
will also sometimes denote K = {𝜓(a𝑖, a𝑗)} to make it clear which kernel function it
is generated by. We can equivalently write K = ΦΦ𝑇 . As long as all operations of
an algorithm only access Φ via the dot products between its rows, they can thus be
implemented using just K without explicitly computing the feature map.

Unfortunately computing K is expensive, and a bottleneck for scaling kernel meth-
ods to large datasets. For the kernels we consider, where 𝜓 depends on dot products
between the input points, we must at least compute the Gram matrix AA𝑇 , requiring
Θ(𝑛2𝑑) time in general. Even if A is sparse, this takes Θ(nnz(A)𝑛) time. Storing
K then takes Θ(𝑛2) space, and processing it for downstream applications like kernel
ridge regression and kernel SVM can be even more expensive.

Low-Rank Kernel Approximation

For this reason, a vast body of work studies how to efficiently approximate K via
a low-rank surrogate K̃ [SS00, AMS01, WS01, FS02, RR07, ANW14, LSS13, BJ02,
DM05, ZTK08, BW09, CKS11, WZ13, GM13]. If K̃ is rank-𝑘, it can be stored in
factored form in 𝑂(𝑛𝑘) space and operated on quickly – e.g., it can be inverted in
just 𝑂(𝑛𝑘�̄�−1) time to solve kernel ridge regression.

One possibility is to set K̃ = K𝑘 where K𝑘 is K’s best 𝑘-rank approximation –
the projection onto its top 𝑘 eigenvectors. K𝑘 minimizes, over all rank-𝑘 K̃, the error

‖K − K̃‖𝐹 , recalling that ‖M‖𝐹 is the Frobenius norm:
(︁∑︀

𝑖,𝑗 M
2
𝑖,𝑗

)︁1/2
. It in fact

minimizes error under any unitarily invariant norm, e.g., the popular spectral norm.
Unfortunately, K𝑘 is prohibitively expensive to compute, requiring Ω(𝑛𝜔) time even
using fast matrix multiplication

Research on low-rank kernel approximation thus seeks to find K̃ that is nearly as
good as K𝑘, but can be computed much more quickly. Specifically, it is natural to

114



ask for K̃ fulfilling the following near optimal low-rank approximation guarantee of
Problem 2.1.1 in Chapter 2, restated here:

Definition 3.1.4 (Relative Error Kernel Approximation). For any 𝜖 ≥ 0, 𝑘 ∈ Z≥1,
K̃ is a (1 + 𝜖) relative error rank-𝑘 approximation of K if:

‖K− K̃‖𝐹 ≤ (1 + 𝜖)‖K−K𝑘‖𝐹 . (3.1)

Other goals, such as nearly matching the spectral norm error ‖K −K𝑘‖2 or ap-
proximating K entry-wise have also been considered [RR07, GM13]. Of particular
interest to our results is the closely related goal:

Definition 3.1.5 (Approximate Kernel PCA). For any 𝜖 > 0, an orthonormal basis
Z ∈ R𝑛×𝑘 is a (1+ 𝜖) approximation solution to rank-𝑘 kernel PCA if, for any Φ with
ΦΦ𝑇 = K:

‖Φ− ZZ𝑇Φ‖𝐹 ≤ (1 + 𝜖)‖Φ−Φ𝑘‖𝐹 . (3.2)

Definition 3.1.5 asks us to find a low-rank subspace Z such that the projection of
our kernelized dataset Φ onto Z nearly optimally approximates this dataset. Given
Z, we can approximate K using K̃ = ZZ𝑇ΦΦ𝑇ZZ𝑇 = ZZ𝑇KZZ𝑇 . Alternatively,
letting P be the projection onto the row span of ZZ𝑇Φ, we can write K̃ = ΦPΦ𝑇 ,
which can be computed efficiently, for example, when P is a projection onto a subset
of the kernelized datapoints [MM17].

Fast Algorithms for Relative-Error Kernel Approximation

Until recently, all algorithms achieving the guarantees of Definitions 3.1.4 and 3.1.5
were at least as expensive as computing the full matrix K, which was needed to
compute the low-rank approximation [GM13].

However, recent work has shown that this is not required. Avron, Nguyen, and
Woodruff [ANW14] demonstrate that for the polynomial kernel, Z satisfying Defi-
nition 3.1.5 can be computed in 𝑂(nnz(A)𝑞) + 𝑛 poly(3𝑞𝑘/𝜖) time for a polynomial
kernel with degree 𝑞.

In [MM17] we give a fast algorithm for any kernel, using recursive Nyström
sampling, which outputs Z satisfying Definition 3.1.5 (see Section C.3 of [MM17]).
Computing Z requires accessing �̃�(𝑘/𝜖) columns of the kernel matrix along with
�̃�(𝑛(𝑘/𝜖)�̄�−1) additional time for other computations. Assuming the kernel is a func-
tion of the dot products between the input points, the kernel evaluations require

115



�̃�(nnz(A)𝑘/𝜖) time. The results of [MM17] can also be used to compute K̃ satisfying
Definition 3.1.4 with 𝜖 =

√
𝑛 in �̃�(nnz(A)𝑘 + 𝑛𝑘�̄�−1) time (see detailed discussion in

Chapter 2.)

The low-rank approximation results of Chapter 2 apply to any PSD matrix, and
therefore, to any kernel matrix. Thus, as a consequence of Theorem 2.5.1, for any
kernel and any 𝜖 > 0, it is possible to compute K̃ satisfying Definition 3.1.4 with
probability ≥ 99/100 in �̃�(nnz(A)𝑘/𝜖) + 𝑛 poly(𝑘/𝜖) time plus the time needed to
compute an �̃�(

√
𝑛𝑘/𝜖2)× �̃�(

√︀
𝑛𝑘/𝜖) submatrix of K. If A has uniform row sparsity

– i.e., nnz(a𝑖) ≤ 𝑐 nnz(A)/𝑛 for some constant 𝑐 and all 𝑖, this step can be done
in �̃�(nnz(A)𝑘/𝜖2.5) time. Alternatively, if 𝑑 ≤ (

√
𝑛𝑘/𝜖2)𝛼 for 𝛼 < .314 this can be

done in �̃�(𝑛𝑘/𝜖4) = �̃�(nnz(A)𝑘/𝜖4) time using fast rectangular matrix multiplication
[LG12, GU17] (assuming that there are no all zero data points so 𝑛 ≤ nnz(A).)

As discussed, the algorithms of [MM17, MW17b] make significant progress in
efficiently solving the low-rank approximation problems of Definitions 3.1.4 and 3.1.5
for general kernel matrices. They demonstrate that, surprisingly, a relative-error
low-rank approximation can be computed significantly faster than the time required
to write down all of K, which is Ω(nnz(A) · 𝑛) for kernels that depend on the dot
products between the input points. It is natural to ask:

Question 3.1.6. Can the results of [MM17, MW17b] be improved significantly?
Even ignoring 𝜖 dependencies and typically lower order terms, both algorithms use
Ω(nnz(A)𝑘) time. One might hope to improve this to input sparsity, or near input
sparsity time, �̃�(nnz(A)), which is known for computing a low-rank approximation of
A itself [CW13]. The work of Avron et al. affirms that this is possible for the kernel
PCA guarantee of Definition 3.1.5 for degree-𝑞 polynomial kernels, for constant 𝑞.
Can this result be extended to other popular kernels, or even more general classes?

3.1.3 Our Contributions

In this chapter we show that general matrix multiplication can be reduced to very
accurate spectral sum approximation as well as to relative error kernel low-rank ap-
proximation (in the sense of Definition 3.1.4), for any error parameter 𝜖. These
reductions help pin down the complexity of these basic problems. Our main results
are described below.

116



Spectral Sum Problems

We show that any algorithm (randomized or deterministic) for computing a suffi-
ciently accurate approximation to any of the important spectral sums defined in
Section 3.1.1 can be used to exactly solve the triangle detection problem: decide if an
𝑛-node graph contains at least one triangle [IR77, CN85]. Our reductions all follow
from a single general theorem (Theorem 3.2.1) and are deterministic. As an example
of one of our results, for the Schatten 3-norm we prove in Corollary 3.2.3:

Theorem 3.1.7 (Schatten 3-Norm Hardness). Suppose there exists an algorithm that
on any input B ∈ R𝑛×𝑛 returns, with probability 1− 𝛿, 𝑋 ∈ [(1− 𝜖)‖B‖33, (1+ 𝜖)‖B‖33]
in 𝑂(𝑛𝛾𝜖−𝑐) time. Then one can solve triangle detection on 𝑛-node graphs with success
probability 1− 𝛿 in 𝑂(𝑛𝛾+4𝑐) time.

The triangle detection problem is a canonical problem in fine-grained complexity.
Generally, it is believed that triangle detection on a general 𝑛-node graph is as difficult
as multiplying two 𝑛× 𝑛 matrices together. Naively this requires Ω(𝑛3) time. Using
fast matrix multiplication it requires Ω(𝑛𝜔) time. No faster runtimes are known even
if randomization and a small probability of failure are allowed.

In the seminal work of [WW10] it was shown that any truly subcubic time algo-
rithm (i.e., an algorithm running in 𝑂(𝑛3−𝑐) time for some 𝑐 > 0) for triangle detection
yields a truly subcubic time algorithm for Boolean matrix multiplication (BMM), for
which, like general matrix multiplication, the fastest runtime is Ω(𝑛𝜔). This result is
via a deterministic reduction from BMM to triangle reduction. Formally the result
can be stated as:

Theorem 3.1.8 (Implied by Lemma E.1 of [WW10] ). For any 0 < 𝑐 ≤ 1, suppose
there is a 𝑂(𝑛3−𝑐) time algorithm for triangle detection on 𝑛-node graphs with success
probability 1 − 𝛿. Then there is an 𝑂(𝑛3−𝑐/3) time algorithm for Boolean matrix
multiplication with success probability 1−𝑂(𝛿 · 𝑛2 log 𝑛).5

Consequently, our results show that approximating any of the spectral sums above
to high enough accuracy is in a sense as difficult as exact BMM. For example, Theorem
3.1.2 gives an algorithm for the Schatten 3-norm that succeeds with high probabil-
ity and requires just �̃�(𝑛2/𝜖3) time for general matrices. In comparison, currently

5Note that in the reduction Theorem 3.1.8 the triangle detection algorithm is called 𝑂(𝑛2 log 𝑛)
times, and so the probability of failure may increase correspondingly. However, for spectral sum
computation and triangle detection, the runtime dependence on the failure probability 𝛿 is always
at worst 𝑂(log 1/𝛿), so this loss translates to a 𝑂(log 𝑛) loss in runtime. This is because it is always
possible to solve the problem with success probability 𝛿′ = 2/3. Repeating this 𝑂(log 1/𝛿) times
and taking the median of the outputs will return a valid solution with probability 1− 𝛿.

117



the fastest known matrix multiplication algorithm runs in 𝑂(𝑛�̄�) time for �̄� ≈ 2.373

[LG14]. By Theorem 3.1.7, improving the 𝜖 dependence to 𝑜(1/𝜖(�̄�−2)/4) = 𝑂(1/𝜖.09),
would yield a randomized algorithm for triangle detection for general graphs suc-
ceeding with high probability and running faster than matrix multiplication time,
breaking a longstanding runtime barrier for this problem. Even a 1/𝜖1/3 dependence
would give a sub-cubic time triangle detection algorithm, and hence a subcubic time
matrix multiplication algorithm via the reduction of Theorem 3.1.8. This would rep-
resent a major breakthrough in linear algebra as it would give an alternative approach
to fast matrix multiplication. Thus, we show that the answer to Question 3.1.3 is
likely no, barring a major algorithmic breakthrough.

We extend our lower bound for tr(A−1) by proving that approximating tr(A−1) for
the A used in the lower bound can be reduced to computing all effective resistances
of a certain graph Laplacian up to (1 ± 𝜖) error. Thus, we rule out highly accurate
(with 1/𝜖𝑐 dependence for small 𝑐) fast approximation algorithms for all effective
resistances, barring a major breakthrough in the state-of-the-art in triangle detection.
Interestingly, this bound holds despite the existence of nearly linear time system
solvers (with log(1/𝜖) error dependence) for Laplacians [ST04].

The effective resistances of a graph Laplacian are just scalings of the leverage
scores of the corresponding vertex edge incidence matrix. As discussed in Chapters 1
and 2, effective resistances and leverage scores have been crucial in giving algorithmic
improvements to fundamental problems like graph sparsification [SS08], regression
[LMP13, CLM+15], and low-rank approximation [CMM17, MW17b]. While coarse
multiplicative approximations to the quantities suffice for these problems, more re-
cently computing these quantities has been used to achieve breakthroughs in solving
maximum flow and linear programming [LS14], cutting plane methods [LSW15], and
sampling random spanning trees [KM09, MST15]. In each of these settings having
more accurate estimates would be a natural route to either simplify or possibly im-
prove existing results; our results show that this is unlikely to be successful if the
precision requirements are two high.

Kernel Low-Rank Approximation

We show that achieving the guarantee of Definition 3.1.4 significantly more efficiently
than the work of [MM17, MW17b] is likely very difficult (i.e., the answer to Question
3.1.6 is likely no). Specifically, we prove that for a wide class of kernels, the kernel
low-rank approximation problem is as hard as multiplying the input A ∈ R𝑛×𝑑 by
an arbitrary C ∈ R𝑑×𝑘. This cannot be done in 𝑜(nnz(A)𝑘) time in general, and

118



giving an algorithm to do so would represent a major breakthrough in fast matrix
multiplication. Similarly to our work on spectral sums, our lower bound is via a
reduction from exact rectangular matrix multiplication to approximate kernel low-
rank approximation. We have the following result for some common kernels to which
our techniques apply:

Theorem 3.1.9 (Hardness for low-rank kernel approximation). Consider any poly-
nomial kernel 𝜓(m𝑖,m𝑗) = (𝑐+m𝑇

𝑖 m𝑗)
𝑞, Gaussian kernel 𝜓(m𝑖,m𝑗) = 𝑒−‖m𝑖−m𝑗‖2/𝜎,

or the linear kernel 𝜓(m𝑖,m𝑗) = m𝑇
𝑖 m𝑗. Assume there is an algorithm that, for some

𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ, given M ∈ R𝑛×𝑑 with asso-
ciated kernel matrix K = {𝜓(m𝑖,m𝑗)}, in 𝑜(nnz(M)𝑘+𝑛𝑘𝑝) time, for 𝑝 ≥ 2, returns
N ∈ R𝑛×𝑘 that satisfies with probability 1− 𝛿:

‖K−NN𝑇‖2𝐹 ≤ Δ‖K−K𝑘‖2𝐹 .

Then, for any 𝑛, 𝑑, 𝑘, there is an 𝑜(nnz(A)𝑘+𝑛𝑘𝑐) time algorithm that, given arbitrary
A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘, returns their product AC with probability ≥ 1− 𝛿.

The above applies for any approximation factor Δ. While we work in the real
RAM model, ignoring bit complexity, as long as Δ = poly(𝑛) and A,C have entries
bounded by some polynomial in 𝑛 and 𝑑, our reduction from multiplication to low-
rank approximation is achieved using matrices that can be represented with just
𝑂(log(𝑛+ 𝑑)) bits per entry.

Theorem 3.1.9 shows that the runtime of �̃�(nnz(A)𝑘+𝑛𝑘�̄�−1) for Δ =
√
𝑛 achieved

by [MM17] for general kernels cannot be significantly improved without advancing the
state-of-the-art in matrix multiplication. The fastest known algorithm for performing
this multiplication, even if randomization and some probability of failure are allowed,
runs in time Ω(nnz(A)𝑘) for sufficiently sparse A (see [LG12, GU17] for details.)

As discussed, when A has uniform row sparsity or when 𝑑 ≤ (
√
𝑛𝑘/𝜖2)𝛼, the

runtime of [MW17b] for Δ = (1 + 𝜖), ignoring 𝜖 dependencies and typically lower
order terms, is �̃�(nnz(A)𝑘), which is also nearly tight (see Chapter 2 for a detail
exposition of this result).

In recent work, Backurs et al. [BIS17] give conditional lower bounds for a number
of kernel learning problems, including kernel PCA for the Gaussian kernel. However,
their strong bound, of Ω(𝑛2) time, requires very small error Δ = exp(−𝜔(log2 𝑛),
whereas ours applies for any relative error Δ.

In [MW17a] we give an algorithm which shows that, in contrast, for the Kernel
PCA guarantee of Definition 3.1.5, it is possible to obtain 𝑜(nnz(A)𝑘) time random-

119



ized algorithms for any shift and rotationally invariant kernel – e.g., any radial basis
function kernel where 𝜓(x𝑖,x𝑗) = 𝑓(‖x𝑖 − x𝑗‖). This result significantly extends the
progress of Avron et al. [ANW14] on the polynomial kernel. We refer the reader to
[MW17a] for details.

3.1.4 Prior Work

Fine-grained complexity has had much success for graph problems, string problems,
and problems in other areas (see, e.g., [Wil15] for a survey), and is closely tied to
understanding the complexity of matrix multiplication. However, to the best of our
knowledge it has not been applied broadly to problems in linear algebra. [BIS17]
gives one example of work similar to our own which uses fine-grained complexity
approaches to give conditional lower bounds for a number of problems in machine
learning, including the linear algebraic problems of kernel matrix approximation and
kernel ridge regression.

Outside this example, hardness results for linear algebraic problems tend to ap-
ply to restricted computational models such as arithmetic circuits [BS83], bilinear
circuits or circuits with bounded coefficients and number of divisions [Mor73, Raz03,
Shp03, RS03], algorithms for linear systems that can only add multiples of rows to
each other [KKS65, KS70], and algorithms with restrictions on the dimension of cer-
tain manifolds defined in terms of the input [Win70, Win87, Dem13]. In contrast, we
obtain conditional lower bounds for arbitrary polynomial time algorithms by showing
that faster algorithms for them imply faster algorithms for canonical hard problems
in fine-grained complexity – specifically, for square and rectangular matrix multipli-
cation.

3.2 Lower Bounds for Spectrum Approximation

In this section we prove our conditional lower bounds for spectral sums, including the
Schatten 𝑝-norms, log-determinant, the SVD entropy, the trace inverse, and the trace
exponential. We show that similar techniques can also be used to give hardness for
computing the determinant. We also show that our bounds imply hardness for the
important primitives of computing effective resistances in a graph or leverage scores
in a matrix.

Road Map: In Section 3.2.1 we give a high level overview of our lower bound
approach. In Section 3.2.2 we give our general result on reducing triangle detection

120



to spectral sum computation. In Section 3.2.3 we use this result to show hardness for
computing various well studied spectral sums. In Section 3.2.4 we extend our results
to give hardness for graph effective resistances and leverage scores.

3.2.1 Lower Bound Approach

As discussed in Section 3.1.3, our conditional lower bounds reduce triangle detection
to spectral sum approximation. Boolean matrix multiplication can further be reduced
to triangle detection by Theorem 3.1.8., thereby giving a reduction from exact Boolean
matrix multiplication to spectral sum approximation. Our main reduction will be for
a very general class of spectral sums. We will then show that this class encompasses
the specific sums that we care about.

To illustrate the main idea of our reduction, it is instructive to first consider
just the Schatten 3-norm, ‖A‖33 = 𝑆𝑓 (A) for 𝑓(𝑥) = 𝑥3. Our general reduction
will be based off this case. We start with the fact that the number of triangles in
any unweighted graph 𝐺 with 𝑛 nodes is equal to tr(A3)/6, where A ∈ R𝑛×𝑛 is
the adjacency matrix of 𝐺. Any algorithm for approximating tr(A3) to high enough
accuracy therefore gives an algorithm for detecting if a graph has at least one triangle.

For any A we can write

tr(A3) =
𝑛∑︁
𝑖=1

𝜆𝑖(A)3,

where 𝜆𝑖(A) is A’s 𝑖𝑡ℎ eigenvalue. Unfortunately, since A is not PSD, its eigenval-
ues may have different signs than its singular values and so tr(A3) is not simply a
function of A’s singular values and cannot be determined simply via a spectral sum
computation. However, the graph Laplacian given by L = D − A where D is the
diagonal degree matrix, is PSD. This means that its eigenvalues 𝜆1(L), ..., 𝜆𝑛(L) are
equal to its singular values 𝜎1(L), ..., 𝜎𝑛(L). Again using that tr(M) =

∑︀𝑛
𝑖=1 𝜆𝑖(M)

for any M we have:

‖L‖33 =
𝑛∑︁
𝑖=1

𝜎𝑖(L)
3

=
𝑛∑︁
𝑖=1

𝜆𝑖(L)
3

= tr(L3)

= tr(D3)− 3 tr(D2A) + 3 tr(DA2)− tr(A3).

121



We have tr(D2A) = 0 since A has an all 0 diagonal. Further, it is not hard to
see that tr(DA2) = tr(D2). So this term and tr(D3) are easy to compute exactly
in 𝑂(𝑛2) time – they are simple functions of the node degrees in the graph. Thus,
if we approximate ‖L‖33 up to additive error 6, we can determine if tr(A3) = 0 or
tr(A3) ≥ 6 and so detect if 𝐺 contains a triangle. One can show that ‖L‖33 ≤ 8𝑛4 for
any unweighted graph with 𝑛 nodes, and hence computing this norm up to (1 ± 𝜖)

relative error for 𝜖 = 3/(6𝑛4) suffices to detect a triangle. If we have an 𝑂(𝑛𝛾𝜖−𝑐) time
(1±𝜖) approximation algorithm for the Schatten 3-norm, we can thus perform triangle
detection in 𝑂(𝑛𝛾+4𝑐 + 𝑛2) time. The 𝑛2 term is required for the exact computation
of tr(DA2) and tr(D3). We typically imagine that it is dominated by the 𝑂(𝑛𝛾+4𝑐)

term since, without any assumptions on A, computing the Schatten 3-norm at least
requires reading all of A which takes Ω(𝑛2) time.

Generalizing to Other Spectral Sums

We can generalize the above approach to the Schatten 4-norm by adding 𝜆 self-loops
to each node of 𝐺, which corresponds to replacing A with 𝜆I+A. We then consider
tr((𝜆I + A)4) = ‖𝜆I + A‖44. This is the sum over all vertices 𝑣𝑖 for 𝑖 ∈ [𝑛] of the
number of paths that start at 𝑣𝑖 and return to 𝑣𝑖 in four steps. All of these paths
are either (1) legitimate four cycles that exist in 𝐺, (2) triangles combined with self
loops, or (3) combinations of self-loops and two-step paths from a vertex 𝑣𝑖 to one of
its neighbors and back. The number of type (3) paths is exactly computable using
the node degrees and number of self loops. Additionally, if the number of self loops
𝜆 is large enough, the number of type (2) paths will dominate the number of type
(1) paths, even if there is just a single triangle in the graph. Hence, an accurate
approximation to ‖𝜆I + A‖44 will give us the number of type (2) paths, from which
we can easily compute the number of triangles.

A similar argument extends to a very broad class of spectral sums by considering a
power series expansion of 𝑓(𝑥) and showing that for large enough 𝜆, tr (𝑓(𝜆I+A)) is
dominated by tr(A3) along with some exactly computable terms. Thus, an accurate
approximation to this spectral sum allows us to determine the number of triangles in
𝐺. This approach works for any 𝑓(𝑥) that can be represented as a power series, with
reasonably well-behaved coefficients on some interval of R+, giving our bounds for all
‖A‖𝑝 with 𝑝 ̸= 2, the SVD entropy, log det(A), tr(A−1), and tr(exp(A)). In Figure
?? we illustrate the approach as applied to tr(A−1).

122



Figure 3-1: An illustration of our lower bound technique applied to the trace inverse.
By writing out the Taylor expansion 1

𝜆+𝑥
=
∑︀∞

𝑖=0
𝑥𝑖

𝜆𝑖+1 we can see that for sufficiently
large 𝜆, tr((𝜆I+A)−1) is dominated by tr(𝜆−4A3) along with some exactly computable
terms. Thus, computing tr((𝜆I+A)−1) to high enough accuracy lets us approximate
tr(A3) and in turn detect a triangle in the graph.

3.2.2 Reductions From Triangle Detection

Here we provide our main technical tool for reducing triangle detection to spectral
sum computation. As discussed in Section 3.2.1, our reduction leverages the well
known fact that the number of triangles in any unweighted graph 𝐺 is equal to
tr(A3)/6 where A is the adjacency matrix for 𝐺. Consequently, given any function
𝑓 : R+ → R+ whose power series is reasonably behaved, we can show that for suitably
small Δ the quantity tr(𝑓(I + ΔA)) is dominated by the contribution of tr(A𝑘) for
𝑘 ∈ (0, 3). Therefore computing tr(𝑓(I + ΔA)) approximately lets us distinguish
between whether or not tr(A3) = 0 or tr(A3) ≥ 6, and therefore detect a triangle in
𝐺.

We formalize this in the following theorem. As it simplifies the result, we focus on
the case where 𝑓 can be written as a power series on the interval (0, 2). This suffices
for our purposes and can be generalized via shifting and scaling of 𝑥.

Theorem 3.2.1 (Many Spectral Sums are as Hard as Triangle Detection). Let 𝑓 :

R+ → R+ be an arbitrary function, such that for 𝑥 ∈ (0, 2) we can express it as

𝑓(𝑥) =
∞∑︁
𝑘=0

𝑐𝑘(𝑥− 1)𝑘 where
⃒⃒⃒⃒
𝑐𝑘
𝑐3

⃒⃒⃒⃒
≤ ℎ𝑘−3 for all 𝑘 > 3. (3.3)

Then given the adjacency matrix A ∈ R𝑛×𝑛 of any simple graph 𝐺 that has no self-
loops and spectral sum estimate

𝑋 ∈ [(1− 𝜖1)
𝑛∑︁
𝑖=1

𝑓(𝜎𝑖(I−ΔA)), (1 + 𝜖1)
𝑛∑︁
𝑖=1

𝑓(𝜎𝑖(I−ΔA))]

123



for scaling Δ and accuracy 𝜖1 satisfying

Δ = min

{︂
1

𝑛
,

1

10𝑛4ℎ

}︂
and 𝜖1 =

1

9
·min

{︂
1 ,

⃒⃒⃒⃒
𝑐3Δ

3

𝑐0𝑛

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑐3Δ

𝑐2𝑛2

⃒⃒⃒⃒}︂
we can detect if 𝐺 has a triangle in 𝑂(nnz(A)) = 𝑂(𝑛2) time.

Theorem 3.2.1 shows that, if we are given a (1±𝜖1) approximation to 𝑓(I−ΔA) for
appropriately set 𝜖1,Δ, then we can detect if 𝐺 contains a triangle. This immediately
implies that if we have an algorithm for computing such an approximation with
probability ≥ 1 − 𝛿, then we can use it to perform triangle detection with success
probability ≥ 1− 𝛿. Formally:

Corollary 3.2.2. Let 𝑓 and 𝜖1 be as in Theorem 3.2.1. Assume there exists an
algorithm that, for some 𝛿 ≥ 0, on any input A ∈ R𝑛×𝑛, 𝜖 > 0, with probability
≥ 1− 𝛿 returns:

𝑋 ∈ [(1− 𝜖)𝒮𝑓 (A), (1 + 𝜖)𝒮𝑓 (A)]

in 𝑂(𝑔(𝑛, nnz(A)) ·𝜖−𝑐) time. Then one can solve triangle detection on 𝑛-node graphs
with success probability ≥ 1− 𝛿 in 𝑂(nnz(A) + 𝑔(𝑛, nnz(A)) · 𝜖−𝑐1 )) time.

Proof. For any graph 𝐺 with adjacency matrix A, we can run the assumed algorithm
in 𝑂(𝑔(𝑛, nnz(A)) · 𝜖−𝑐1 ) time to compute an approximation 𝑋 of 𝒮𝑓 (A). If 𝑋 ∈
[(1− 𝜖)𝒮𝑓 (A), (1 + 𝜖)𝒮𝑓 (A)], by Theorem 3.2.1 we can detect if any 𝐺 has a triangle
in 𝑂(nnz(A)) time. By assumption, 𝑋 ∈ [(1−𝜖)𝒮𝑓 (A), (1+𝜖)𝒮𝑓 (A)] with probability
≥ 1− 𝛿. Thus our algorithm for triangle detection succeeds with probability ≥ 1− 𝛿

and runs in time 𝑂(nnz(A) + 𝑔(𝑛, nnz(A)) · 𝜖−𝑐1 )).

We now prove Theorem 3.2.1. As discussed in Section 3.2.1, we will show that it is
possible to extract an accurate approximation of tr(A3), which is proportional to the
number of triangles in 𝐺, from the assumed approximation to 𝒮𝑓 (I−ΔA). This will
be possible by our assumption that in the series expansion 𝑓(𝑥) =

∑︀∞
𝑘=0 𝑐𝑘(𝑥 − 1)𝑘,

the coefficients 𝑐𝑘 for 𝑘 > 3 are not too large compared to 𝑐3.

Proof of Theorem 3.2.1 . Let A, 𝐺, Δ, 𝜖1, and 𝑋 be as in the theorem statement and
let B

def
= I − ΔA. By Gershgorin’s circle theorem [Wei03], ‖A‖2 ≤ 𝑛 − 1 and since

Δ ≤ 1/𝑛, ‖ΔA‖2 < 1. Consequently B is symmetric PSD with 𝜎𝑖(B) = 𝜆𝑖(B) ∈ (0, 2)

124



for all 𝑖 ∈ [𝑛]. Therefore, using (3.3) yields:

𝑛∑︁
𝑖=1

𝑓(𝜎𝑖(B)) =
𝑛∑︁
𝑖=1

𝑓(1−Δ𝜆𝑖(A))

=
𝑛∑︁
𝑖=1

∞∑︁
𝑘=0

𝑐𝑘(Δ𝜆𝑖(A))𝑘

=
∞∑︁
𝑘=0

𝑐𝑘Δ
𝑘 tr(A𝑘) . (3.4)

Setting Δ ≤ 1
10𝑛4ℎ

is enough to insure that the first four terms of this power series
dominate. Since we can compute the first three terms exactly, this will allow us to
obtain a good approximation to the fourth term, which is a multiple of tr(A3), and
hence the number of triangles in the graph.

Specifically using the assumption that
⃒⃒⃒
𝑐𝑘
𝑐3

⃒⃒⃒
≤ ℎ𝑘−3 for all 𝑘, we can bound the tail

terms by: ⃒⃒⃒⃒
⃒

∞∑︁
𝑘=4

𝑐𝑘Δ
𝑘 tr(A𝑘)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒𝑐3Δ3

∞∑︁
𝑘=4

𝑐𝑘
𝑐3
Δ𝑘−3 tr(A𝑘)

⃒⃒⃒⃒
⃒

≤ |𝑐3|Δ3

∞∑︁
𝑘=4

1

10𝑘−3

(︂
1

𝑛4

)︂𝑘−3

tr(A𝑘)

≤ |𝑐3|Δ3

9
, (3.5)

where the last inequality uses the fact that tr(A𝑘) ≤ ‖A‖𝑘−2
2 ‖A‖2𝐹 ≤ 𝑛𝑘 ≤ 𝑛4(𝑘−3)

for all 𝑘 > 3. Further, since tr(A0) = 𝑛, tr(A) = 0, and tr(A2) = ‖A‖2𝐹 ≤ 𝑛2 we can
bound the first three terms:

0 ≤ 𝑐0 tr(A
0) + 𝑐1Δtr(A) + 𝑐2Δ

2(tr(A2)) ≤ |𝑐3|Δ3 ·
(︂⃒⃒⃒⃒

𝑐0𝑛

𝑐3Δ3

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑐2𝑛

2

𝑐3Δ

⃒⃒⃒⃒)︂
≤ |𝑐3|Δ3

9𝜖1
(3.6)

since we set 𝜖1 = 1
9
·min

{︁
1 ,

⃒⃒⃒
𝑐3Δ3

𝑐0𝑛

⃒⃒⃒
,
⃒⃒⃒
𝑐3Δ
𝑐2𝑛2

⃒⃒⃒}︁
.

Now, clearly in 𝑂(nnz(A)) time we can compute tr(A2) = ‖A‖2𝐹 . Given spectral
sum estimate 𝑋 ∈ [(1− 𝜖1)𝒮𝑓 (B), (1 + 𝜖1)𝒮𝑓 (B)] we can thus compute

𝑌
def
= 𝑋 − 𝑐0𝑛− 𝑐1Δtr(A)− 𝑐2Δ

2 tr(A2)

125



in 𝑂(𝑛2) time. Applying (3.4), (3.5), and (3.6) we have:

𝑌 ≤ (1− 𝜖1) ·
∞∑︁
𝑘=0

𝑐𝑘Δ
𝑘 tr(A𝑘)

≤ 𝑐3Δ
3 tr(A3) +

|𝑐3|Δ3

9
+ 𝜖1

(︂
|𝑐3|Δ3

9
+ 𝑐3Δ

3 tr(A3) +
|𝑐3|Δ3

9𝜖1

)︂
≤ 𝑐3Δ

3

[︂
tr(A3) (1 + 𝜖1) +

1

3

]︂
≤ 𝑐3Δ

3

[︂
tr(A3)

(︂
1 +

1

9

)︂
+

1

3

]︂
.

We can symmetrically show that

𝑌 ≥ 𝑐3Δ
3

[︂
tr(A3)

(︂
1− 1

9

)︂
− 1

3

]︂
.

Thus if 𝐺 contains a triangle and so tr(A3) ≥ 6, 𝑌 ≥ 𝑐3Δ
3 · 15

3
, while if 𝐺 contains no

triangles and tr(A3) = 0, 𝑌 ≤ 𝑐3Δ
3 · 1

3
. So we can use 𝑌 to detect if 𝐺 has a triangle.

This gives the theorem recalling that, given 𝑋, we can compute 𝑌 in 𝑂(nnz(A))

time.

Note that in the above reduction, if Δ is small (i.e., ≤ 2𝑛) then B = I −ΔA is
a very well conditioned matrix (its condition number is at most a constant). Con-
sequently, our bounds apply even when approximately applying for example B−1 or
B1/2 to high precision is inexpensive. The theorem (and the results in Section 3.2.4)
suggests that the difficulty in computing spectral sums arises more from the need to
measure the contribution from multiple terms precisely, than from the difficulty in
manipulating B for the purposes of applying it to a single vector.

Also, note that the matrix B in this reduction is symmetrically diagonally dom-
inant (SDD). So, even for these highly structured matrices, which admit near linear
time application of B−1 [ST04] as well as approximate factorization [KS16], accurate
spectral sums are difficult. We leverage this in the effective resistance hardness results
of Section 3.2.4.

3.2.3 Hardness for Computing Spectral Sums

We now use Theorem 3.2.1 and Corollary 3.2.2 to show hardness results for various
important spectral sums, including all those discussed in Section 3.1.1. To simplify
our presentation, we focus on the case of dense matrices, showing bounds of the form

126



Ω(𝑛𝛾𝜖−𝑐). However, note that Theorem 3.2.1 and Corollary 3.2.2 also yield conditional
lower bounds on the running time for sparse matrices and can be stated in terms of
nnz(A). Most of the proofs in this section are direct instantiations of Corollary 3.2.2
with a specific spectral sum. Typically, the series expansion required in (3.3) is given
via a simple Taylor series expansion.

Schatten 𝑝-norm for all 𝑝 ̸= 2

For any 𝑝 ∈ R and 𝑥 ∈ (0, 2), using the Taylor Series about 1 we can write

𝑥𝑝 =
∞∑︁
𝑘=0

𝑐𝑘(1− 𝑥)𝑘 where 𝑐𝑘 =
∏︀𝑘−1

𝑖=0 (𝑝− 𝑖)

𝑘!
. (3.7)

This series converges since |𝑐𝑘| ≤ 1 for 𝑘 > 𝑝 and for 𝑥 ∈ (0, 2), (1 − 𝑥) < 1. Note
that when 𝑝 is a non-negative integer, only the first 𝑝 terms of the expansion are
nonzero. When 𝑝 is non-integral, the sum is infinite. We will apply Theorem 3.2.1
and Corollary 3.2.2 slightly differently for different values of 𝑝. We first give our
strongest result, which is for 𝑝 = 3:

Corollary 3.2.3 (Schatten 3-Norm Hardness). Assume there exists an algorithm
that, for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛 returns, with probability ≥ 1 − 𝛿,
𝑋 ∈ [(1−𝜖)‖B‖33, (1+𝜖)‖B‖33] in 𝑂(𝑛𝛾𝜖−𝑐) time. Then one can solve triangle detection
on 𝑛-node graphs with success probability ≥ 1− 𝛿 in 𝑂(𝑛𝛾+4𝑐) time.

Proof. For 𝑝 = 3, in the expansion of (3.7), 𝑐𝑘 = 0 for 𝑘 > 3. So we apply Corollary
3.2.2 with ℎ = 0 and hence Δ = 1/𝑛 and 𝜖1 = 𝑐3Δ3

𝑐0𝑛
= 1

𝑛4 . This gives the result.

Note that for 𝑝 very close to 3 a similar bound holds since ℎ ≈ 0. For 𝑝 = 3,
Theorem 3.1.2 gives a randomized algorithm running in �̃�(𝑛2/𝜖3) time and succeeding
with high probability. Significant improvement to the 𝜖 dependence in this algorithm
therefore either requires loss in the 𝑛 dependence or would lead to a significant im-
provement in state-of-the-art triangle detection, giving an algorithm running faster
than the fastest known matrix multiplication algorithm.

We next extend to all 𝑝 ̸= 1, 2. This more general result gives a bound for 𝑝 = 3,
but it is weaker than the bound given in Corollary 3.2.3.

Corollary 3.2.4 (Schatten 𝑝-Norm Hardness, 𝑝 ̸= 1, 2). For any 𝑝 > 0, 𝑝 ̸= 1, 2,
assume there exists an algorithm that, for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛

returns, with probability ≥ 1 − 𝛿, 𝑋 ∈ [(1 − 𝜖)‖B‖𝑝𝑝, (1 + 𝜖)‖B‖𝑝𝑝] in 𝑂(𝑛𝛾𝜖−𝑐) time.

127



Then one can solve triangle detection on 𝑛-node graphs with success probability ≥ 1−𝛿
in 𝑂

(︁
𝑛𝛾+13𝑐 · 𝑝3𝑐

|min{𝑝,(𝑝−1),(𝑝−2)}|𝑐

)︁
time.

Proof. In the expansion of (3.7) we have 𝑐𝑘
𝑐3

≤ 𝑝𝑘−3 for all 𝑘 > 3 as well as:⃒⃒⃒⃒
𝑐0
𝑐3

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1

𝑝(𝑝− 1)(𝑝− 2)

⃒⃒⃒⃒
≤
⃒⃒⃒⃒

1

2min{𝑝, (𝑝− 1), (𝑝− 2)}

⃒⃒⃒⃒
.

We also have
⃒⃒⃒
𝑐2
𝑐3

⃒⃒⃒
≤
⃒⃒⃒

1
2min{𝑝,(𝑝−1)}

⃒⃒⃒
. We thus apply Corollary 3.2.2 with Δ = Θ

(︁
1
𝑛4𝑝

)︁
and 𝜖1 = 𝑐3Δ3

𝑐0𝑛
= Θ

(︁
|min{𝑝,(𝑝−1),(𝑝−2)}|

𝑛13𝑝3

)︁
, which gives the result.

Typically, when 𝑝 << 𝑛, the 𝑝3𝑐 term above is negligible. The 1
|min{𝑝,(𝑝−1),(𝑝−2)}|𝑐

term is meaningful however. Our bound becomes weak as 𝑝 approaches 2 (and mean-
ingless when 𝑝 = 2). This is unsurprising, since for 𝑝 very close to 2, ‖B‖𝑝𝑝 ≈ ‖B‖2𝐹 ,
which can be computed exactly in 𝑂(nnz(B)) = 𝑂(𝑛2) time. The bound also be-
comes weak for 𝑝 ≈ 1, which is natural since reduction only uses PSD B, for which
‖B‖1 = tr(B) can be computed in 𝑂(𝑛) time. However, we can remedy this issue
by working with a (non-PSD) square root of B that is easy to compute. Since ‖B‖1
will correspond to the Schatten-1/2 norm of this matrix, we will be able to obtain a
stronger lower bound on computing it via Corollary 3.2.4.

Corollary 3.2.5 (Schatten 𝑝-Norm Hardness, 𝑝 ≈ 1). For any 𝑝, assume there exists
an algorithm that, for some 𝛿 ≥ 0, on any input B ∈ R𝑝×𝑛 returns, with probability
≥ 1 − 𝛿, 𝑋 ∈ [(1 − 𝜖)‖B‖𝑝𝑝, (1 + 𝜖)‖B‖𝑝𝑝] in 𝑂

(︀
𝑓(nnz(B), 𝑛) · 1

𝜖𝑐

)︀
time. Then one

can solve triangle detection on 𝑛-node graphs with 𝑚 edges, with success probability
≥ 1− 𝛿 in

𝑂

(︂
𝑓(𝑚,𝑛) · 𝑛13𝑐 · 𝑝3𝑐/2

|min{𝑝/2, (𝑝/2− 1), (𝑝/2− 2)}|𝑐
+𝑚+ 𝑛

)︂
time.

Note that for 𝑝 ≈ 1, 𝑝3𝑐/2

|min{𝑝/2,(𝑝/2−1),(𝑝/2−2)}|𝑐 is just a constant. Again, the bound
is naturally weak when 𝑝 ≈ 2 since (𝑝/2− 1) goes to 0

Proof. Let C = 𝐼 −ΔA as in Theorem 3.2.1. Let L = D−A be the Laplacian of 𝐺
where D is the diagonal degree matrix. We can write C = ΔL+ ̂︀D where ̂︀D = I−ΔD.̂︀D is PSD since Δ ≤ 1/𝑛. Letting M ∈ R(

𝑛
2)×𝑛 be the vertex edge incidence matrix

of A, and B = [Δ1/2M𝑇 , ̂︀D1/2], we have BB𝑇 = C. Thus, ‖B‖𝑝𝑝 = ‖C‖𝑝/2𝑝/2 and
so approximating this norm gives triangle detection by Corollary 3.2.4. Note that

128



nnz(B) = 𝑂(nnz(A) + 𝑛) = 𝑂(𝑚+ 𝑛) and B can be formed in this time, giving our
final runtime claim.

For 𝑝 = 1, Theorem 33 of [MNS+18] gives of �̃�(𝜖−3
(︀
𝑚𝑛1/3 + 𝑛3/2

)︀
) = �̃�(𝑛2.33)

even when 𝑚 = Ω(𝑛2). Thus, significantly improving this 𝜖 dependence would either
give a triangle detection algorithm running faster than the fastest known matrix
multiplication algorithm, or come at a cost in the polynomials of the other parameters.

SVD Entropy

Our hardness result for SVD entropy follows as a direct consequence of Corollary
3.2.2. We simply need to expand 𝑥 log 𝑥 via a Taylor series.

Corollary 3.2.6 (SVD Entropy Hardness). Assume there exists an algorithm that,
for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛 returns, with probability ≥ 1 − 𝛿, 𝑋 ∈
[(1 − 𝜖)

∑︀𝑛
𝑖=1 𝑓(𝜎𝑖(B)), (1 + 𝜖)

∑︀𝑛
𝑖=1 𝑓(𝜎𝑖(B))] for 𝑓(𝑥) = 𝑥 log 𝑥 in 𝑂(𝑛𝛾𝜖−𝑐) time.

Then one can solve triangle detection on 𝑛-node graphs with success probability ≥ 1−𝛿
in 𝑂(𝑛𝛾+6𝑐) time.

Proof. For 𝑥 ∈ (0, 2), using the Taylor Series about 1 we can write

𝑥 log 𝑥 =
∞∑︁
𝑘=0

𝑐𝑘(𝑥− 1)𝑘,

where 𝑐0 = 1 log(1) = 0, 𝑐1 = log(1) + 1 = 1, and |𝑐𝑘| = (𝑘−2)!
𝑘!

≤ 1 for 𝑘 ≥ 2. 𝑐𝑘 < 𝑐3

for all 𝑘 > 3 and 𝑐0
𝑐3

= 0 while 𝑐2
𝑐3

= 1
3
. Applying Corollary 3.2.2 with Δ = 1

10𝑛4 and
𝜖1 =

Δ
3𝑛2 = 1

30𝑛6 gives the result.

Log Determinant

Our log determinant result also follows easily using a Taylor series expansion and
then applying Corollary 3.2.2.

Corollary 3.2.7 (Log Determinant Hardness). Assume there exists an algorithm
that, for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛, with probability ≥ 1 − 𝛿, returns
𝑋 ∈ [(1 − 𝜖) log(det(B)), (1 + 𝜖) log(det(B))] in 𝑂(𝑛𝛾𝜖−𝑐) time. Then one can solve
triangle detection on 𝑛-node graphs with success probability ≥ 1− 𝛿 in 𝑂(𝑛𝛾+6𝑐) time.

Proof. Using the Taylor Series about 1 we can write

log 𝑥 =
∞∑︁
𝑘=0

𝑐𝑘(𝑥− 1)𝑘,

129



where 𝑐0 = 0, |𝑐𝑖| = 1/𝑖 for 𝑖 ≥ 1. Therefore 𝑐𝑘 < 𝑐3 for all 𝑘 > 3, 𝑐0
𝑐3

= 0, and 𝑐2
𝑐3

= 3
2
.

Applying Corollary 3.2.2 with Δ = 1
10𝑛4 and 𝜖1 = Δ

2𝑛2 = 1
20𝑛6 gives the result.

In Section 3.2.5, Lemma 3.2.13 we show that a similar result holds for computing
det(B) =

∏︀𝑛
𝑖=1 𝜆𝑖(B). In [BS83] it is shown that, given an arithmetic circuit for

computing det(B), one can generate a circuit of the same size (up to a constant)
that computes B−1. This also yields a circuit for matrix multiplication by a classic
reduction.6 Our results, combined with the reduction of [WW10] of Boolean matrix
multiplication to triangle detection (Theorem 3.1.8), show that a sub-cubic time algo-
rithm for the approximating log(det(B)) or det(B) up to sufficient accuracy, yields a
sub-cubic time matrix multiplication algorithm, providing a reduction based connec-
tion between determinant and matrix multiplication analogous to the circuit based
result of [BS83].

Trace of Exponential

Finally, we give our bound for the trace exponential, which is again via Corollary
3.2.2 and a simple Taylor series expansion.

Corollary 3.2.8 (Trace of Exponential Hardness). Assume there exists an algorithm
that, for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛, with probability ≥ 1 − 𝛿, returns
𝑋 ∈ [(1 − 𝜖) tr(exp(B)), (1 + 𝜖) tr(exp(B))] in 𝑂(𝑛𝛾𝜖−𝑐) time. Then one can solve
triangle detection on 𝑛-node graphs with success probability 1− 𝛿 in 𝑂(𝑛𝛾+13𝑐) time.

Proof. Using the Taylor Series about 1 we can write

𝑒𝑥 =
∞∑︁
𝑘=0

𝑒(𝑥− 1)𝑘

𝑘!
.

We have 𝑐0
𝑐3

= 6, 𝑐2
𝑐3

= 3, and for all 𝑘 ≥ 3, 𝑐𝑘 < 𝑐3. Applying Corollary 3.2.2 with
Δ = 1

10𝑛4 and 𝜖1 = 𝑐3Δ3

𝑐0𝑛
= 1

6000𝑛13 gives the result.

3.2.4 Leverage Score and Effective Resistance Hardness

We now we show hardness for precisely computing all effective resistances of a graph
and leverage scores of a matrix. Our main result is an easy corollary of Theorem 3.2.1,
which shows how to solve triangle detection using an algorithm that precisely approx-
imates the trace inverse of a strictly symmetric diagonally dominant (SDD) B, i.e.,

6Matrix multiplication reduces to inversion since
⎡⎣I A 0
0 I B
0 0 I

⎤⎦−1

=

⎡⎣I −A AB
0 I −B
0 0 I

⎤⎦. See [Isa08].

130



B = B𝑇 and B𝑖𝑖 >
∑︀

𝑗 ̸=𝑖B𝑖𝑗 for all 𝑖. We will then show in Lemma 3.2.11 that ap-
proximating all the effective resistances of a certain graph is enough to approximate
this trace inverse. These effective resistances correspond to the leverage scores of
the graphs vertex edge incidence matrix, letting us prove hardness for leverage score
computation in Corollary 3.2.12.

Corollary 3.2.9 (Trace of Inverse Hardness). Assume there exists an algorithm that,
for some 𝛿 ≥ 0, for any strictly SDD B ∈ R𝑛×𝑛 with non-positive off-diagonal entries
and 𝑚 nonzero entries returns, with probability ≥ 1 − 𝛿, 𝑋 ∈ [(1 − 𝜖) tr(B−1), (1 +

𝜖) tr(B−1)] in 𝑂(𝑚𝛾𝜖−𝑐) time for 𝛾 ≥ 2. Then one can solve triangle detection on
𝑛-node graphs with success probability ≥ 1− 𝛿 in 𝑂(𝑚𝛾+13𝑐) time.

Proof. For 𝑥 ∈ (0, 2) we can write 1
𝑥
=
∑︀∞

𝑘=0(1− 𝑥)𝑘, and then apply Corollary 3.2.2
with Δ = 1

10𝑛4 and 𝜖1 = Δ3

𝑛
= 1

1000𝑛13 . Checking that the B in the proof of Theo-
rem 3.2.1 is strictly SDD with non-positive off-diagonal entries yields the result.

Using Corollary 3.2.9 we prove hardness for precisely computing effective resis-
tances in a graph. Recall that for a weighted undirected graph 𝐺 its Laplacian is
given by L = D −A where D is the diagonal degree matrix and A is the weighted
adjacency matrix associated with 𝐺.

We first define the effective resistance. Throughout this section we let e𝑖 denote
the vector with a 1 at its 𝑖𝑡ℎ position and zeros every where else. Its length will be
apparent from context. We let 1 denote the all ones vector.

Definition 3.2.10 (Effective Resistance). Given graph 𝐺 with 𝑛 nodes and associated
Laplacian L ∈ R𝑛×𝑛, the effective resistance between vertices 𝑖 and 𝑗 is given by:

(e𝑖 − e𝑗)
𝑇L+(e𝑖 − e𝑗)

where + denotes the Moore-Penrose pseudoinverse.

In the following lemma we prove that computing all the effective resistances be-
tween a vertex and its neighbors in the graph can be used to compute the trace of
the inverse of any strictly SDD matrix with non-positive off-diagonals and therefore
doing this precisely is as hard as triangle detection via Corollary 3.2.9. Our proof is
based off a standard reduction between solving strictly SDD matrices with negative
off-diagonals and solving Laplacian systems.

Lemma 3.2.11 (Effective Resistance Yields Trace). Suppose we have an algorithm
that, for some 𝛿 ≥ 0, given Laplacian L ∈ R𝑛×𝑛 with 𝑚-non-zero entries, entry

131



𝑖 ∈ [𝑛], and error 𝜖 ∈ (0, 1) computes, with probability ≥ 1− 𝛿, a 1± 𝜖 approximation
to the total effective resistance between 𝑖 and the neighbors of 𝑖 in the graph associated
with L, that is, letting 𝑌 =

∑︀
𝑗∈[𝑛](e𝑖 − e𝑗)

𝑇L+(e𝑖 − e𝑗), the algorithm computes

𝑋 ∈ [(1− 𝜖)𝑌, (1 + 𝜖)𝑌 ]

in time 𝑂(𝑚𝛾𝜖−𝑐). Then there is an algorithm that computes, with probability ≥ 1−𝛿,
a (1±𝜖) approximation to the trace of the inverse of any 𝑛×𝑛 strictly SDD matrix with
𝑚 non-zero entries and non-positive off-diagonals in 𝑂(𝑚𝛾𝜖−𝑐) time. By Corollary
3.2.9 there is thus an algorithm for triangle detection on 𝑛-node graphs that succeeds
with probability ≥ 1− 𝛿 and runs in 𝑂(𝑚𝛾+13𝑐) time.

Proof. Let M ∈ R𝑛×𝑛 be an arbitrary strictly SDD matrix with non-positive off-
diagonals, i.e., M = M𝑇 , M𝑖𝑖 >

∑︀
𝑗 ̸=𝑖 |M𝑖𝑗|, and M𝑖𝑗 ≤ 0 for all 𝑖 ̸= 𝑗. Let v def

= M1,

𝛼
def
= 1𝑇M1, and

L
def
=

(︃
M −v

−v𝑇 𝛼

)︃
.

Now, by our assumption that M is SDD we have that v > 0 entrywise and therefore
𝛼 > 0. Therefore, the off-diagonal entries of L are non-positive and by construction
L1 = 0. Consequently, L is a (𝑛 + 1) × (𝑛 + 1) symmetric Laplacian matrix with
nnz(M) + 2𝑛+ 1 non-zero entries.

Now, consider any x ∈ R𝑛 and 𝑦 ∈ R that satisfy the following for some 𝑖 ∈ [𝑛](︃
M −v

−v𝑇 𝛼

)︃(︃
x

𝑦

)︃
=

(︃
e𝑖

−1

)︃
.

Since L is a symmetric Laplacian and the associated graph is connected, by construc-
tion we know that the null space of L is given by: ker(L) = span({1}). Thus there
must exist such x and 𝑦. Furthermore, since M is strictly SDD it is invertible and
since M1 = v we have that

x = M−1 (𝑦 · v + e𝑖) = 𝑦 · 1+M−1e𝑖

and consequently

(e𝑖 − e𝑛+1)
𝑇L+(e𝑖 − e𝑛+1) = e𝑇𝑖 x− 𝑦 = e𝑇𝑖 M

−1e𝑖 .

132



Thus,

𝑌 =
∑︁
𝑗∈[𝑛]

(e𝑗 − e𝑛+1)
𝑇L+(e𝑗 − e𝑛+1) = tr(M−1).

So an algorithm for computing 𝑋 ∈ [(1 − 𝜖)𝑌, (1 + 𝜖)𝑌 ] with probability ≥ 1 − 𝛿

directly gives an algorithm for computing

𝑋 ∈ [(1− 𝜖) tr(M−1), (1 + 𝜖) tr(M−1)]

with probability ≥ 1− 𝛿, giving the result.

Using Lemma 3.2.11, we can also show that computing leverage scores of matrix
to high accuracy is also difficult. This follows from the well known fact that effective
resistances in graphs and leverage scores of matrices are the same up to scaling by
known quantities.

Corollary 3.2.12 (Leverage Score Hardness). Suppose we have an algorithm that,
for some 𝛿 ≥ 0, given any A ∈ R𝑛×𝑑 can compute, with probability 1 − 𝛿, ̃︀ℓ that is
a 1 ± 𝜖 multiplicative approximation to the leverage scores of A, i.e., for ℓ𝑖(A) =

a𝑇𝑖 (A
𝑇A)+a𝑖 (Definition 2.2.4),

̃︀ℓ𝑖 ∈ [(1− 𝜖)ℓ𝑖(A), (1 + 𝜖)ℓ𝑖(A)] for all 𝑖 ∈ [𝑛]

in time 𝑂(nnz(A)𝛾𝜖−𝑐). Then there is a 𝑂(𝑛2𝛾+13𝑐) time algorithm for detecting if an
𝑛-node graph contains a triangle with success probability ≥ 1− 𝛿.

Proof. Let L ∈ R𝑛×𝑛 be a symmetric Laplacian. Let 𝐸 = {{𝑖, 𝑗} ⊆ [𝑛]×[𝑛] : L𝑖𝑗 ̸= 0},
i.e., the set of edges in the graph associated with L. Let𝑚 = |𝐸| and B ∈ R𝑚×𝑛 be the
incidence matrix associated with L, i.e., for all 𝑒 = {𝑖, 𝑗} ∈ 𝐸 we have B𝑒,𝑖 =

√︀
−L𝑖𝑗

and B𝑒,𝑗 = −
√︀

−L𝑖𝑗 for some canonical choice of ordering of 𝑖 and 𝑗 and let all other
entries of B = 0. Clearly nnz(B) = nnz(L) and we can form B in 𝑂(nnz(L)) time.

It is well known and easy to check that L = B𝑇B. Consequently, for all 𝑒 =

{𝑖, 𝑗} ∈ 𝐸 we have

b𝑇𝑖 (B
𝑇B)+b𝑖 = (−L𝑖𝑗) · (e𝑖 − e𝑗)

𝑇L+(e𝑖 − e𝑗).

Now if we compute ̃︀ℓ using the assumed algorithm in 𝑂(nnz(L)𝛾𝜖−𝑐) = 𝑂(𝑛2𝛾𝜖−𝑐)

time, then since −L𝑖𝑗 is non-negative, in an additional 𝑂(nnz(L)) = 𝑂(𝑛2) time this
yields (with probability ≥ 1− 𝛿) a 1± 𝜖 multiplicative approximation to the sum of

133



effective resistances between any 𝑖 and all its neighbors in the graph associated with
L. The result then follows from Lemma 3.2.11.

3.2.5 Determinant Hardness

We now show how a variation on our techniques can be used to reduce triangle
detection to accurate determinant computation. The determinant is not a spectral
sum, but it is equal to the product of a matrix’s eigenvalues. We will leverage this
fact to show that, like the spectral sums considered in Section 3.2.3 it can be used to
approximation tr(A3) and thus the number of triangles in a graph.

Lemma 3.2.13 (Determinant Hardness). Suppose there exists an algorithm that,
for some 𝛿 ≥ 0, on any input B ∈ R𝑛×𝑛 returns, with probability ≥ 1 − 𝛿, 𝑋 ∈
[(1−𝜖) det(B), (1+𝜖) det(B)] in 𝑂(𝑛𝛾𝜖−𝑐) time. Then one can solve triangle detection
on 𝑛-node graphs with success probability ≥ 1− 𝛿 in 𝑂(𝑛𝛾+12𝑐) time.

Proof. Let A ∈ R𝑛×𝑛 be the adjacency matrix of an 𝑛-node graph 𝐺. Let 𝜆1, ..., 𝜆𝑛
denote its eigenvalues. Let B = I+ΔA for some Δ that we will set later. We have:

det(B) =
𝑛∏︁
𝑖=1

𝜆𝑖(B) =
𝑛∏︁
𝑖=1

(1 + Δ𝜆𝑖) =
𝑛∑︁
𝑘=0

(︃
Δ𝑘 ·

∑︁
𝑖1<𝑖2<...<𝑖𝑘

𝜆𝑖1𝜆𝑖2 ...𝜆𝑖𝑘

)︃
. (3.8)

The 𝑘 = 0 term in (3.8) is 1, and the next two are easy to compute. Δ
∑︀𝑛

𝑖=1 𝜆𝑖 =

Δtr(A) = 0, and Δ2
∑︀

𝑖<𝑗 𝜆𝑖𝜆𝑗 =
Δ2

2

(︁∑︀
𝑖,𝑗 𝜆𝑖𝜆𝑗 −

∑︀
𝑖 𝜆

2
𝑖

)︁
= Δ2

2

∑︀
𝑖 𝜆𝑖 tr(A)−Δ2

2
‖A‖2𝐹 =

−Δ2‖A‖2𝐹/2. For 𝑘 = 3 we have:

Δ3
∑︁
𝑖<𝑗<𝑘

𝜆𝑖𝜆𝑗𝜆𝑘 =
Δ3

3

(︃∑︁
𝑖<𝑗

𝜆𝑖𝜆𝑗 tr(A)−
∑︁
𝑖 ̸=𝑗

𝜆2𝑖𝜆𝑗

)︃

= 0− Δ3

3
‖A‖2𝐹 · tr(A) +

Δ3

3
tr(A3)

=
Δ3

3
tr(A3).

We will bound the 𝑘 > 3 terms by:⃒⃒⃒⃒
⃒Δ𝑘 ·

∑︁
𝑖1<𝑖2<...<𝑖𝑘

𝜆𝑖1𝜆𝑖2 ...𝜆𝑖𝑘

⃒⃒⃒⃒
⃒ ≤

(︂
𝑛

𝑘

)︂
Δ𝑘𝜆𝑘1 ≤ (𝑛Δ𝜆1)

𝑘 ≤ (𝑛2Δ)𝑘

since 𝜆1 ≤ 𝑛. However, in order to obtain a tighter result, we will use stronger bounds

134



for 𝑘 = 4, 5. These bounds are very tedious but straightforward. Specifically:⃒⃒⃒⃒
⃒Δ4

∑︁
𝑖<𝑗<𝑘<𝑙

𝜆𝑖𝜆𝑗𝜆𝑘𝜆𝑙

⃒⃒⃒⃒
⃒ = Δ4

4

⃒⃒⃒⃒
⃒tr(A)

∑︁
𝑖<𝑗<𝑘

𝜆𝑖𝜆𝑗𝜆𝑘 −
1

2

∑︁
𝑖 ̸=𝑗 ̸=𝑘

𝜆2𝑖𝜆𝑗𝜆𝑘

⃒⃒⃒⃒
⃒

=
Δ4

8

⃒⃒⃒⃒
⃒tr(A)

∑︁
𝑖 ̸=𝑗

𝜆2𝑖𝜆𝑗 −
∑︁
𝑖 ̸=𝑗

𝜆2𝑖𝜆
2
𝑗 −

∑︁
𝑖 ̸=𝑗

𝜆3𝑖𝜆𝑗

⃒⃒⃒⃒
⃒

=
Δ4

8

⃒⃒⃒⃒
⃒∑︁
𝑖 ̸=𝑗

𝜆2𝑖𝜆
2
𝑗 + tr(A)

∑︁
𝑖 ̸=𝑗

𝜆3𝑖 −
∑︁
𝑖

𝜆4𝑖

⃒⃒⃒⃒
⃒

=
Δ4

8

⃒⃒
‖A‖2𝐹 − 2 tr(A4)

⃒⃒
≤ Δ4𝑛4

4
.

And similarly:⃒⃒⃒⃒
⃒Δ5

∑︁
𝑖<𝑗<𝑘<𝑙<𝑚

𝜆𝑖𝜆𝑗𝜆𝑘𝜆𝑙𝜆𝑚

⃒⃒⃒⃒
⃒ = Δ5

30

⃒⃒⃒⃒
⃒ ∑︁
𝑖 ̸=𝑗 ̸=𝑘 ̸=𝑙

𝜆2𝑖𝜆𝑗𝜆𝑘𝜆𝑙

⃒⃒⃒⃒
⃒

=
Δ5

30

⃒⃒⃒⃒
⃒2 ∑︁

𝑖 ̸=𝑗 ̸=𝑘

𝜆2𝑖𝜆
2
𝑗𝜆𝑘 +

∑︁
𝑖 ̸=𝑗 ̸=𝑘

𝜆3𝑖𝜆𝑗𝜆𝑘

⃒⃒⃒⃒
⃒

=
Δ5

30

⃒⃒⃒⃒
⃒5∑︁

𝑖 ̸=𝑗

𝜆2𝑖𝜆
3
𝑗 +

∑︁
𝑖 ̸=𝑗

𝜆4𝑖𝜆𝑗

⃒⃒⃒⃒
⃒

=
Δ5

30

⃒⃒⃒
5(
∑︁

𝜆2𝑖 )(
∑︁

𝜆3𝑖 )− 6
∑︁

𝜆5𝑖

⃒⃒⃒
≤ Δ5𝑛2

6
tr(A3) +

Δ5

5
𝜆1
∑︁

𝜆4𝑖

≤ Δ5𝑛2

6
tr(A3) +

Δ5𝑛5

5
.

Finally, if we set Δ = 1
10𝑛4 then we have:⃒⃒⃒⃒

⃒
𝑛∑︁
𝑘=4

(︃
Δ𝑘 ·

∑︁
𝑖1<𝑖2<...<𝑖𝑘

𝜆𝑖1𝜆𝑖2 ...𝜆𝑖𝑘

)︃⃒⃒⃒⃒
⃒ ≤ Δ4𝑛4

4
+

Δ5𝑛5

5
+

Δ5𝑛2

6
tr(A3) +

∞∑︁
𝑘=6

(𝑛2Δ)𝑘

≤ Δ3

(︂
1

40
+

1

500
+

1

600
tr(A3) +

(︂
1

103
+

1

105
+ ...

)︂)︂
≤ Δ3

30
+

Δ3

600
tr(A3).

We then write:

det(B) ≤ 1− Δ2‖A‖2𝐹
2

+
Δ3 tr(A3)

3
+

Δ3

30
+

Δ3

600
tr(A3)

135



and similarly

det(B) ≥ 1− Δ2‖A‖2𝐹
2

− Δ3 tr(A3)

3
− Δ3

30
+

Δ3

600
tr(A3).

Since 1 ≤ Δ3 · 103𝑛12 and Δ2‖A‖2𝐹
2

≤ Δ3 · 5𝑛6 if we compute

𝑋 ∈ [(1− 𝑐1/𝑛
12) det(B), (1 + 𝑐1/𝑛

12) det(B)]

for sufficiently small constant 𝑐1 and subtract off
(︁
1− Δ2‖A‖2𝐹

2

)︁
, we will be able to

determine if tr(A3) > 0 and hence detect if 𝐺 has a triangle. So any algorithm
approximating det(B) to (1 ± 𝜖) error with probability ≥ 1 − 𝛿 in 𝑂(𝑛𝛾𝜖−𝑐) time
yields a triangle detection algorithm running in 𝑂(𝑛𝛾+12𝑐) time and succeeding with
probability ≥ 1− 𝛿.

3.3 Lower Bounds for Kernel Approximation

In this section we prove our conditional lower bounds for computing a relative error
low-rank kernel matrix approximation satisfying Definition 3.1.4.

3.3.1 Lower Bound Approach

Our lower bounds generally follow from a two step reduction. We first reduce general
rectangular matrix multiplication to Gram matrix approximation (Theorem 3.3.1).7

We then reduce Gram matrix approximation to kernel low-rank approximation, for a
broad class of kernel functions (Theorems 3.3.2 and 3.3.3). In combination, this gives
a reduction from rectangular matrix multiplication to kernel low-rank approximation,
and thus conditional lower bound against kernel low-rank approximation assuming
hardness of speeding up general rectangular matrix multiplication.

Specifically, we show that an algorithm for computing a low-rank approximation of
MM𝑇 for any input M ∈ R𝑛×(𝑑+𝑘) can be used to give a fast algorithm for multiplying
any two integer matrices A ∈ Z𝑛×𝑑 and C ∈ Z𝑑×𝑘. The key idea is to set M = [A, 𝑤C]

where 𝑤 ∈ R is a large weight. We then have:

MM𝑇 =

[︃
AA𝑇 𝑤AC

𝑤C𝑇A𝑇 𝑤2C𝑇C

]︃
.

7Given any M ∈ R𝑛×𝑑, the associate Gram matrix is MM𝑇 .

136



Figure 3-2: An illustration of our lower bound technique applied to the Gaussian
kernel 𝜓(m𝑖,m𝑗) = 𝑒−‖m𝑖−m𝑗‖2 . D(𝑘) denotes the powered distance matrix with
D

(𝑘)
𝑖,𝑗 = ‖m𝑖 −m𝑗‖2𝑘, N denotes the norm matrix with N𝑖,𝑗 = ‖m𝑖‖2, and 1 denotes

the all ones matrix. Via Taylor expansion the kernel matrix K is well approximated
by 1−D(1), which equals MM𝑇 up to a rank-3 component 1−N−N𝑇 .

Since w is very large, the AA𝑇 block is relatively very small, and so MM𝑇 is nearly
rank-2𝑘 – it has a ‘heavy’ strip of elements in its last 𝑘 rows and columns. Thus,
computing a relative-error rank-2𝑘 approximation to MM𝑇 recovers all entries except
those in the AA𝑇 block very accurately, and importantly, recovers the 𝑤AC block
and so the product AC.

We then prove that, for a broad class of kernel functions, an algorithm that, given
any input M ∈ R𝑛×(𝑑+𝑘), computes a rank-𝑂(𝑘) approximation of the associated
kernel matrix K ∈ R𝑛×𝑛 satisfying Definition 3.1.4 can be used to obtain a close
approximation to the Gram matrix MM𝑇 . We do this by writing the kernel function
𝜓(m𝑖,m𝑗) as a function of m𝑇

𝑖 m𝑗 for dot product kernels (or ‖m𝑖−m𝑗‖2 for distance
kernels) and expanding this function as a power series. We show that the if input
points are appropriately rescaled, the contribution of the degree-1 term m𝑇

𝑖 m𝑗 domi-
nates, and hence our kernel matrix approximates MM𝑇 , up to some easy to compute
low-rank components. Thus, a low-rank approximation to the kernel matrix yields
a low-rank approximation to MM𝑇 , and, in turn, rectangular matrix multiplication
using the reduction described above. An illustration of this general technique, as
applied to the Gaussian kernel 𝜓(m𝑖,m𝑗) = 𝑒−‖m𝑖−m𝑗‖2 is shown in Figure 3-2.

3.3.2 Lower Bound for Gram Matrices

We start with our reduction from rectangular matrix multiplication to approximation
of the Gram matrix MM𝑇 .

Theorem 3.3.1 (Hardness of low-rank approximation for MM𝑇 ). Assume there is an
algorithm 𝒜 that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ1,

137



given any M ∈ R𝑛×𝑑, returns in 𝑇 (M, 𝑘) time N ∈ R𝑛×𝑘 such that, with probability
≥ 1− 𝛿,

‖MM𝑇 −NN𝑇‖2𝐹 ≤ Δ1‖MM𝑇 − (MM𝑇 )𝑘‖2𝐹 .

For any 𝑛, 𝑑, 𝑘 and any A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘 each with integer entries in [−Δ2,Δ2],
let B = [A𝑇 , 𝑤C]𝑇 where 𝑤 = 3

√
Δ1Δ

2
2𝑛𝑑. Then there is an algorithm that computes

the product AC exactly with probability ≥ 1− 𝛿 in 𝑇 (B, 2𝑘) +𝑂(𝑛𝑘�̄�−1) time.8

Proof. We can write the (𝑛+ 𝑘)× (𝑛+ 𝑘) matrix BB𝑇 as:

BB𝑇 = [A𝑇 , 𝑤C]𝑇 [A, 𝑤C] =

[︃
AA𝑇 𝑤AC

𝑤C𝑇A𝑇 𝑤2C𝑇C

]︃
.

Let Q ∈ R𝑛×2𝑘 be an orthogonal span for the columns of the 𝑛× 2𝑘 matrix:[︃
0 𝑤AC

V 𝑤2C𝑇C

]︃
,

where V ∈ R𝑘×𝑘 spans the columns of 𝑤C𝑇A𝑇 ∈ R𝑘×𝑛. Here and throughout 0

denotes the all zeros matrix, whose size will be apparent from context. The projection
QQ𝑇BB𝑇 gives the best Frobenius norm approximation to BB𝑇 in the span of Q.
Additionally, QQ𝑇BB𝑇 has rank 2𝑘. So we can see that:

‖BB𝑇 − (BB𝑇 )2𝑘‖2𝐹 ≤ ‖BB𝑇 −QQ𝑇BB𝑇‖2𝐹

≤

⃦⃦⃦⃦
⃦
[︃
AA𝑇 0

0 0

]︃⃦⃦⃦⃦
⃦
2

𝐹

≤ Δ4
2𝑛

2𝑑2, (3.9)

where the last bound follows since each entry of A is bounded in magnitude by Δ2

by assumption and so each entry of AA𝑇 is bounded by 𝑑Δ2
2.

Let N be the matrix returned by running 𝒜 on B with rank 2𝑘. By assumption,
with probability ≥ 1 − 𝛿, N achieves approximation bound of ‖BB𝑇 − NN𝑇‖2𝐹 ≤
Δ1‖BB𝑇 − (BB𝑇 )2𝑘‖2𝐹 . This gives, for all 𝑖, 𝑗:

(BB𝑇 −NN𝑇 )2𝑖,𝑗 ≤ ‖BB𝑇 −NN𝑇‖2𝐹 ≤ Δ1Δ
4
2𝑛

2𝑑2,

8Here �̄� is the lowest known exponent of fast matrix multiplication. See Section 1.3 for a formal
definition.

138



where the last inequality is from (3.9). This gives

|BB𝑇 −NN𝑇 |𝑖,𝑗 ≤
√︀

Δ1Δ
2
2𝑛𝑑. (3.10)

Since A and C have integer entries, each entry in the submatrix 𝑤AC of BB𝑇 is
an integer multiple of 𝑤 = 3

√
Δ1Δ

2
2𝑛𝑑. Since by (3.10) (NN𝑇 )𝑖,𝑗 approximates this

entry to error
√
Δ1Δ

2
2𝑛𝑑, by simply rounding (NN𝑇 )𝑖,𝑗 to the nearest multiple of 𝑤,

we obtain the entry exactly. Thus, given N, we can exactly recover AC in 𝑂(𝑛𝑘�̄�−1)

time by computing the 𝑛× 𝑘 submatrix of NN𝑇 corresponding to AC in BB𝑇 . This
approach succeeds if ‖BB𝑇−NN𝑇‖2𝐹 ≤ Δ1‖BB𝑇−(BB𝑇 )2𝑘‖2𝐹 , which by assumption
occurs with probability ≥ 1− 𝛿.

In the case of the linear kernel 𝜓(m𝑖,m𝑗) = m𝑇
𝑖 m𝑗, Theorem 3.3.1 immediately

gives our main result (full stated in Theorem 3.1.9), which shows that rectangular
matrix multiplication can be reduced to kernel low-rank approximation.

Theorem 3.1.9 (Hardness for low-rank kernel approximation – linear kernel). Con-
sider the linear kernel 𝜓(m𝑖,m𝑗) = m𝑇

𝑖 m𝑗. Assume there is an algorithm that, for
some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ, given M ∈ R𝑛×𝑑 with
associated kernel matrix K = {𝜓(m𝑖,m𝑗)} = MM𝑇 , returns in 𝑜(nnz(M)𝑘 + 𝑛𝑘𝑝)

time, for 𝑝 ≥ 2, N ∈ R𝑛×𝑘 satisfying, with probability ≥ 1− 𝛿,

‖K−NN𝑇‖2𝐹 ≤ Δ‖K−K𝑘‖2𝐹 .

Then for any 𝑛, 𝑑, 𝑘, there is an 𝑜(nnz(A)𝑘+𝑛𝑘𝑝) time algorithm that, given arbitrary
A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘, returns their product AC with probability ≥ 1− 𝛿.

Proof of Theorem 3.1.9 – Linear Kernel. We apply Theorem 3.3.1 after noting that
for B = [A𝑇 , 𝑤C]𝑇 , nnz(B) ≤ nnz(A) + 𝑛𝑘 and so the runtime given by theorem is:

𝑇 (B, 2𝑘) +𝑂(𝑛𝑘�̄�−1) = 𝑜(nnz(B) · 2𝑘 + 𝑛(2𝑘)𝑝) +𝑂(𝑛𝑘�̄�−1)

= 𝑜(nnz(A)𝑘 + 𝑛𝑘𝑝).

As discussed, any algorithm for computing AC in 𝑜(nnz(A)𝑘) time for general
A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘 would be a major breakthrough in fast matrix multiplica-
tion. Thus Theorem 3.1.9 shows that giving an algorithm for computing a low-rank
approximation of MM𝑇 running in 𝑜(nnz(M)𝑘) time is unlikely.

139



We show in Section 3.3.5 that there is an algorithm that nearly matches the
conditional lower bound of Theorem 3.1.9 for 𝜓(m𝑖,m𝑗) = m𝑇

𝑖 m𝑗 for Δ = (1+ 𝜖) for
any 𝜖 > 0. For constant 𝜖, this algorithm slightly improves the runtime of the general
PSD low-rank approximation algorithm, Algorithm 1, presented in Chapter 2 and
analyzed in Theorem 2.5.1. In Section 3.3.6 we show that even just outputting an
orthonormal matrix Z ∈ R𝑛×𝑘 such that K̃ = ZZ𝑇MM𝑇 is a relative-error low-rank
approximation of MM𝑇 , but not computing a factorization of K̃ itself, is enough to
give fast multiplication of integer matrices.

3.3.3 Lower Bound for Dot Product Kernels

We now extend Theorem 3.3.1 to general dot product kernels – where 𝜓(a𝑖, a𝑗) =

𝑓(a𝑇𝑖 a𝑗) for some function 𝑓 . This class includes, for example, the polynomial kernel,
𝜓(a𝑖, a𝑗) = (𝑐 + a𝑇𝑖 a𝑗)

𝑞, for some 𝑐, 𝑞. Our proof argues that, if the function 𝑓(𝑥)

has a power series expansion in which the coefficients of the higher order terms are
not too large compared to the coefficient of 𝑥, then for appropriate weights 𝑤1, 𝑤2,
the kernel matrix corresponding to B = [𝑤1A

𝑇 , 𝑤2C]𝑇 is dominated by the first
order component, which corresponds to BB𝑇 . As shown in Section 3.3.2 above, an
approximation to this product can be used to exactly compute AC.

Theorem 3.3.2 (Hardness of low-rank approximation for dot product kernels). Con-
sider any kernel 𝜓 : R𝑑 × R𝑑 → R+ with 𝜓(a𝑖, a𝑗) = 𝑓(a𝑇𝑖 a𝑗) for some function 𝑓

that can be expanded as 𝑓(𝑥) =
∑︀∞

𝑞=0 𝑐𝑞𝑥
𝑞 with 𝑐1 ̸= 0 and |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1 and for all

𝑞 ≥ 2 and some 𝐺.

Assume there is an algorithm 𝒜 that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some
approximation factor Δ1, given M ∈ R𝑛×𝑑 with kernel matrix K = {𝜓(m𝑖,m𝑗)},
returns in 𝑇 (M, 𝑘) time N ∈ R𝑛×𝑘 satisfying, with probability ≥ 1− 𝛿,

‖K−NN𝑇‖2𝐹 ≤ Δ1‖K−K𝑘‖.

For any A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘 with integer entries in [−Δ2,Δ2], let B = [𝑤1A
𝑇 , 𝑤2C]𝑇

with 𝑤1 = 𝑤2

12
√
Δ1Δ2

2𝑛𝑑
, 𝑤2 = 1

4
√
𝐺𝑑Δ2

. Then there is an algorithm that computes the
product AC exactly with probability ≥ 1− 𝛿 in 𝑇 (B, 2𝑘 + 1) +𝑂(𝑛𝑘�̄�−1) time.

Proof. Using our decomposition of 𝜓(·, ·), we can write the kernel matrix for B and

140



𝜓 as:

K = 𝑐0

[︃
1 1

1 1

]︃
+ 𝑐1

[︃
𝑤2

1AA𝑇 𝑤1𝑤2AC

𝑤1𝑤2C
𝑇A𝑇 𝑤2

2C
𝑇C

]︃
+ 𝑐2K

(2) + 𝑐3K
(3) + ... (3.11)

where K
(𝑞)
𝑖,𝑗 = (b𝑇𝑖 b𝑗)

𝑞 and 1 denotes the all ones matrix of appropriate size. The key
idea is to show that the contribution of the K(𝑞) terms is small, and so any relative-
error rank-(2𝑘+1) approximation to K must recover an approximation to BB𝑇 , and
thus the product AC as in Theorem 3.3.1.

By our setting of 𝑤2 = 1
4
√
𝐺𝑑Δ2

, the fact that 𝑤1 < 𝑤2, and our bound on the
entries of A and C, we have for all 𝑖, 𝑗,

|b𝑇𝑖 b𝑗| ≤ 𝑤2
2𝑑Δ

2
2 <

1

16𝐺
.

Thus, for any 𝑖, 𝑗, using that |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1:⃒⃒⃒⃒
⃒

∞∑︁
𝑞=2

𝑐𝑞K
(𝑞)
𝑖,𝑗

⃒⃒⃒⃒
⃒ ≤ 𝑐1|b𝑇𝑖 b𝑗| ·

⃒⃒⃒⃒
⃒

∞∑︁
𝑞=2

𝐺𝑞−1|b𝑇𝑖 b𝑗|𝑞−1

⃒⃒⃒⃒
⃒

≤ 𝑐1|b𝑇𝑖 b𝑗|
∞∑︁
𝑞=2

𝐺𝑞−1

(16𝐺)𝑞−1

≤ 1

12
𝑐1|b𝑇𝑖 b𝑗|. (3.12)

Let K̄ be the matrix

(︃
K− 𝑐0

[︃
1 1

1 1

]︃)︃
, with its top right 𝑛×𝑛 block set to 0. K̄

has just its last 𝑘 columns and rows non-zero, so has rank ≤ 2𝑘. Let Q ∈ R𝑛×2𝑘+1 be
an orthogonal span for the columns K̄ along with the all ones vector of length 𝑛. Let
N be the result of running 𝒜 on B with rank 2𝑘+1. Then, with probability ≥ 1− 𝛿:

‖K−NN𝑇‖2𝐹 ≤ Δ1‖K−K2𝑘+1‖2𝐹 ≤ Δ1‖K−QQ𝑇K‖2𝐹

≤ Δ1

⃦⃦⃦⃦
⃦
[︃
(𝑐1𝑤

2
1AA𝑇 + 𝑐2K̂

(2) + ...) 0

0 0

]︃⃦⃦⃦⃦
⃦
2

𝐹

(3.13)

where K̂(𝑞) denotes the top left 𝑛×𝑛 submatrix of K(𝑞). By our bound on the entries
of A and (3.12):⃒⃒⃒⃒(︁

𝑐1𝑤
2
1AA𝑇 + 𝑐2K̂

(2) + 𝑐3K̂
(3) + ...

)︁
𝑖,𝑗

⃒⃒⃒⃒
≤ 13

12

⃒⃒⃒(︀
𝑐1𝑤

2
1AA𝑇

)︀
𝑖,𝑗

⃒⃒⃒
≤ 2𝑐1𝑤

2
1𝑑Δ

2
2.

141



Plugging back into (3.13) and using 𝑤1 =
𝑤2

12
√
Δ1Δ2

2𝑛𝑑
, this gives for any 𝑖, 𝑗:

(K−NN𝑇 )𝑖,𝑗 ≤ ‖K−NN𝑇‖𝐹 ≤
√︀

Δ1𝑛2 · 2𝑐1𝑤2
1𝑑Δ

2
2

≤
√
Δ1𝑛 · 2𝑐1𝑑Δ2

2

12
√
Δ1Δ2

2𝑛𝑑
· 𝑤1𝑤2

≤ 𝑤1𝑤2𝑐1
6

. (3.14)

Since A and C have integer entries, each entry of 𝑐1𝑤1𝑤2AC is an integer multiple
of 𝑐1𝑤1𝑤2. By the decomposition of (3.11) and the bound of (3.12), if we subtract
𝑐0 from the corresponding entry of K and round it to the nearest multiple of 𝑐1𝑤1𝑤2,
we will recover the entry of AC. By the bound of (3.14), we can likewise round the
corresponding entry of NN𝑇 . Computing all 𝑛𝑘 of these entries given N takes time
𝑂(𝑛𝑘�̄�−1), giving the theorem.

Theorem 3.3.2 lets us bound the time to compute a low-rank kernel approximation
for any kernel function expressible as a reasonable power expansion of a𝑇𝑖 a𝑗. As a
straightforward example, it gives the conditional lower bound for the polynomial
kernel of any degree stated in Theorem 3.1.9.

Theorem 3.1.9 (Hardness for low-rank kernel approximation – polynomial kernel).
Consider the polynomial kernel 𝜓(m𝑖,m𝑗) = (𝑐+m𝑇

𝑖 m𝑗)
𝑞. Assume there is an algo-

rithm that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ, given
M ∈ R𝑛×𝑑 with associated kernel matrix K = {𝜓(m𝑖,m𝑗)} = MM𝑇 , returns in
𝑜(nnz(M)𝑘 + 𝑛𝑘𝑝) time, for 𝑝 ≥ 2, N ∈ R𝑛×𝑘 satisfying, with probability ≥ 1− 𝛿,

‖K−NN𝑇‖2𝐹 ≤ Δ‖K−K𝑘‖2𝐹 .

Then for any 𝑛, 𝑑, 𝑘, there is an 𝑜(nnz(A)𝑘+𝑛𝑘𝑝) time algorithm that, given arbitrary
A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘, returns their product AC with probability ≥ 1− 𝛿.

Proof of Theorem 3.1.9 – Polynomial Kernel. We can write 𝜓(m𝑖,m𝑗) = (𝑐+m𝑇
𝑖 m𝑗)

𝑞

as 𝑓(m𝑇
𝑖 m𝑗) where 𝑓(𝑥) =

∑︀𝑞
𝑗=0 𝑐𝑗𝑥

𝑗 with 𝑐𝑗 = 𝑐𝑞−𝑗
(︀
𝑞
𝑗

)︀
. Thus 𝑐1 ̸= 0 and |𝑐𝑗/𝑐1| ≤

𝐺𝑗−1 for 𝐺 = (𝑞/𝑐), allowing us to apply Theorem 3.3.2. Finally note that nnz(B) ≤
nnz(A) + 𝑛𝑘 and so the runtime given by the theorem is:

𝑇 (B, 2𝑘 + 1) +𝑂(𝑛𝑘�̄�−1) = 𝑜(nnz(B) · (2𝑘 + 1) + 𝑛(2𝑘 + 1)𝑝) +𝑂(𝑛𝑘�̄�−1)

= 𝑜(nnz(A)𝑘 + 𝑛𝑘𝑝),

which yields the result.

142



3.3.4 Lower Bound for Distance Kernels

Finally, we extend Theorem 3.3.2 to handle kernels like the Gaussian kernel whose
value depends on the squared distance ‖a𝑖 − a𝑗‖2 rather than just the dot product
a𝑇𝑖 a𝑗. Our proof is similar to that of Theorem 3.3.2. The key idea is to write K as
a polynomial in the distance matrix D with D𝑖,𝑗 = ‖b𝑖 − b𝑗‖22. Since ‖b𝑖 − b𝑗‖22 =

‖b𝑖‖22 + ‖b𝑗‖22 − 2b𝑇𝑖 b𝑗, D can be written as −2BB𝑇 plus a rank-2 component. By
setting 𝑤1, 𝑤2 sufficiently small, as in the proof of Theorem 3.3.2, we ensure that the
higher powers of D are negligible, and thus that our low-rank approximation must
accurately recover the submatrix of BB𝑇 corresponding to AC.

Theorem 3.3.3 (Hardness of low-rank approximation for distance kernels). Consider
any kernel function 𝜓 : R𝑑×R𝑑 → R+ with 𝜓(a𝑖, a𝑗) = 𝑓(‖a𝑖−a𝑗‖2) for some function
𝑓 that can be expanded as 𝑓(𝑥) =

∑︀∞
𝑞=0 𝑐𝑞𝑥

𝑞 with 𝑐1 ̸= 0 and |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1 and for
all 𝑞 ≥ 2 and some 𝐺 ≥ 1.

Assume there is an algorithm 𝒜 that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some ap-
proximation factor Δ1, given input M ∈ R𝑛×𝑑 with kernel matrix K = {𝜓(m𝑖,m𝑗)},
returns in 𝑇 (M, 𝑘) time N ∈ R𝑛×𝑘 satisfying, with probability ≥ 1− 𝛿,

‖K−NN𝑇‖2𝐹 ≤ Δ1‖K−K𝑘‖.

For any A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘 with integer entries in [−Δ2,Δ2], let B = [𝑤1A
𝑇 , 𝑤2C]𝑇

with 𝑤1 =
𝑤2

36
√
Δ1Δ2

2𝑛𝑑
, 𝑤2 =

1
(16𝐺𝑑2Δ4

2)(36
√
Δ1Δ2

2𝑛𝑑)
. Then there is an algorithm that com-

putes the product AC exactly with probability ≥ 1 − 𝛿 in 𝑇 (B, 2𝑘 + 3) + 𝑂(𝑛𝑘�̄�−1)

time.

Proof. Define the distance matrix D ∈ R𝑛+𝑘×𝑛+𝑘 with D𝑖,𝑗 = ‖b𝑖 − b𝑗‖2. Using the
fact that ‖b𝑖 − b𝑗‖2 = ‖b𝑖‖2 + ‖b𝑖‖2 − 2b𝑇𝑖 b𝑗 we have:

D = E+ E𝑇 − 2BB𝑇 ,

where E is a rank-1 matrix with all rows equal to [‖b1‖22, ..., ‖b𝑛+𝑘‖22]. We can thus
write the kernel matrix for B and 𝜓 as:

K = 𝑐0

[︃
1 1

1 1

]︃
+ 𝑐1(E+ E𝑇 )− 2𝑐1

[︃
𝑤2

1AA𝑇 𝑤1𝑤2AC

𝑤1𝑤2C
𝑇A𝑇 𝑤2

2C
𝑇C

]︃
+ 𝑐2D

(2) + 𝑐3D
(3) + ...

(3.15)

where D
(𝑞)
𝑖,𝑗 = ‖b𝑖 − b𝑗‖2𝑞. Let K̄ be K − 𝑐0 · 1 − 𝑐1(E + E𝑇 ) , with its top 𝑛 × 𝑛

143



block set to 0. K̄ has rank at most 2𝑘 and if we set Q ∈ R𝑛×2𝑘+3 to be a matrix with
columns spanning the columns of K̄, the all ones vector, E and E𝑇 , then letting N

be the result of running 𝒜 on B with rank 2𝑘 + 3, with probability ≥ 1− 𝛿:

‖K−NN𝑇‖2𝐹 ≤ Δ1‖K−QQ𝑇K‖2𝐹

≤ Δ1

⃦⃦⃦⃦
⃦
[︃
−2𝑐1𝑤

2
1AA𝑇 + 𝑐2D̂

(2) + ... 0

0 0

]︃⃦⃦⃦⃦
⃦
2

𝐹

, (3.16)

where D̂(𝑞) denotes the top left 𝑛× 𝑛 submatrix of D(𝑞).

By our bounds on the entries of A and C, for 𝑖, 𝑗 ≤ 𝑛, ‖b𝑖 − b𝑗‖2 ≤ 4𝑑Δ2
2𝑤

2
1 and

by our setting of 𝑤1, 𝑤2, plugging into (3.16) we have for all 𝑖, 𝑗:

|(K−NN𝑇 )𝑖,𝑗| ≤ ‖K−NN𝑇‖𝐹 (3.17)

≤
√︀

Δ1𝑛

(︃
2𝑐1𝑑Δ

2
2𝑤

2
1 +

∞∑︁
𝑞=2

𝑐𝑞(4𝑑Δ
2
2𝑤

2
1)
𝑞

)︃

≤
√︀
Δ1𝑛𝑐1𝑑Δ

2
2𝑤

2
1

(︃
2 +

∞∑︁
𝑞=2

(4𝐺𝑑Δ2
2𝑤

2
1)
𝑞−1

)︃
(Since |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1)

≤ 3
√︀

Δ1𝑛𝑐1𝑑Δ
2
2𝑤

2
1

≤ 𝑤1𝑤2𝑐1
12

, (3.18)

where the second to last bound follows from the fact that 𝑤1 < 𝑤2 and 𝑤2 is set small
enough so (4𝐺𝑑Δ2

2) ·𝑤2
2 ≪ 1/2 so the series converges to a sum < 1. Additionally, for

𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑘 (i.e., considering the entries of K corresponding to AC) we have:

K𝑖,𝑛+𝑗 = 𝑐0 + 𝑐1(E+ E𝑇 )𝑖,𝑛+𝑗 − 2𝑐1𝑤1𝑤2(AC)𝑖,𝑗 +
∞∑︁
𝑞=2

𝑐𝑞D
(𝑞)
𝑖,𝑛+𝑗.

144



This last sum can be bounded by:⃒⃒⃒⃒
⃒

∞∑︁
𝑞=2

𝑐𝑞D
(𝑞)
𝑖,𝑛+𝑗

⃒⃒⃒⃒
⃒ ≤ 𝑐1

∞∑︁
𝑞=2

𝐺𝑞−1(4Δ2
2𝑑𝑤

2
2)
𝑞 (By assumption |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1)

≤ 𝑐1𝑤1𝑤2

∞∑︁
𝑞=2

𝐺𝑞−1𝑤
2(𝑞−1)
2

𝑤2

𝑤1

(︀
4Δ2

2𝑑
)︀𝑞

≤ 𝑐1𝑤1𝑤2

∞∑︁
𝑞=2

𝐺𝑞−1𝑤2𝑞−3
2

(︀
4Δ2

2𝑑
)︀𝑞 (Using 𝑤2

𝑤1
≤ 1

𝑤2
.)

≤ 𝑐1𝑤1𝑤2

3
. (Using 𝑤2 ≤ 1/4

16𝐺Δ4
2𝑑

2 so the series converges.)

If we set 𝑣 = NN𝑇
𝑖,𝑛+𝑗 − 𝑐0 − 𝑐1(E+E𝑇 )𝑖,𝑛+𝑗 we thus have combining with (3.17)

for 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑘

|𝑣 + 2𝑐1𝑤1𝑤2(AC)𝑖,𝑗| ≤
5𝑐1𝑤1𝑤2

12

and so we can compute (AC)𝑖,𝑗 exactly by rounding 𝑣 to the nearest integer multiple
of 𝑐1𝑤1𝑤2. This gives the theorem since we can compute the required entries of NN𝑇

and E in 𝑂(𝑛𝑘�̄�−1) time.

As a simple example, Theorem 3.3.3 gives the conditional lower bound for the
Gaussian kernel stated in Theorem 3.1.9. The Gaussian kernel is one of the most
widely used kernels in machine learning, appearing commonly in the kernel method
literature and serving as the building block of Gaussian process methods [Ras04]. Its
approximation has also been studied, for example, in the numerical linear algebra
literature [GS91].

Theorem 3.1.9 (Hardness for low-rank kernel approximation – Gaussian kernel).
Consider the Gaussian kernel 𝜓(m𝑖,m𝑗) = 𝑒−‖m𝑖−m𝑗‖2/𝜎. Assume there is an algo-
rithm that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ, given
M ∈ R𝑛×𝑑 with associated kernel matrix K = {𝜓(m𝑖,m𝑗)} = MM𝑇 , returns in
𝑜(nnz(M)𝑘 + 𝑛𝑘𝑝) time, for 𝑝 ≥ 2, N ∈ R𝑛×𝑘 satisfying with probability ≥ 1− 𝛿:

‖K−NN𝑇‖2𝐹 ≤ Δ‖K−K𝑘‖2𝐹 .

Then for any 𝑛, 𝑑, 𝑘, there is an 𝑜(nnz(A)𝑘+𝑛𝑘𝑝) time algorithm that, given arbitrary
A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘, returns their product AC with probability ≥ 1− 𝛿.

Proof of Theorem 3.1.9 – Gaussian Kernel. 𝜓(𝑚𝑖,𝑚𝑗) can be written as 𝑓(‖m𝑖 −

145



m𝑗‖2) where

𝑓(𝑥) = 𝑒−𝑥/𝜎 =
∞∑︁
𝑞=0

(−1/𝜎)𝑞

𝑞!
𝑥𝑞.

Thus 𝑐1 ̸= 0 and |𝑐𝑞/𝑐1| ≤ 𝐺𝑞−1 for 𝐺 = 1/𝜎. Applying Theorem 3.3.3 and bounding
nnz(B) ≤ nnz(A) + 𝑛𝑘, gives the result since the runtime given by the theorem is:

𝑇 (B, 2𝑘 + 3) +𝑂(𝑛𝑘�̄�−1) = 𝑜(nnz(B) · (2𝑘 + 3) + 𝑛(2𝑘 + 3)𝑝) +𝑂(𝑛𝑘�̄�−1)

= 𝑜(nnz(A)𝑘 + 𝑛𝑘𝑝).

3.3.5 Fast Low-Rank Approximation of AA𝑇

In this section we give an algorithm that matches the conditional lower bound of
Theorem 3.1.9 for the linear kernel. This algorithm improves on the general PSD
low-rank approximation algorithm of [MW17b] (Algorithm 1 presented in Chapter 2
and analyzed in Theorem 2.5.1) by improving logarithmic factors and 𝜖 dependencies.
We present it here so that it can be directly compared to our lower bound.

Theorem 3.3.4. There is an algorithm that, given A ∈ R𝑛×𝑑, 𝑘 ∈ Z≥1, and 𝜖 > 0,
computes N ∈ R𝑛×𝑘 in 𝑂(nnz(A)𝑘)+𝑛·poly(𝑘/𝜖) time such that probability ≥ 99/100:

‖AA𝑇 −NN𝑇‖2𝐹 ≤ (1 + 𝜖)‖AA𝑇 − (AA𝑇 )𝑘‖2𝐹 .

Proof. It is known (see Lemma 11 of [CW17b]) that there exists a distribution over
random matrices R,S ∈ R𝑛×𝑂(𝑘/𝜖) that can be applied to A in 𝑂(nnz(A)) + 𝑛 ·
poly(𝑘/𝜖) time such that with probability ≥ 199/200, setting

Y* = argmin
Y∈𝑂(𝑘/𝜖)×𝑂(𝑘/𝜖) with rank 𝑘

‖AA𝑇RYS𝑇AA𝑇 −AA𝑇‖2𝐹

we have:

‖AA𝑇RY*S𝑇AA𝑇 −AA𝑇‖2𝐹 ≤ (1 + 𝜖)‖AA𝑇 − (AA𝑇 )𝑘‖2𝐹 .

We can solve for an approximately optimal Ỹ by further sketching our problem on the
left and right (similar to the technique used in Lemma 15 of [CW17b]). Specifically,
if we let T𝐿,T𝑅 ∈ R𝑛×poly(𝑘/𝜖) be drawn from the Count Sketch distribution, we can

146



solve:

Ỹ = argmin
Y∈𝑂(𝑘/𝜖)×𝑂(𝑘/𝜖) with rank 𝑘

‖T𝑇
𝐿AA𝑇RYS𝑇AA𝑇T𝑅 −T𝑇

𝐿AA𝑇T𝑅‖2𝐹

and are guaranteed that with probability ≥ 99/100,

‖AA𝑇RỸS
𝑇
AA𝑇 −AA𝑇‖2𝐹 ≤ (1 + 2𝜖)‖AA𝑇 − (AA𝑇 )𝑘‖2𝐹 . (3.19)

Computing Ỹ requires forming T𝑇
𝐿A, A𝑇R, S𝑇A, and A𝑇T𝑅 and then multi-

plying the appropriate matrices together. This takes 𝑂(nnz(A)) + 𝑛 poly(𝑘/𝜖) time.
Once T𝑇

𝐿AA𝑇R, S𝑇AA𝑇T𝑅 and T𝑇
𝐿AA𝑇T𝑅 have been formed we can solve for Ỹ

in poly(𝑘/𝜖) time using the formula of [FT07].
Finally, since Ỹ is rank-𝑘 we can factor Ỹ = VV𝑇 for V ∈ R𝑂(𝑘/𝜖)×𝑘 using the

SVD. We can then compute N1 = AA𝑇RV ∈ R𝑛×𝑘 and N3 = AA𝑇SV ∈ R𝑛×𝑘 which
satisfy ‖AA𝑇 − N1N

𝑇
2 ‖2𝐹 ≤ (1 + 2𝜖)‖AA𝑇 − (AA𝑇 )𝑘‖2𝐹 with probability ≥ 99/100

by (3.19).
N1 and N2 both require 𝑂(nnz(A)𝑘)+𝑛·poly(𝑘/𝜖) time to compute. The theorem

follows from adjusting constants on 𝜖 and noting that we can symmetrize N1N
𝑇
2 to

form NN𝑇 if desired in 𝑛 · poly(𝑘/𝜖) time.

3.3.6 Hardness of Outputting a Low-Rank Subspace

Theorems 3.3.1 and 3.1.9 show a conditional lower bound on outputting a relative-
error low-rank approximation to MM𝑇 for any M ∈ R𝑛×𝑑. Here we show that this
hardness extends to the possibly easier problem of just outputting a low-rank span
that contains a relative-error low-rank approximation. This result extends analo-
gously to the other kernel lower bounds discussed in Section 3.3.

Theorem 3.3.5 (Hardness of low-rank span for MM𝑇 ). Assume there is an algorithm
𝒜 that, for some 𝛿 ≥ 0 and any 𝑛, 𝑑, 𝑘: for some approximation factor Δ1, given any
M ∈ R𝑛×𝑑 returns in 𝑇 (M, 𝑘) time orthonormal Z ∈ R𝑛×𝑘 such that with probability
≥ 1− 𝛿,

‖MM𝑇 − ZZ𝑇MM𝑇‖2𝐹 ≤ Δ1‖MM𝑇 − (MM𝑇 )𝑘‖2𝐹 .

For any A ∈ Z𝑛×𝑑, C ∈ Z𝑑×𝑘 with integer entries in [−Δ2,Δ2], let B = [A𝑇 , 𝑤C]𝑇

where 𝑤 = 3
√
Δ1Δ

2
2𝑛𝑑. Then, for any fixed 𝑐, there is an algorithm that computes

the product AC exactly with probability ≥ 1− 𝛿− 1/𝑘𝑐 in 𝑇 (B, 2𝑘) + �̃�((𝑛+ 𝑑)𝑘�̄�−1)

147



time.

Proof. ZZ𝑇MM𝑇 is the projection of MM𝑇 onto the column span of Z. This pro-
jection can be performed approximately using standard leverage score sampling tech-
niques, similar to those discussed in Chapter 2. Let S ∈ R𝑠×𝑛 be a sampling matrix
sampling rows of Z by its row norms (its leverage scores since it is orthonormal) where
𝑠 = 𝑐1(𝑘 log 𝑘) or some constant 𝑐1. Let R ∈ R𝑛×𝑘 have its bottom 𝑘 × 𝑘 submatrix
be an identity matrix and its top (𝑛− 𝑘)× 𝑘 submatrix be 0.

Letting X* = argminX∈𝑘×𝑘 ‖ZX𝑇 −MM𝑇R‖2𝐹 and X = argminX∈𝑘×𝑘 ‖SZX𝑇 −
SMM𝑇R‖2𝐹 we have by a well known leverage score approximate regression result
that, for any fixed 𝑐, if 𝑐1 (the constant in the sample size 𝑠) is large enough, with
probability ≥ 1− 1/𝑘𝑐:

‖ZX𝑇 −MM𝑇R‖2𝐹 = 𝑂(1) · ‖Z(X*)𝑇 −MM𝑇R‖2𝐹
= 𝑂(1) · ‖ZZ𝑇MM𝑇R−MM𝑇R‖2𝐹
= 𝑂(Δ1)‖MM𝑇 − (MM𝑇 )𝑘‖2𝐹 .

Further, computing X takes �̃�(𝑑𝑘�̄�−1) time to compute the 𝑂(𝑘 log 𝑘)× 𝑘 submatrix
SMM𝑇R as well as �̃�(𝑘�̄�) = �̃�(𝑛𝑘�̄�−1) to perform the regression. This gives the
result via Theorem 3.3.1 since computing Z with rank-2𝑘 ZX𝑇 gives a low-rank
approximation of MM𝑇 with error 𝑂(Δ1)‖MM𝑇 −(MM𝑇 )2𝑘‖2𝐹 measured on the last
𝑘 columns of M. Small error on these columns is all that is needed to recover AC

accurately (see the proof of Theorem 3.3.1).

3.4 Discussion and Future Work

The work in this section represents a few preliminary steps in understanding com-
plexity of linear algebraic primitives like spectral summarization (Section 3.2) and
low-rank approximation (Section 3.3). There are many interesting open directions in
developing lower bounds for linear algebraic problems, which we discuss below.

3.4.1 Connecting Matrix Multiplication to Other Problems

In Section 3.2 we show that general square matrix multiplication can be reduced
to highly accurate approximation of a number of spectral sum problems, like the
Schatten 𝑝-norms, the log determinant, and the trace inverse. Our reductions are all
by way of a reduction of [WW10] from matrix multiplication to triangle detection

148



(Theorem 3.1.8). Surprisingly, outside of this reduction, very few reductions from
matrix multiplication to other problems are known. In particular, many problems
which seem to require matrix multiplication time to solve are not known to be as
hard as matrix multiplication. We mention a few examples here that we believe are
important to explore, both from the lower bound and algorithmic directions.

∙ For general A ∈ R𝑛×𝑛 there are no known algorithms that compute even a con-
stant factor multiplicative approximation to det(A) or 𝜆min(A) in 𝑜(𝑛𝜔) time
(i.e., without performing a full eigendecomposition). However, it is unclear
if matrix multiplication can be reduced to either of these problems. In The-
orem 3.2.13 we reduce triangle detection to determinant approximation up to
(1±1/ poly(𝑛)) accuracy. Via Theorem 3.1.8 this further gives a reduction from
matrix multiplication to determinant approximation up to (1± 1/ poly(𝑛)) ac-
curacy. However, nothing is known if just a constant factor approximation to
the determinant is required.

∙ One of the most fundamental problems in linear algebra is linear system solv-
ing: given positive semidefinite A ∈ R𝑛×𝑛 and x ∈ R𝑛, approximate A−1x.
If A has condition number 𝜅, A−1x can be approximated in �̃�(nnz(A) ·

√
𝜅)

time [Saa03]. If A is structured (e.g. tridiagonal [GE95] or a graph Laplacian
[ST04]), �̃�(nnz(A)) or �̃�(𝑛2) time system solvers also exist. However, for gen-
eral A, no known 𝑜(𝑛𝜔) time algorithm for approximating A−1x to relatively
high accuracy exists. At the same time it is not known how the complexity of
solving PSD linear systems relates to the complexity of matrix multiplication.
For example, is it possible to show a reduction which proves that, if all positive
semidefinite systems can be solved in �̃�(𝑛2) time, then matrix multiplication
can be performed in �̃�(𝑛2) time?

3.4.2 Understanding the Role of Randomness

As we have seen, randomized algorithms have led to significant progress in fast ap-
proximation of linear algebraic problems. Typically, randomization goes hand-in-hand
with approximation, yielding algorithms that achieve (1+ 𝜖) error guarantees in some
metric at the cost of poly(1/𝜖) factors in their runtimes. Our lower bounds in Sec-
tion 3.2 demonstrate that, for a wide variety of spectral sum problems, this coarse
approximation is required to obtain fast algorithms. Algorithms with fine enough
approximation can be used to give fast algorithms for general matrix multiplication.

149



However, our lower bounds don’t address the question of if randomness is also nec-
essary to obtain fast algorithms for approximating these spectral sums. Do fast,
deterministic, spectral sum approximation algorithms exist? Below we outline a few
additional open questions that we feel are important in understanding the role of
randomness in fast linear algebra.

∙ The top eigenvalue, or relatedly the spectral norm of any matrix can be ap-
proximated up to error (1± 𝜖) using the power method [Saa11] or the Lanczos
method, which runs in �̃�(nnz(A ·

√︀
1/𝜖) time [KW92]. These iterative algo-

rithms however, require a random initialization vector. No algorithm is known
that can compute even a constant factor approximation to the spectral norm
deterministically in 𝑜(𝑛𝜔) time. Proving a lower bound or providing a new de-
terministic algorithm to help close this wide gap would be a very interesting
result. As an intermediate step, it may also be worth studying Las Vegas algo-
rithms for spectral norm approximation, of which none running in 𝑜(𝑛𝜔) time
are known.

∙ Like spectral norm approximation, all known fast algorithms for low-rank ap-
proximation are randomized. For example, as discussed in Chapter 2, a near
optimal 𝑘-rank approximation of general A ∈ R𝑛×𝑑 (Problem 2.1.1) can be
computed in 𝑂(nnz(A) + (𝑛 + 𝑑) poly(𝑘/𝜖)) using random sketching methods
[CW13]. However, the fastest known algorithm for computing such an ap-
proximation deterministically, Liberty’s Frequent Directions algorithm, runs in
𝑂(nnz(A) · 𝑘/𝜖) time [GLPW16, LACBL16]. It would be very interesting to
prove a lower bound showing that input sparsity runtimes (i.e. 𝑂(nnz(A) plus
lower order terms) can only be achieved with the use of randomness.

150



Chapter 4

Ant-Inspired Density Estimation

In this chapter we study the problem of distributed population density estimation in
ant colonies from the viewpoint of randomized algorithms. Many ant species employ
distributed population density estimation in applications ranging from quorum sens-
ing [Pra05], to task allocation [Gor99], to appraisal of enemy colony strength [Ada90].
It has been shown that ants estimate density by tracking encounter rates – the higher
the population density, the more often the ants bump into each other [Pra05, GPT93].

We study distributed density estimation from a theoretical perspective. We prove
that a group of anonymous agents randomly walking on a grid are able to estimate
their density within a small multiplicative error in few steps by measuring their rates
of encounter with other agents. Despite dependencies inherent in the fact that nearby
agents may collide repeatedly (and, worse, cannot recognize when this happens), our
bound nearly matches what would be required to estimate density by independently
sampling grid locations.

From a biological perspective, our work helps shed light on how ants and other
social insects can obtain relatively accurate density estimates via encounter rates.
From a technical perspective, our analysis provides new tools for understanding com-
plex dependencies in the collision probabilities of multiple random walks. We bound
the strength of these dependencies using local mixing properties of the underlying
graph. Our results extend beyond the grid to more general graphs and we discuss
applications to size estimation for social networks and density estimation in robot
swarms.

This chapter covers work originally published in [MSL17]. In related work, we
study how approximate density estimation may be used as a subroutine in the house-
hunting process of Temnothorax ants [RML17], specifically considering its use in the
algorithms proposed in [GMRL15].

151



Remark: The results presented in this chapter were developed jointly with Nancy
Lynch and Hsin-Hao Su. Hsin-Hao originally wrote the details of some of the proofs for
density estimation on more general graphs (Section 4.4), although their presentation
has been modified significantly in this thesis. We would like to thank Yury Polyanskiy
for pointing our a bug in our original proofs, which assumed independence of collision
counts between agents. This bug has been corrected in this writeup.

4.1 Background and Introduction to Results

The ability to sense local population density is an important tool used by many ant
species. When a colony of Temnothorax ants must relocate to a new nest, scouts
search for potential nest sites, assess their quality, and recruit other scouts to high
quality locations. A high enough density of scouts at a potential new nest (a quorum
threshold) triggers those ants to decide on the site and transport the rest of the colony
there [Pra05]. When neighboring colonies of Azteca ants compete for territory, a high
relative density of a colony’s ants in a contested area will cause those ants to attack
enemies in the area, while a low relative density will cause the colony to retreat
[Ada90]. Varying densities of harvester ants successfully performing certain tasks
such as foraging or brood care can trigger other ants to switch tasks, maintaining
proper worker allocation in the colony [Gor99, SHG06].

It has been shown that ants estimate density in a distributed manner, by measur-
ing encounter rates [Pra05, GPT93]. As ants randomly walk around an area, if they
bump into a larger number of other ants, this indicates a higher population density.
By tracking encounters with specific types of ants, for example, successful foragers
or enemies, ants can estimate more specific densities. This strategy allows each ant
to obtain an accurate density estimate and requires very little communication – ants
must simply detect when they collide and do not need to perform any higher level
data aggregation.

4.1.1 Density Estimation on the Grid

We study distributed density estimation from a theoretical perspective. We model a
colony of ants as a set of anonymous agents randomly placed on a two-dimensional
grid. Computation proceeds in rounds, with each agent stepping in a random direction
in each round. A collision occurs when two agents reach the same position in the
same round and encounter rate is measured as the number of collisions an agent is

152



involved in during a sequence of rounds, divided by the number of rounds. Aside
from collision detection, the agents have no other means of communication.

The intuition that encounter rate tracks density is clear. It is easy to show that, for
a set of randomly walking agents, the expected encounter rate measured by each agent
is exactly the density 𝑑 – the number of agents divided by the grid size (see Corollary
4.3.3). However, it is unclear if the encounter rate actually gives a good density
estimate – that is, if the estimate is close to its expectation with high probability.

Consider agents positioned not on the grid, but on a complete graph. In each
round, each agent steps to a uniformly random position and, in expectation, the
number of other agents it collides with in this step is 𝑑. Since each agent chooses its
new location uniformly at random in each step, collisions are essentially independent
between rounds. The agents are effectively taking independent Bernoulli samples with
success probability 𝑑, and by a standard Chernoff bound, within 𝑂

(︁
log(1/𝛿)
𝑑𝜖2

)︁
rounds

each obtains a (1± 𝜖) multiplicative approximation to 𝑑 with probability 1− 𝛿.

On the grid graph, the picture is significantly more complex. If two agents are
initially located near each other, they are more likely to collide via random walking.
After a first collision, due to their proximity, they are likely to collide repeatedly
in future rounds. Since the agents are anonymous, they cannot recognize repeat
collisions, and even if they could, it is unclear that it would help. On average,
compared to the complete graph, agents collide with fewer individuals and collide
multiple times with those individuals that they do encounter, making encounter rates
a less reliable estimate of population density.

Mathematically speaking, on a graph with a fast mixing time [Lov93], like the
complete graph, each agent’s location is only weakly correlated with its previous
locations. This ensures that collisions are also weakly correlated between rounds and
encounter rate serves as a very accurate estimate of density. The grid graph on the
other hand is slow mixing – agent positions and hence collisions are highly correlated
between rounds, lowering the accuracy of encounter-rate-based estimation.

4.1.2 Our Contributions

Surprisingly, despite the high correlation between collisions, we show that encounter-
rate-based density estimation on the grid is nearly as accurate as on the complete
graph. After just 𝑂

(︁
log(1/𝛿)·[log log(1/𝛿)+log(1/𝑑𝜖)]2

𝑑𝜖2

)︁
rounds, each agent’s encounter rate

is a (1± 𝜖) approximation to 𝑑 with probability 1− 𝛿 (Theorem 4.3.1). This matches
performance on the complete graph up to a [log log(1/𝛿) + log(1/𝑑𝜖)]2 factor.

153



Technically, to bound accuracy on the grid, we obtain moment bounds on the
number of times that two randomly walking agents collide over a set of rounds (Lemma
4.3.11). These bounds also apply to the number of equalizations (returns to origin) of
a single walk. While expected random walk hitting times, return times, and collision
rates are well studied for many graphs, including grid graphs [Lov93, ES09, KMTS16],
higher moment bounds and high probability results are much less common.

Our moment bounds show that, while the grid graph is slow mixing, it has strong
local mixing. That is, random walks tend to spread quickly over a local area and not
repeatedly cover the same nodes, making random-walk-based density estimation ac-
curate. Significant work has focused on showing that random walk sampling is nearly
as good as independent sampling for fast mixing expander graphs [Gil98, CLLM12].
To the best of our knowledge, we are the first to extend this type of analysis to slowly
mixing graphs, showing that strong local mixing is sufficient in many applications.

The key to the local mixing property of the grid is an upper bound on the prob-
ability that two random walks starting from the same position re-collide (or that a
single random walk equalizes) after a certain number of steps (Lemma 4.3.4). We
show that re-collision probability bounds imply collision moment bounds on general
graphs, and apply this technique to extend our results to 𝑑-dimensional grids, reg-
ular expanders, and hypercubes. We discuss applications of our bounds to the task
of estimating the size of a social network using random walks [KLSC14], obtaining
improvements over prior work for networks with relatively slow global mixing times
but strong local mixing. We also discuss connections to density estimation by robot
swarms and random-walk-based sensor network sampling [AB04, LB07].

4.1.3 Road Map

In Section 4.2 we overview our theoretical model for distributed density estimation
on the grid. In Section 4.3 we give our main technical results on random-walk-based
density estimation. In Section ?? we show how to extend our bounds to a number of
graphs other than the grid. In Section 4.5, as a baseline for our results, we analyze a
simple algorithm for density estimation when agents are not restricted to moving by
random walk. In Section 4.6 we discuss applications of our results to social network
size estimation and robot swarm algorithms. In Section 4.7 we conclude and discuss
interesting open questions and directions for future work.

154



4.2 Theoretical Model for Density Estimation

We begin by laying out our simple theoretical model of ant colony behavior and
defining the density estimation problem within this model.

4.2.1 Computational Model

We consider a set of agents populating a two-dimensional torus with 𝐴 nodes (di-
mensions

√
𝐴 ×

√
𝐴). At each time step, each agent has an associated ordered pair

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, which gives its coordinates on the torus. We assume that 𝐴 is large – larger
than the area agents traverse over the runtimes of our algorithms. We believe the
torus model successfully captures the dynamics of density estimation on a surface,
while avoiding complicating factors of boundary behavior on a finite grid.

Initially each agent is placed independently at a uniform random node in the
torus. Computation proceeds in discrete, synchronous rounds. In each round, an
agent may either remain in its current location or step to any of its four neighboring
grid squares. Formally, it updates the ordered pair 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 by adding a step chosen
from {(0, 1), (0,−1), (1, 0), (−1, 0), (0, 0)}.

A randomly walking agent chooses its step uniformly at random from
{(0, 1), (0,−1), (1, 0), (−1, 0)} in each round. Of course, in reality ants do not move
via pure random walk. However, there is evidence that nevertheless, encounter rates
are well predicted by a random walk model [BFKN18]. At the same time, there is
evidence that in some cases, encounter rates are actually lower than predicted by such
a model [GPT93, NTD05]. Overall, we feel that our model sufficiently captures the
highly random movement of ants while remaining tractable to analysis and applicable
to ant-inspired random-walk-based algorithms (Section 4.6). Extending our work to
more realistic models of ant movement would be an interesting next direction. See
Section 4.7.1 for a more detailed discussion of this direction.

Aside from the ability to move in each round, agents can sense the number of
agents other than themselves at their position at the end of each round, formally
through the function 𝑐𝑜𝑢𝑛𝑡(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). We say that two agents collide in round 𝑟 if they
have the same position at the end of the round. Outside of collision counting, agents
have no means of communication. They are anonymous (cannot uniquely identify
each other) and execute identical density estimation routines. A basic illustration of
our model is depicted in Figure 4-1.

155



Figure 4-1: A basic illustration of our computational model. Each agent (ant) may
move to an adjacent position on the two-dimensional torus in each round (illustrated
by the red arrows). A collision occurs when two or more agents are located at the same
position. The agents detect collisions through the 𝑐𝑜𝑢𝑛𝑡(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) function which
returns the number of other agents at their current position. In this illustration,
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is given as the (𝑥, 𝑦) position with the bottom left corner corresponding to
(1, 1). However, the precise convention used is unimportant.

4.2.2 The Density Estimation Problem

Let (𝑛+1) be the number of agents and define population density as 𝑑 def
= 𝑛/𝐴. Each

agent’s goal is to estimate 𝑑 to (1 ± 𝜖) accuracy with probability at least 1 − 𝛿 for
𝜖, 𝛿 ∈ (0, 1) – that is, to return an estimate 𝑑 with P

[︁
𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑]

]︁
≥ 1− 𝛿.

As a technicality, with 𝑛 + 1 agents we define 𝑑 = 𝑛/𝐴 instead of 𝑑 = (𝑛 + 1)/𝐴. In
the natural case, when 𝑛 is large, the distinction is unimportant. Since our analysis
always takes the perspective of one agent, this convention ensures that there are
𝑛 other agents with which this agent may interact, and thus all summations over
expected collision counts and other quantities are over 𝑛 variables rather than 𝑛− 1.
Additionally, in the case there is a single agent on the grid, this convention allows the
agent to return density estimate 0. If the density were instead defined to be 1/𝐴 in
this case, estimation would be impossible in our model, since the agent has no way
of sensing its location and thus no way of estimating the size of the torus, 𝐴.

156



Local vs. Global Density

The problem described above requires estimating the global population density. We
assume that agents are initially distributed uniformly at random on the torus, which
is critical for fast global density estimation. When agents are uniformly distributed,
the local density in a small radius around their starting position reflects the global
density with good probability. Thus, they are able to obtain a good estimate of this
density using local measurements, and without traversing a large fraction of the torus.

Of course, in nature, ants are not typically uniformly distributed in the nest or sur-
rounding areas. Additionally, they are often interested in estimating local population
densities – e.g., around a nest entrance when estimating the number of successful
foragers for task allocation [Gor99]. We view our work as a first step towards a
theoretical understanding of density estimation and focus on the global density for
simplicity. Removing our assumption of uniformly distributed agents, formally defin-
ing the problem of local density estimation, and understanding how ants can solve
this problem are important directions for future work.

4.3 Random-Walk-Based Density Estimation

As discussed, the challenge in analyzing random-walk-based density estimation on
the torus arises from correlations between collisions of nearby agents. If we do not
restrict agents to random walking, and instead allow each agent to take an arbitrary
step in each round, they can avoid collision correlations by splitting into ‘stationary’
and ‘mobile’ groups and counting collisions only between members of different groups.
This allows them to essentially independently sample collisions with other agents to
estimate density. This method is simple to analyze (see Section 4.5), but it is not
‘natural’ in a biological sense or useful for the applications of Section 4.6. Further,
independent sampling is unnecessary! Algorithm 1 describes a simple random-walk-
based approach that gives a nearly matching bound.

157



Algorithm 1 Random-Walk-Based Density Estimation
Each agent independently executes:

𝑐 := 0

for 𝑟 = 1, ..., 𝑡 do
𝑠𝑡𝑒𝑝 := 𝑟𝑎𝑛𝑑{(0, 1), (0,−1), (1, 0), (−1, 0)}
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 := 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+ 𝑠𝑡𝑒𝑝

𝑐 := 𝑐+ 𝑐𝑜𝑢𝑛𝑡(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ◁ Update collision count.
end for
return 𝑑 = 𝑐

𝑡

4.3.1 Random-Walk-Based Density Estimation Analysis

Our main theoretical result follows; its proof appears at the end of Section 4.3.6, after
a number of preliminary lemmas. Throughout our analysis, we take the viewpoint of
a single agent executing Algorithm 1, which we sometimes call agent 𝑎.

Theorem 4.3.1 (Random Walk Sampling Accuracy Bound). After running for 𝑡
rounds, assuming 𝑡 ≤ 𝐴, an agent executing Algorithm 1 returns 𝑑 such that, for any
𝛿 > 0, with probability ≥ 1− 𝛿,

𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] for 𝜖 ≤ 𝑐1 ·
√︂

log(1/𝛿)

𝑡𝑑
· log(2𝑡),

where 𝑐1 is some fixed constant. This implies that, for any 𝜖, 𝛿 ∈ (0, 1) if

𝐴 ≥ 𝑡 ≥ 𝑐2 log(1/𝛿) · [log log(1/𝛿) + log(1/𝑑𝜖)]2

𝑑𝜖2
,

where 𝑐2 is some fixed constant, 𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] with probability ≥ 1− 𝛿.

Theorem 4.3.1 focuses on the density estimate of a single agent executing Algo-
rithm 1. However, we note that if we set 𝛿 = 𝛿′

𝑛
, then by a union bound, all 𝑛 agents

will have 𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] with probability 𝛿′. The required running time 𝑡 will
depend just logarithmically on 𝛿′ and 𝑛.

4.3.2 Decomposition of Collision Count into Independent Ran-

dom Variables

We decompose the collision count 𝑐 maintained by an agent executing Algorithm 1 as
the sum of collisions with different agents over different rounds. Specifically, assign

158



arbitrary ids 1, 2, ..., 𝑛 to the 𝑛 other agents and let 𝑐𝑗(𝑟) equal 1 if the agent collides
with agent 𝑗 in round 𝑟, and 0 otherwise. Let 𝑐𝑗 =

∑︀𝑡
𝑟=1 𝑐𝑗(𝑟) be the total number

of collisions with agent 𝑗. We have 𝑐 =
∑︀𝑛

𝑗=1 𝑐𝑗. Note that 𝑐1, ..., 𝑐𝑛 are identically
distributed random variables.

The main challenge in proving the accuracy of Algorithm 1 is in handling the
strong correlations between collisions in successive rounds – i.e., between the random
variables 𝑐𝑗(1), ..., 𝑐𝑗(𝑡) for each 𝑗. Across agents, the collision counts 𝑐1, ..., 𝑐𝑛 may
also be correlated. However, conditioned on the random walk taken by agent 𝑎 (the
agent whose viewpoint we take), 𝑐1, ..., 𝑐𝑛 are independent, since they depend only on
the independent random walks of different agents. Thus, the results in this section
will typically bound collision probabilities and expectations conditioned on agent 𝑎’s
path, which we denote by 𝒲 . 𝒲 is a random variable, consisting of a sequence of 𝑡
positions. In Section 4.3.6 we will remove this conditioning, showing that Algorithm 1
yields an accurate density estimate, regardless of agent 𝑎’s path, and thereby proving
Theorem 4.3.1.

4.3.3 Correctness of Encounter Rate in Expectation

Lemma 4.3.2 (Unbiased Estimator). Let 𝒲 be the 𝑡-step random walk that an agent
executing Algorithm 1 takes. The output 𝑑 of that agent satisfies: E[𝑑|𝒲 ] = 𝑑.

Proof. By linearity of expectation, E[𝑐|𝒲 ] =
∑︀𝑛

𝑗=1

∑︀𝑡
𝑟=1 E[𝑐𝑗(𝑟)|𝒲 ]. Conditioned on

𝒲 , the position of the agent is fixed in round 𝑟. Since each other agent is initially
at a uniform random location and after any number of steps, is still at uniform
random location, for all 𝑗, 𝑟, E[𝑐𝑗(𝑟)|𝒲 ] = 1/𝐴. Thus, E[𝑐|𝒲 ] = 𝑛𝑡/𝐴 = 𝑑𝑡 and
E[𝑑|𝒲 ] = E[𝑐|𝒲 ]]/𝑡 = 𝑑.

By the law of iterated expectation, E[𝑑] = E[E[𝑑|𝒲 ]] and so Lemma 4.3.2 gives:

Corollary 4.3.3. E[𝑑] = 𝑑.

We note that the torus is bipartite, and hence two agents initially located an odd
number of steps away from each other will never meet via random walking. However,
this fact does not change the expectation of 𝑑 computed above and in fact does not
affect any of our following proofs. In future work, it may be interesting to consider
a model in which each agent performs a lazy random walk, remaining at the same
position with some probability in each round. Such a model would allow all agents
to eventually meet with some probability. We discuss this direction in more detail in
Section 4.7.

159



With Lemma 4.3.2 and Corollary 4.3.3 in place, it remains to show that the en-
counter rate is close to its expectation with high probability and so provides a good
estimate of density. In order to do this, we must bound the strength of correla-
tions between collisions of nearby agents in successive rounds, which can decrease the
accuracy of the encounter-rate-based estimate.

4.3.4 A Re-collision Probability Bound

The key to bounding collision correlations is bounding the probability of a re-collision
between two randomly walking agents in round 𝑟+𝑚, assuming a collision in round 𝑟,
which we do in Lemma 4.3.4 below.1 Each 𝑐𝑗 is the sum of highly correlated random
variables 𝑐𝑗(1), ..., 𝑐𝑗(𝑡). Due to the slow mixing of the grid, if two agents collide
at round 𝑟, they are much more likely to collide in successive rounds. However, by
bounding this re-collision probability, we are able to give strong moment bounds for
the distribution of each 𝑐𝑗. We bound not only its variance, but all higher moments.
This allows us to show that the average 𝑑 = 1

𝑡

∑︀𝑛
𝑗=1 𝑐𝑗 falls close to its expectation 𝑑

with high probability, giving Theorem 4.3.1.
Our re-collision probability bound is stated below:

Lemma 4.3.4 (Re-collision Probability Bound). Consider two agents 𝑎1 and 𝑎2 ran-
domly walking on a two-dimensional torus of dimensions

√
𝐴 ×

√
𝐴. Assume that

𝑎1 and 𝑎2 collide in round 𝑟. For any 𝑚 ≥ 0, let 𝒲 be the 𝑚-step random walk
performed by 𝑎2 in rounds 𝑟 + 1, ..., 𝑟 +𝑚. Let 𝒞 be the event that 𝑎1 and 𝑎2 collide
again in round 𝑟 +𝑚. We have:

P[𝒞|𝒲 ] = 𝑂

(︂
1

𝑚+ 1
+

1

𝐴

)︂
.

Lemma 4.3.4 Proof Outline.
Our proof of Lemma 4.3.4 in broken down into the following steps. See Figure 4-2

for a schematic of the proof.

1. In Lemma 4.3.5 we bound the probability that a single 𝑚-step random walk
starting from some position ends at any other 𝑥 or 𝑦 position, conditioned on
the number of steps that the walk takes in the 𝑥 and 𝑦 directions. The proof of
this lemma breaks down into two cases:

1In fact, we prove a stronger result, giving a bound on the re-collision probability conditioned on
the random walk taken by one of the agents in rounds 𝑟+1, ..., 𝑟+𝑚. As discussed in Section 4.3.2,
it will later be necessary to condition on this walk to ensure that the number of collisions between
the agent and each other agent (i.e., 𝑐1, ..., 𝑐𝑛) are independent.

160



∙ In Claim 4.3.6 we show that if the walk takes 𝑚𝑥 steps in the 𝑥 direction
and 𝑚𝑦 steps in the 𝑦 direction and does not fully ‘wrap around’ the torus,
the probability that it ends at any 𝑥 position can be bounded by 𝑂

(︁
1√
𝑚𝑥

)︁
.

The probability that it ends at any 𝑦 position can similarly be bounded
by 𝑂

(︁
1√
𝑚𝑦

)︁
.

∙ In Claim 4.3.7 we handle the case when the walk does wrap fully around
the torus one or more times, showing that this possibility adds at most an
additional 𝑂

(︁
1√
𝐴

)︁
factor to the probability of ending at any 𝑥 or 𝑦 position

on a
√
𝐴 ×

√
𝐴 torus. This gives an overall bound on the probability of

ending at any 𝑥 position of 𝑂
(︁

1√
𝑚𝑥

+ 1√
𝐴

)︁
, and an analogous bound on

the probability of ending at any 𝑦 position of 𝑂
(︁

1√
𝑚𝑦

+ 1√
𝐴

)︁
.

2. In Corollary 4.3.8 we show that, since movement in the 𝑥 and 𝑦 directions are
independent, the probability of a single walk ending at any position after taking
𝑚𝑥 steps in the 𝑥 direction and 𝑚𝑦 steps in the 𝑦 direction is:

𝑂

(︂[︂
1

√
𝑚𝑥

+
1√
𝐴

]︂
·
[︂

1
√
𝑚𝑦

+
1√
𝐴

]︂)︂
= 𝑂

(︂
1

√
𝑚𝑥 ·𝑚𝑦

+
1

𝐴

)︂
.

3. In Lemma 4.3.9 we show that, with high probability, an 𝑚-step walk takes Θ(𝑚)

steps in both the 𝑥 and 𝑦 directions. Combined with Corollary 4.3.8, this yields
an unconditional bound of 𝑂

(︀
1
𝑚
+ 1

𝐴

)︀
on the probability that a single random

walk starting from some position ends at any other particular position after 𝑚
steps.

4. Finally, we bound the probability that two walks re-collide after 𝑚 steps, con-
ditioned on the path of one of these walks, giving Lemma 4.3.4. Fixing this
path fixes a position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) that the agent is located in at round 𝑟 + 𝑚.
For a re-collision to occur, the other agent must also be located at this position
at round 𝑟+𝑚. We bound the probability of this event directly with the single
walk bound of Lemma 4.3.9.

We begin with our bound on the probability of a single walk ending at any 𝑥 and
𝑦 position, conditioned on the number number of steps that it takes in each direction.

Lemma 4.3.5. Consider an agent 𝑎1 randomly walking on a two-dimensional torus
of dimensions

√
𝐴×

√
𝐴 which is at position (𝑥𝑏𝑒𝑔𝑖𝑛, 𝑦𝑏𝑒𝑔𝑖𝑛) in round 𝑟. For any 𝑚 ≥ 0

and any position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑), let 𝒞𝑥 be the event that 𝑎1 has 𝑥 position 𝑥𝑒𝑛𝑑 at round

161



Figure 4-2: A schematic of the proof of Lemma 4.3.4.

𝑟+𝑚 and let 𝒞𝑦 be the event that 𝑎1 has 𝑦 position 𝑦𝑒𝑛𝑑 at round 𝑟+𝑚. Let 𝑀𝑥,𝑀𝑦

be random variables giving the number of steps that 𝑎1 takes in the 𝑥 and 𝑦 directions
respectively in rounds 𝑟 + 1, ...𝑟 +𝑚. For any 𝑚𝑥,𝑚𝑦 ∈ {0, ...,𝑚}:

P[𝒞𝑥|𝑀𝑥 = 𝑚𝑥] = 𝑂

(︂
1√

𝑚𝑥 + 1
+

1√
𝐴

)︂
and

P[𝒞𝑦|𝑀𝑦 = 𝑚𝑦] = 𝑂

(︃
1√︀

𝑚𝑦 + 1
+

1√
𝐴

)︃
.

Proof. We focus on bounding P [𝒞𝑥|𝑀𝑥 = 𝑚𝑥]. The bound on P [𝒞𝑦|𝑀𝑦 = 𝑚𝑦] follows
from an identical proof. We split our analysis into two cases. Let 𝛿𝑥 = 𝑥𝑒𝑛𝑑 − 𝑥𝑏𝑒𝑔𝑖𝑛

be the change in 𝑥 position required for 𝒞𝑥 to occur. Let 𝒞1
𝑥 be the event that 𝑎1 has

total 𝑥 displacement 𝛿𝑥 from round 𝑟 to round 𝑟 +𝑚 (and so is at 𝑥 position 𝑥𝑒𝑛𝑑 in
round 𝑟+𝑚). Let 𝒞2

𝑥 be the event that the agent is at 𝑥 position 𝑥𝑒𝑛𝑑 in round 𝑟+𝑚

but does not have displacement 𝛿𝑥. This requires that the agent ‘wraps around’ the
torus, ending at 𝑥𝑒𝑛𝑑 despite moving further than 𝛿𝑥. We can write:

P[𝒞𝑥|𝑀𝑥 = 𝑚𝑥] = P[𝒞1
𝑥|𝑀𝑥 = 𝑚𝑥] + P[𝒞2

𝑥|𝑀𝑥 = 𝑚𝑥]. (4.1)

We bound the probabilities of 𝒞1
𝑥 and 𝒞2

𝑥 separately.

162



Claim 4.3.6 (Collision Probability Without Wraparound).

P[𝒞1
𝑥|𝑀𝑥 = 𝑚𝑥] = 𝑂

(︂
1√

𝑚𝑥 + 1

)︂
.

Proof. We can write the 𝑥 displacement of 𝑎1 as
∑︀𝑚𝑥

𝑗=1 𝑠𝑗 where 𝑠𝑗 the direction of
the agent’s 𝑗𝑡ℎ step in the 𝑥 direction. Each 𝑠𝑗 is an independent random variable
equal to 1 with probability 1/2 and −1 with probability 1/2. With this notation we
can compute:

P[𝒞1
𝑥|𝑀𝑥 = 𝑚𝑥] = P

[︃(︃
𝑚𝑥∑︁
𝑗=1

𝑠𝑗

)︃
= 𝛿𝑥|𝑀𝑥 = 𝑚𝑥

]︃
=

(︂
𝑚𝑥

𝑚𝑥+𝛿𝑥
2

)︂(︂
1

2

)︂𝑚𝑥

(4.2)

where we use the convention that the binomial coefficient equals 0 if 𝑚𝑥+𝛿𝑥
2

is not a
positive integer. For any 𝛿𝑥 we have

(︀
𝑚𝑥

𝑚𝑥+𝛿𝑥
2

)︀
≤
(︀

𝑚𝑥

⌊𝑚𝑥/2⌋

)︀
= 𝑚𝑥!

⌊𝑚𝑥
2

⌋!·⌈𝑚𝑥
2

⌉! and by Stirling’s

approximation, for any 𝑛 > 0, 𝑛! =
√
2𝜋𝑛

(︀
𝑛
𝑒

)︀𝑛 (︀
1 +𝑂

(︀
1
𝑛

)︀)︀
, which gives:

P[𝒞1
𝑥|𝑀𝑥 = 𝑚𝑥] = 𝑂

(︂
1√

𝑚𝑥 + 1

)︂
,

and so the claim. Note that we use 𝑚𝑥 + 1 instead of 𝑚𝑥 in the denominator so that
the bound is meaningful in the case when 𝑚𝑥 = 0.

We next show:

Claim 4.3.7 (Collision Probability with Wraparound).

P
[︀
𝒞2
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
= 𝑂

(︂
1√

𝑚𝑥 + 1
+

1√
𝐴

)︂
Proof. In order for 𝒞2

𝑥 to occur, 𝑎1 must have 𝑥 position 𝑥𝑒𝑛𝑑 after round 𝑟 +𝑚 but
not have total displacement 𝛿𝑥. In particular, 𝑎1’s displacement must differ from 𝛿𝑥

by a nonzero integer multiple of
√
𝐴 – the side length of the torus. We can thus write,

letting Z ∖ 0 denote the set of nonzero integers:

P
[︀
𝒞2
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
=
∑︁
𝑐∈Z∖0

P

[︃(︃
𝑚𝑥∑︁
𝑗=1

𝑠𝑗

)︃
= 𝛿𝑥 + 𝑐

√
𝐴|𝑀𝑥 = 𝑚𝑥

]︃

=

(︂
1

2

)︂𝑚𝑥

·
∑︁

𝑐∈Z∖{0,±1}

(︂
𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√
𝐴

2

)︂
+𝑂

(︂
1√

𝑚𝑥 + 1

)︂
. (4.3)

163



To obtain (4.3) we bound the 𝑐 = ±1 terms P
[︁(︁∑︀𝑚𝑥

𝑗=1 𝑠𝑗

)︁
= 𝛿𝑥 ±

√
𝐴|𝑀𝑥 = 𝑚𝑥

]︁
by

𝑂
(︁

1√
𝑚𝑥+1

)︁
using our bound on 𝒞1

𝑥 given in Claim 4.3.6, which can easily be seen to

hold for any 𝑥 displacement, and in particular, for 𝛿𝑥 ±
√
𝐴.

Roughly, we will upper bound the first term of (4.3) by the probability that the
agent ends at any 𝑥 position in round 𝑟+𝑚. Since there are

√
𝐴 such positions, this

probability is thus bounded by 𝑂
(︁

1√
𝐴

)︁
. Formally, consider any 𝑖 ∈ [1, ...,

√
𝐴 − 1]

and let 𝒟𝑖
𝑥 be the event that the walk is 𝑖 steps clockbywise from 𝑥𝑒𝑛𝑑 after taking

𝑀𝑥 steps. We can write:

P[𝒟𝑖
𝑥|𝑀𝑥 = 𝑚𝑥] =

(︂
1

2

)︂𝑚𝑥

·
∑︁
𝑐∈Z

(︂
𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2

)︂
. (4.4)

Now, since |𝛿𝑥| <
√
𝐴 and 𝑖 <

√
𝐴, for 𝑐 ≥ 2, 𝛿𝑥 + 𝑖 + (𝑐 − 1)

√
𝐴 is closer to 0 than

𝛿𝑥 + 𝑐
√
𝐴. So, as long as 𝑚𝑥+𝛿𝑥+𝑖+𝑐

√
𝐴

2
is an integer,

(︀ 𝑚𝑥
𝑚𝑥+𝛿𝑥+𝑖+(𝑐−1)

√
𝐴

2

)︀
≥
(︀ 𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√
𝐴

2

)︀
.

Similarly, for 𝑐 ≤ −2, 𝛿𝑥 + 𝑖 + 𝑐
√
𝐴 is closer to 0 than 𝛿𝑥 + 𝑐

√
𝐴. So as long as

𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2
is an integer,

(︀ 𝑚𝑥
𝑚𝑥+𝛿𝑥+𝑖+𝑐

√
𝐴

2

)︀
≥
(︀ 𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√

𝐴
2

)︀
.

Let ℰ𝑖,𝑐 equal 1 if 𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2
is an integer and 0 otherwise. By the above bounds

we have: ∑︁
𝑐∈Z∖{0,±1}

ℰ𝑖,𝑐 ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√
𝐴

2

)︂
≤

∑︁
𝑐∈Z∖{0,−1}

ℰ𝑖,𝑐 ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2

)︂

≤
∑︁
𝑐∈Z

ℰ𝑖,𝑐 ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2

)︂
.

Combining with (4.4) and using the fact that the 𝒟𝑖
𝑥 events are disjoint, so the

sum of their probabilities is at most 1, we have:

√
𝐴−1∑︁
𝑖=1

P
[︀
𝒟𝑖
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
≤ 1

√
𝐴−1∑︁
𝑖=1

[︃(︂
1

2

)︂𝑚𝑥

·
∑︁
𝑐∈Z

ℰ𝑖,𝑐 ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2

)︂]︃
≤ 1

√
𝐴−1∑︁
𝑖=1

⎡⎣(︂1

2

)︂𝑚𝑥 ∑︁
𝑐∈Z∖{0,±1}

ℰ𝑖,𝑐 ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√
𝐴

2

)︂⎤⎦ ≤ 1

(︂
1

2

)︂𝑚𝑥 ∑︁
𝑐∈Z∖{0,±1}

⎡⎣⎛⎝√
𝐴−1∑︁
𝑖=1

ℰ𝑖,𝑐

⎞⎠ ·
(︂

𝑚𝑥

𝑚𝑥+𝛿𝑥+𝑐
√
𝐴

2

)︂⎤⎦ ≤ 1.

164



Now, for all 𝑐,
∑︀√

𝐴−1
𝑖=1 ℰ𝑖,𝑐 = Θ

(︁√
𝐴
)︁

since 𝑚𝑥+𝛿𝑥+𝑖+𝑐
√
𝐴

2
is integral for half the pos-

sible 𝑖 ∈ [1, ...,
√
𝐴 − 1]. Rearranging, we thus have

(︀
1
2

)︀𝑚𝑥∑︀
𝑐∈Z∖{0,±1}

(︀ 𝑚𝑥
𝑚𝑥+𝛿𝑥+𝑐

√
𝐴

2

)︀
=

𝑂
(︁

1√
𝐴

)︁
. Plugging this back into (4.3):

P
[︀
𝒞2
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
= 𝑂

(︂
1√

𝑚𝑥 + 1
+

1√
𝐴

)︂
,

which gives the claim.

Plugging the bounds of Claims 4.3.6 and 4.3.7 into (4.1) we have:

P [𝒞𝑥|𝑀𝑥 = 𝑚𝑥] = P
[︀
𝒞1
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
+ P

[︀
𝒞2
𝑥|𝑀𝑥 = 𝑚𝑥

]︀
𝑂

(︂
1√

𝑚𝑥 + 1
+

1√
𝐴

)︂
,

which gives the lemma.

Since an agent’s movements in the 𝑥 and 𝑦 directions are independent, Lemma
4.3.5 yields:

Corollary 4.3.8. Consider an agent 𝑎1 randomly walking on a two-dimensional torus
of dimensions

√
𝐴×

√
𝐴 which is at position (𝑥𝑏𝑒𝑔𝑖𝑛, 𝑦𝑏𝑒𝑔𝑖𝑛) in round 𝑟. For any 𝑚 ≥ 0

and any position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑), let 𝒞 be the event that 𝑎1 has 𝑥 position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑)

at round 𝑟 + 𝑚. Let 𝑀𝑥,𝑀𝑦 be random variables giving the number of steps that
𝑎1 takes in the 𝑥 and 𝑦 directions respectively in rounds 𝑟 + 1, ...𝑟 + 𝑚. For any
𝑚𝑥,𝑚𝑦 ∈ {0, ...,𝑚}:

P[𝒞|𝑀𝑥 = 𝑚𝑥,𝑀𝑦 = 𝑚𝑦] = 𝑂

(︃
1√︀

(𝑚𝑥 + 1)(𝑚𝑦 + 1)
+

1

𝐴

)︃
.

Proof. Let 𝒞𝑥 and 𝒞𝑦 be as defined in Lemma 4.3.5. All steps are chosen independently,
so conditioned on 𝑀𝑥 = 𝑚𝑥 and 𝑀𝑦 = 𝑚𝑦, 𝒞𝑥 and 𝒞𝑦 are independent. We can thus
compute:

P [𝒞|𝑀𝑥 = 𝑚𝑥,𝑀𝑦 = 𝑚𝑦] = P [𝒞𝑥 and 𝒞𝑦|𝑀𝑥 = 𝑚𝑥,𝑀𝑦 = 𝑚𝑦]

= P [𝒞𝑥|𝑀𝑥 = 𝑚𝑥] · P [𝒞𝑦|𝑀𝑦 = 𝑚𝑦] .

165



Applying the bounds from Lemma 4.3.5 we have:

P [𝒞|𝑀𝑥 = 𝑚𝑥,𝑀𝑦 = 𝑚𝑦] = 𝑂

(︃[︂
1√

𝑚𝑥 + 1
+

1√
𝐴

]︂
·

[︃
1√︀

𝑚𝑦 + 1
+

1√
𝐴

]︃)︃

= 𝑂

(︃
1√︀

(𝑚𝑥 + 1)(𝑚𝑦 + 1)
+

1

𝐴

)︃
,

which gives the corollary.

Using Corollary 4.3.8 we can give an unconditional bound on the collision proba-
bility by showing that, with high probability, 𝑚𝑥 = Θ(𝑚) and 𝑚𝑦 = Θ(𝑚).

Lemma 4.3.9 (Single Random Walk Collision Probability). Consider an agent 𝑎1
randomly walking on a two-dimensional torus of dimensions

√
𝐴 ×

√
𝐴 which is at

position (𝑥𝑏𝑒𝑔𝑖𝑛, 𝑦𝑏𝑒𝑔𝑖𝑛) in round 𝑟. For any 𝑚 ≥ 0 and any position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑), let 𝒞
be the event that 𝑎1 has 𝑥 position (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) at round 𝑟 +𝑚.

P[𝒞] = 𝑂

(︂
1

𝑚+ 1
+

1

𝐴

)︂
.

Proof. As in Corollary 4.3.8, let 𝑀𝑥,𝑀𝑦 be random variables giving the number of
steps that 𝑎1 takes in the 𝑥 and 𝑦 directions respectively in rounds 𝑟+1, ...𝑟+𝑚. Since
direction is chosen independently and uniformly at random for each step, E[𝑀𝑥] =

E[𝑀𝑦] = 𝑚/2. By a standard Chernoff bound:

P[𝑀𝑥 ≤ 𝑚/4] ≤ 2𝑒−(1/2)2·𝑚/4 = 𝑂

(︂
1

𝑚+ 1

)︂
.

(Again writing 𝑚 + 1 instead of 𝑚 to cover the 𝑚 = 0 case). An identical bound
holds for 𝑀𝑦. Thus, by a union bound, except with probability 𝑂

(︀
1

𝑚+1

)︀
both 𝑀𝑥

and 𝑀𝑦 are ≥ 𝑚/4. Applying Corollary 4.3.8 we have:

P [𝒞] = P [𝒞|𝑀𝑥 ≥ 𝑚/4 and 𝑀𝑦 ≥ 𝑚/4] · P [𝑀𝑥 ≥ 𝑚/4 and 𝑀𝑦 ≥ 𝑚/4]

+ P [𝒞|𝑀𝑥 < 𝑚/4 or 𝑀𝑦 < 𝑚/4] · P [𝑀𝑥 < 𝑚/4 or 𝑀𝑦 < 𝑚/4]

≤ P [𝒞|𝑀𝑥 ≥ 𝑚/4 and 𝑀𝑦 ≥ 𝑚/4] + P [𝑀𝑥 < 𝑚/4 or 𝑀𝑦 < 𝑚/4]

= 𝑂

(︃
1√︀

(𝑚/4 + 1)(𝑚/4 + 1)
+

1

𝐴
+

1

𝑚+ 1

)︃

= 𝑂

(︂
1

𝑚+ 1
+

1

𝐴

)︂
,

166



which gives the lemma.

We note that Lemma 4.3.9 immediately gives a bound of 𝑂
(︀

1
𝑚+1

+ 1
𝐴

)︀
on the

probability that a single random walk returns to its origin (equalizes) after 𝑚 steps.
In fact a slightly stronger bound can be shown in this special case:

Corollary 4.3.10 (Equalization Probability Bound). Consider agent 𝑎1 randomly
walking on a two-dimensional torus of dimensions

√
𝐴 ×

√
𝐴. If 𝑎1 is located at

position 𝑝 after round 𝑟, for any even 𝑚 ≥ 0, the probability that 𝑎1 is again at
position 𝑝 after round 𝑟 +𝑚 is Θ

(︀
1

𝑚+1

)︀
+𝑂

(︀
1
𝐴

)︀
. For odd 𝑚 the probability is 0.

Proof. The corollary has a Θ
(︀

1
𝑚+1

)︀
bound instead of the 𝑂

(︀
1

𝑚+1

)︀
bound which would

be given by directly applying Lemma 4.3.9. To obtain the stronger bound, simply
note that when bounding the equalization probability, we have 𝛿𝑥 = 0 (where 𝛿𝑥 is
as defined in the proof of Lemma 4.3.5). As long as 𝑚𝑥 is even, the bound in Claim
4.3.6 becomes Θ

(︁
1√

𝑚𝑥+1

)︁
. The remainder of the proof goes through unchanged, after

noting that if 𝑚 is even, 𝑀𝑥 and 𝑀𝑦 are both even with Θ(1) probability.

We finally use Lemma 4.3.9 to directly bound the probability of two random walks
re-colliding after 𝑚 steps, conditioned on the path of one of these walks. This yields
our main re-collision probability bound, Lemma 4.3.4.

Proof of Lemma 4.3.4. Consider any 𝑚-step path 𝑤. Let (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) be the last po-
sition in 𝑤. Then, conditioned on 𝒲 = 𝑤, 𝑎2 is at (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) in round 𝑟+𝑚. Thus,
conditioned on 𝒲 = 𝑤, a re-collision occurs in this round if and only if 𝑎1 is also
located at (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑). Lemma 4.3.9 gives a bound on this probability, which yields
the lemma.

4.3.5 Collision Moment Bound

With Lemma 4.3.4 in hand, we can prove our collision moment bound, which we will
use to show that the number of collisions an agent sees concentrates strongly around
its expectation. Our moment bound is:

Lemma 4.3.11 (Collision Moment Bound). Let 𝒲 be the 𝑡-step random walk that
an agent executing Algorithm 1 takes. For 𝑗 ∈ [1, ..., 𝑛], let 𝑐𝑗

def
= 𝑐𝑗 − E[𝑐𝑗|𝒲 ] and

assume 𝑡 ≤ 𝐴. There is some fixed constant 𝑤 such that for any integer 𝑘 ≥ 1,

E
[︀
𝑐𝑘𝑗 |𝒲

]︀
≤ 𝑡𝑤𝑘

𝐴
· 𝑘! log𝑘(2𝑡).

167



Note that, again, we condition the random walk taken by one of the agents. When
𝑘 = 2, Lemma 4.3.11 gives a bound on the variance of 𝑐𝑗, which can be used to show
that 𝑐𝑗 falls close to its mean with good probability. By bounding the 𝑘𝑡ℎ moment
E[𝑐𝑘𝑗 |𝒲 ] for all 𝑘, we are able to show even stronger concentration results.

Our proof of Lemma 4.3.11 breaks down into the following steps:

1. In Lemma 4.3.12 we bound the probability that an agent collides with any other
particular agent 𝑗 at least once during the execution of Algorithm 1 (i.e., that
𝑐𝑗 ≥ 1), using a simple linearity of expectation argument.

2. In Claims 4.3.13 and 4.3.14 we bound the 𝑘𝑡ℎ moment of 𝑐𝑗 for all 𝑘 ≥ 1

conditioned on 𝑐𝑗 = 0 (i.e., there is no collision with agent 𝑎𝑗) and on 𝑐𝑗 ≥ 1

(i.e., there is at least one collision with agent 𝑎𝑗. The 𝑐𝑗 ≥ 1 case uses the
re-collision probability bound of Lemma 4.3.4.

3. We combine the above results to give our final moment bound for each 𝑐𝑗,
yielding Lemma 4.3.11.

Lemma 4.3.12 (First Collision Probability). Let 𝒲 be the 𝑡-step random walk that
an agent executing Algorithm 1 takes. For all 𝑗 ∈ [1, ..., 𝑛],

P [𝑐𝑗 ≥ 1|𝒲 ] ≤ 𝑡

𝐴
.

Proof. Using the fact that 𝑐𝑗 is identically distributed for all 𝑗, and applying Lemma
4.3.2,

E[𝑑|𝒲 ] = 𝑑 =
1

𝑡
· E

[︃
𝑛∑︁
𝑖=1

𝑐𝑖

⃒⃒⃒
𝒲

]︃
=
𝑛

𝑡
· E[𝑐𝑗|𝒲 ] =

𝑛

𝑡
· P [𝑐𝑗 ≥ 1|𝒲 ] · E[𝑐𝑗|𝒲 , 𝑐𝑗 ≥ 1]

𝑛

𝐴
=
𝑛

𝑡
· P [𝑐𝑗 ≥ 1|𝒲 ] · E[𝑐𝑗|𝒲 , 𝑐𝑗 ≥ 1].

Rearranging and noting that E[𝑐𝑗|𝒲 , 𝑐𝑗 ≥ 1] ≥ 1 gives:

P [𝑐𝑗 ≥ 1|𝒲 ] =
𝑡

𝐴 · E[𝑐𝑗|𝒲 , 𝑐𝑗 ≥ 1]
≤ 𝑡

𝐴
. (4.5)

We next give a simple bound on the moments of 𝑐𝑗 conditioned on 𝑐𝑗 = 0.

Claim 4.3.13. Let 𝒲 be the 𝑡-step random walk that an agent executing Algorithm
1 takes. For 𝑗 ∈ [1, ..., 𝑛], let 𝑐𝑗

def
= 𝑐𝑗 − E[𝑐𝑗|𝒲 ] and assume 𝑡 ≤ 𝐴. For any integer

168



𝑘 ≥ 1,
E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 = 0

]︀
≤ 𝑡

𝐴
.

Proof. By the argument given in Lemma 4.3.2, E[𝑐𝑗|𝒲 ] =
∑︀𝑡

𝑟=1 E[𝑐𝑗(𝑡)|𝒲 ] = 𝑡
𝐴
.

We thus have: E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 = 0

]︀
= (0− E[𝑐𝑗|𝒲 ])𝑘 ≤ (𝑡/𝐴)𝑘. Further since 𝑡 ≤ 𝐴 by

assumption, 𝑡/𝐴 ≤ 1 and we can loosely bound (𝑡/𝐴)𝑘 ≤ 𝑡
𝐴

for all 𝑘 ≥ 1, giving the
claim.

We next use the re-collision probability bound of Lemma 4.3.4 to bound the
moments of 𝑐𝑗 conditioned on 𝑐𝑗 ≥ 1.

Claim 4.3.14. Let 𝒲 be the 𝑡-step random walk that an agent executing Algorithm
1 takes. For 𝑗 ∈ [1, ..., 𝑛], let 𝑐𝑗

def
= 𝑐𝑗 − E[𝑐𝑗|𝒲 ] and assume 𝑡 ≤ 𝐴. There is some

fixed constant 𝑤 such that for any integer 𝑘 ≥ 1,

E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ 𝑤𝑘 · 𝑘! log𝑘(2𝑡).

Proof. Since E[𝑐𝑗|𝒲 ] = 𝑡
𝐴
≤ 1, we have E

[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ E

[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
. So to

prove the lemma, it just suffices to show that E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ 𝑘!𝑤𝑘 log𝑘(2𝑡) for

some 𝑤 and all 𝑘 ≥ 1.

Let 𝑡′ be the first time in which there is a collision with agent 𝑗, and 𝑡′ = 1 if
there is no such collision. We split 𝑐𝑗 over rounds as 𝑐𝑗 =

∑︀𝑡
𝑟=𝑡′ 𝑐𝑗(𝑟) ≤

∑︀𝑡′+𝑡−1
𝑟=𝑡′ 𝑐𝑗(𝑟).

Where we simply define 𝑐𝑗(𝑟) = 0 for any 𝑟 > 𝑡. To simplify notation we relabel round
𝑡′ round 1 and so round 𝑡′ + 𝑡− 1 becomes round 𝑡. After this relabeling, conditioned
on 𝑐𝑗 ≥ 1, we have 𝑐𝑗(1) = 1. Expanding 𝑐𝑘𝑗 out fully using the summation:

E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
= E

[︃
𝑡∑︁

𝑟1=1

𝑡∑︁
𝑟2=1

...
𝑡∑︁

𝑟𝑘=1

𝑐𝑗(𝑟1)𝑐𝑗(𝑟2)...𝑐𝑗(𝑟𝑘)
⃒⃒⃒
𝒲 , 𝑐𝑗 ≥ 1

]︃

=
𝑡∑︁

𝑟1=1

𝑡∑︁
𝑟2=1

...
𝑡∑︁

𝑟𝑘=1

E [𝑐𝑗(𝑟1)𝑐𝑗(𝑟2)...𝑐𝑗(𝑟𝑘)|𝒲 , 𝑐𝑗 ≥ 1] .

E [𝑐𝑗(𝑟1)𝑐𝑗(𝑟2)...𝑐𝑗(𝑟𝑘)|𝒲 , 𝑐𝑗 ≥ 1] is just the probability that the two agents collide
in each of rounds 𝑟1, 𝑟2, ..., 𝑟𝑘, conditioned on the walk 𝒲 and that 𝑐𝑗(1) = 1.
Assume without loss of generality that 𝑟1 ≤ 𝑟2 ≤ ... ≤ 𝑟𝑘. By Lemma 4.3.4
and the fact that 𝑐𝑗(1) = 1, for some fixed 𝑤 we can bound this probability ≤

𝑤𝑘

𝑟1(𝑟2−𝑟1+1)(𝑟3−𝑟2+1)...(𝑟𝑘−𝑟𝑘−1+1)
. Here we use the assumption that 𝑡 ≤ 𝐴 so the 𝑂

(︀
1
𝐴

)︀
term is absorbed into the 𝑂

(︀
1

𝑚+1

)︀
term in Lemma 4.3.4. We then rewrite, by linearity

169



of expectation:

E
[︁
𝑐𝑘𝑗 |𝒲, 𝑐𝑗 ≥ 1

]︁
≤ 𝑘!

𝑡∑︁
𝑟1=1

...
𝑡∑︁

𝑟𝑘=𝑟𝑘−1

𝑤𝑘

𝑟1(𝑟2 − 𝑟1 + 1)...(𝑟𝑘 − 𝑟𝑘−1 + 1)
.

The 𝑘! comes from the fact that in this sum we have only ordered 𝑘-tuples and so
need to multiple by 𝑘! to account for the fact that the original sum is over unordered
𝑘-tuples. We can bound:

𝑡∑︁
𝑟𝑘=𝑟𝑘−1

1

𝑟𝑘 − 𝑟𝑘−1 + 1
= 1 +

1

2
+ ...+

1

𝑡
= 𝑂(log 2𝑡),

so rearranging the sum and simplifying gives:

E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ 𝑘!𝑤𝑘

𝑡∑︁
𝑟1=1

1

𝑟1

𝑡∑︁
𝑟2=𝑟1

1

𝑟2 − 𝑟1 + 1
...

𝑡∑︁
𝑟𝑘=𝑟𝑘−1

1

𝑟𝑘 − 𝑟𝑘−1 + 1

≤ 𝑘!𝑤𝑘
𝑡∑︁

𝑟1=1

...
𝑡∑︁

𝑟𝑘−1=𝑟𝑘−2

1

𝑟𝑘−2 − 𝑟𝑘−1 + 1
·𝑂(log 2𝑡).

We repeat this argument for each level of summation replacing
∑︀𝑡

𝑟𝑖=𝑟𝑖−1

1
𝑟𝑖−𝑟𝑖−1+1

with
𝑂(log 2𝑡). Iterating through the 𝑘 levels gives

E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ 𝑘!𝑤𝑘 log𝑘 2𝑡,

after 𝑤 is adjusted using the constant in the 𝑂(log 2𝑡) term, establishing the claim.

Finally, we combine claims 4.3.13 and 4.3.14 with the first collision probability
bound of Lemma 4.3.12 to prove our main moment bound, Lemma 4.3.11.

Proof of Lemma 4.3.11. We expand:

E[𝑐𝑘𝑗 |𝒲 ] = P[𝑐𝑗 ≥ 1|𝒲 ] · E[𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1] + P[𝑐𝑗 = 0|𝒲 ] · E[𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 = 0].

By Lemma 4.3.12:

E
[︀
𝑐𝑘𝑗 |𝒲

]︀
≤ 𝑡

𝐴
· E
[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
+ E

[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 = 0

]︀
.

Plugging in the bounds of Claims 4.3.13 and 4.3.14 we then have, for some fixed 𝑤

170



and all 𝑘 ≥ 1,

E
[︀
𝑐𝑘𝑗 |𝒲

]︀
≤ 𝑡𝑤𝑘

𝐴
𝑘! log𝑘(2𝑡) +

𝑡

𝐴

≤ 𝑡(𝑤 + 1)𝑘

𝐴
𝑘! log𝑘(2𝑡),

giving the lemma.

As with Lemma 4.3.4, the techniques used in Lemma 4.3.11 can be applied to
bounding the moments of the number of equalizations of a single random walk. We
give two bounds that may be of independent interest. Note that the first bound is
slightly tighter (by a log 2𝑡 factor) than what would be obtained simply by replacing
the use of Lemma 4.3.4 with Corollary 4.3.10 in the proof of Claim 4.3.14.

Corollary 4.3.15 (Random Walk Visits Moment Bound). Consider an agent 𝑎1
randomly walking on a two-dimensional

√
𝐴×

√
𝐴 torus that is initially located at a

uniformly random location and takes 𝑡 ≤ 𝐴 steps. Let 𝑐𝑗 be the number of times that
𝑎1 visits node 𝑗. There exists a fixed constant 𝑤 such that for all 𝑗 ∈ [1, ...𝐴] and all
𝑘 ≥ 1,

E
[︀
𝑐𝑘𝑗
]︀
≤ 𝑡𝑤𝑘

𝐴
· 𝑘! log𝑘−1(2𝑡).

Proof. We show that P[𝑐𝑗 ≥ 1] = 𝑂
(︁

𝑡
𝐴 log 2𝑡

)︁
, strengthening Lemma 4.3.12 by a log 2𝑡

factor. Combining this stronger bound with Claims 4.3.13 and 4.3.14 and following
the proof of Lemma 4.3.11 gives the result.

Let 𝑐(𝑟) be 1 if the agent visits node 𝑗 in round 𝑟, and 0 otherwise. Due to the
initial uniform distribution of the agent, by linearity of expectation:

E[𝑐] =
𝑡∑︁
𝑖=1

E[𝑐(𝑟)] =
𝑡

𝐴
.

As in the proof of Lemma 4.3.12, we can rewrite this expectation as:

E[𝑐] =
𝑡

𝐴
= P[𝑐 ≥ 1] · E[𝑐|𝑐 ≥ 1].

To compute E[𝑐|𝑐 ≥ 1], we use Corollary 4.3.10 and linearity of expectation. Since
𝑡 ≤ 𝐴, the 𝑂

(︀
1
𝐴

)︀
term in Corollary 4.3.10 is absorbed into the Θ

(︀
1

𝑚+1

)︀
. Let 𝑟 ≤ 𝑡

171



be the first round that the agent visits node 𝑗. Then:

E[𝑐|𝑐 ≥ 1] =
𝑡−𝑟∑︁
𝑚=0

Θ

(︂
1

𝑚+ 1

)︂
= Θ(log(2(𝑡− 𝑟 + 1))) . (4.6)

Further, the probability of the first visit to node 𝑗 is in a given round can only decrease
as the round number increases. So, at least 1/2 of the time that 𝑐 ≥ 1, there is a
visit in the first 𝑡/2 rounds (Note that we can assume 𝑡 ≥ 2 since if 𝑡 = 1 we already
have E[𝑐|𝑐 ≥ 1] = 1). So, overall, by (4.6), E[𝑐|𝑐 ≥ 1] = Θ (log(2(𝑡− 𝑡/2 + 1))) =

Θ (log 2𝑡). Using (4.5), P [𝑐 ≥ 1] = 𝑂
(︁

𝑡
𝐴 log 2𝑡

)︁
, completing the proof.

We have a similar bound on the number of returns to the agent’s starting node.

Corollary 4.3.16 (Equalization Moment Bound). Consider an agent 𝑎1 randomly
walking on a two-dimensional

√
𝐴 ×

√
𝐴 torus. If 𝑎1 takes 𝑡 ≤ 𝐴 steps and 𝑐 is the

number of times it returns to its starting position (the number of equalizations), there
exists a fixed constant 𝑤 such that for all 𝑘 ≥ 1,

E
[︀
𝑐𝑘
]︀
≤ 𝑘!𝑤𝑘 log𝑘(2𝑡).

Proof. This follows an identical proof to that of the moment bound given in Claim
4.3.14 for the number of collisions between two agents that are assumed to collide at
least once: E

[︀
𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1

]︀
≤ 𝑘!𝑤𝑘 log𝑘(2𝑡). We simply replace the application of

Lemma 4.3.4 with Corollary 4.3.10.

4.3.6 Correctness of Encounter Rate With High Probability

Armed with Lemma 4.3.11 we can finally show that
∑︀𝑛

𝑗=1 𝑐𝑗 concentrates strongly
about its expectation. Since 𝑑 = 1

𝑡

∑︀𝑛
𝑗=1 𝑐𝑗, this is enough to prove the accuracy of

encounter-rate-based density estimation (Algorithm 1). We first use Lemma 4.3.11 to
give a standard ‘sub-exponential’ bound on the sum

∑︀𝑛
𝑗=1 𝑐𝑗 (Corollary 4.3.17 below).

It is in this step that we use that each 𝑐𝑗 is independent conditioned on executing
agent’s random walk 𝒲 . We correspondingly remove this conditioning, giving an
unconditioned bound.

Corollary 4.3.17 (Sub-exponential condition). Assuming 𝑡 ≤ 𝐴, for some 𝑏 =

Θ(log 2𝑡), 𝜎2 = Θ(𝑡𝑑 log2 2𝑡), and any 𝜆 with |𝜆| ≤ 1/𝑏 we have:

E
[︁
𝑒𝜆(

∑︀𝑛
𝑗=1 𝑐𝑗−E[

∑︀𝑛
𝑗=1 𝑐𝑗])

]︁
≤ 𝑒

𝜆2𝜎2

2−2𝑏|𝜆| .

172



Proof. Let 𝒲 be the 𝑡-step random walk that an agent executing Algorithm 1 takes.
By Lemma 4.3.11, there exists some constant 𝑤 such that for 𝜎2 = 𝑤2𝑡 log2 2𝑡

𝐴
and

𝑏 = 𝑤 log 2𝑡, 𝑐𝑗
def
= 𝑐𝑗 − E[𝑐𝑗|𝒲 ] satisfies:

E
[︀
𝑐𝑘𝑗 |𝒲

]︀
≤ 1

2
𝑘!𝜎2𝑏𝑘−2.

By Proposition 2.3 of [Wai15], this gives the sub-exponential moment bound: for any
𝜆 with |𝜆| ≤ 1/𝑏,

E[𝑒𝜆𝑐𝑗 |𝒲 ] ≤ 𝑒
𝜆2𝜎2

2−2𝑏|𝜆| .

Since each 𝑐𝑗 is independent conditioned on the walk 𝒲 this gives:

E
[︁
𝑒𝜆(

∑︀𝑛
𝑗=1 𝑐𝑗−E[

∑︀𝑛
𝑗=1 𝑐𝑗 |𝒲])|𝒲

]︁
= E

[︃
𝑛∏︁
𝑗=1

𝑒𝜆𝑐𝑗
⃒⃒⃒
𝒲

]︃
=

𝑛∏︁
𝑗=1

E
[︀
𝑒𝜆𝑐𝑗 |𝒲

]︀
≤ 𝑒

𝑛𝜆2𝜎2

2−2𝑏|𝜆| .

The lemma follows by replacing 𝜎2 with 𝑛𝜎2 = Θ(𝑡𝑑 log2 2𝑡). Further, the above
bound holds for all 𝒲 and E[𝑐𝑗|𝒲 ] = E[𝑐𝑗] (see Corollary 4.3.3). So, by the law of
iterated expectation, we remove the conditioning on 𝒲 :

E
[︁
𝑒𝜆(

∑︀𝑛
𝑗=1 𝑐𝑗−E[

∑︀𝑛
𝑗=1 𝑐𝑗])

]︁
= E

[︁
E
[︁
𝑒𝜆(

∑︀𝑛
𝑗=1 𝑐𝑗−E[

∑︀𝑛
𝑗=1 𝑐𝑗 |𝒲])

⃒⃒⃒
𝒲
]︁]︁

≤ 𝑒
𝑛𝜆2𝜎2

2−2𝑏|𝜆| .

We will employ a concentration bound for random variables satisfying such a
sub-exponential condition:

Lemma 4.3.18 (Proposition 2.3 of [Wai15]). Suppose that 𝑋 satisfies E
[︀
𝑒𝜆(𝑋−E[𝑋])

]︀
≤

𝑒
𝜆2𝜎2

2−2𝑏|𝜆| for any 𝜆 with |𝜆| ≤ 1/𝑏. Then for any Δ ≥ 0,

P [|𝑋 − E[𝑋]| ≥ Δ] ≤ 2𝑒
− Δ2

2(𝜎2+𝑏Δ) .

Proof. This bound is given in Proposition 2.3 of [Wai15]. We include a full proof for
completeness. We have P [|𝑋 − E[𝑋]| ≥ Δ] = P [(𝑋 − E[𝑋]) ≥ Δ]+P [(𝑋 − E[𝑋]) ≤ −Δ].
We can bound these terms similarly. Focusing on the first, for any positive 𝜆,

P [(𝑋 − E[𝑋]) ≥ Δ] = P
[︀
𝑒𝜆(𝑋−E[𝑋]) ≥ 𝑒𝜆Δ

]︀
.

173



By Markov’s inequality and our moment bound, for any 𝜆 with |𝜆| ≤ 1/𝑏:

P
[︀
𝑒𝜆(𝑋−E[𝑋]) ≥ 𝑒𝜆Δ

]︀
≤ E

[︀
𝑒𝜆|𝑋−E[𝑋]|]︀ · 𝑒−𝜆Δ ≤ 𝑒

(︁
𝜆2𝜎2

2−2𝑏|𝜆|−𝜆Δ
)︁
.

We can set 𝜆 = Δ
𝜎2+𝑏Δ

and calculate:

𝜆2𝜎2

2− 2𝑏|𝜆|
− 𝜆Δ =

Δ2𝜎2

(𝜎2 + 𝑏Δ)2 · 2𝜎2

𝜎2+𝑏Δ

− Δ2

𝜎2 + 𝑏Δ
= − Δ2

2(𝜎2 + 𝑏Δ)
.

Which gives P [(𝑋 − E[𝑋]) ≥ Δ] ≤ 𝑒
− Δ2

2(𝜎2+𝑏Δ) . We can bound P [(𝑋 − E[𝑋]) ≤ −Δ]

in the same way by setting 𝜆 = − Δ
Δ𝑏+𝜎2 , giving the Lemma.

We conclude by proving our main theorem on the accuracy of random-walk-based
density estimation:

Proof of Theorem 4.3.1. In Algorithm 1, 𝑑 is set to 1
𝑡

∑︀𝑛
𝑗=1 𝑐𝑗. So the probability that

𝑑 falls within an 𝜖 multiplicative factor of its mean is the same as the probability that∑︀𝑛
𝑗=1 𝑐𝑗 falls within an 𝜖 multiplicative factor of its mean, which is equal to 𝑡E[𝑑] = 𝑡𝑑

by Corollary 4.3.3. By Corollary 4.3.17 and Lemma 4.3.18:

𝛿
def
= P

[︃⃒⃒⃒⃒
⃒
𝑛∑︁
𝑗=1

𝑐𝑗 − E

[︃
𝑛∑︁
𝑗=1

𝑐𝑗

]︃⃒⃒⃒⃒
⃒ ≥ 𝜖E

[︃
𝑛∑︁
𝑗=1

𝑐𝑗

]︃]︃

= P

[︃⃒⃒⃒⃒
⃒
𝑛∑︁
𝑗=1

𝑐𝑗 − 𝑡𝑑

⃒⃒⃒⃒
⃒ ≥ 𝜖𝑡𝑑

]︃
≤ 2𝑒

Θ
(︁
− 𝜖2𝑡2𝑑2

2(𝑡𝑑 log2 2𝑡+𝜖𝑡𝑑 log 2𝑡)

)︁
= 2𝑒

Θ
(︁
− 𝜖2𝑡𝑑

log2 2𝑡

)︁
,

where the last equality follows since we restricting 𝜖 ≤ 1. The above thus gives
𝜖2𝑡𝑑

log2 2𝑡
= 𝑂 (log(1/𝛿)) and so 𝜖 ≤ 𝑐1 ·

√︁
log(1/𝛿)

𝑡𝑑
· log 2𝑡 for some fixed constant 𝑐1. This

gives the first claim of the theorem: for any 𝛿 > 0, with probability 1− 𝛿,

𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] for 𝜖 ≤ 𝑐1 ·
√︂

log(1/𝛿)

𝑡𝑑
· log 2𝑡. (4.7)

Given any fixed 𝜖, 𝛿 ∈ (0, 1) we can also rearrange by solving (4.7) for 𝑡 which
gives: 𝑡

log2 2𝑡
≥ 𝑐21 log(1/𝛿)

𝜖2𝑑
. If we set, for some constant 𝑐3,

𝑡 =
𝑐3 · 𝑐21 log(1/𝛿)[log log(1/𝛿) + log(1/𝑑𝜖)]2

𝑑𝜖2
,

we have log 2𝑡 = log(2𝑐3) + 𝑐4[log log(1/𝛿) + log(1/𝑑𝜖)] for some fixed constant 𝑐4
which is independent of 𝑐3. Thus, setting 𝑐3 large enough gives 𝑡

log2 2𝑡
≥ 𝑐21 log(1/𝛿)

𝜖2𝑑
.

174



Setting 𝑐2 = 𝑐3 · 𝑐21, this yields the second claim of the theorem:

for any 𝜖, 𝛿 ∈ (0, 1), if 𝐴 ≥ 𝑡 ≥ 𝑐2 log(1/𝛿)[log log(1/𝛿) + log(1/𝑑𝜖)]2

𝑑𝜖2
,

then 𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] with probability ≥ 1− 𝛿.

4.4 Extensions to Other Regular Topologies

We now discuss extensions of our results to a broader set of graph topologies, demon-
strating the generality of our local mixing analysis. We illustrate divergence between
local and global mixing properties, which can have significant effects on random-walk-
based algorithms

4.4.1 From Re-collision Bounds to Density Estimation

Our proofs for the two-dimensional torus are largely independent of graph structure,
using just a re-collision probability bound (Lemma 4.3.4) and the regularity (uniform
node degrees) of the grid, so agents remain uniformly distributed on the nodes in each
round (see for example, Lemma 4.3.2). Hence, extending our results to other regular
graphs primarily involves obtaining re-collision probability bounds for these graphs.

We consider agents on a graph with 𝐴 nodes that execute analogously to Algorithm
1, stepping to a random neighbor in each round. Again, we focus on the multi-agent
case but similar bounds (resembling Corollaries 4.3.15 and 4.3.16) hold for a single
random walk. We start with a lemma that gives density estimation accuracy in terms
of re-collision probability. This is a direct generalization of our grid analysis.

Lemma 4.4.1 (Re-collision Probability to Density Estimation Accuracy). Consider
a regular graph (uniform nodes degrees) with 𝐴 nodes along with two agents 𝑎1 and 𝑎2
randomly walking on this graph. Assume that 𝑎1 and 𝑎2 collide in round 𝑟. Suppose
that there exists some function 𝛽(𝑚) such that, for any 0 ≤ 𝑚 ≤ 𝑡, letting 𝒲 be the
random 𝑚-step path taken by 𝑎2 in rounds 𝑟+1, ..., 𝑟+𝑚, and 𝒞 be the event that 𝑎1
and 𝑎2 re-collide in round 𝑟 +𝑚:

𝑃𝑟[𝒞|𝒲 ] = 𝑂(𝛽(𝑚)).

Let 𝐵(𝑡)
def
=
∑︀𝑡

𝑚=0 𝛽(𝑚). After running for 𝑡 ≤ 𝐴 steps, Algorithm 1 returns 𝑑 such

175



that, for any 𝛿 > 0, with probability ≥ 1− 𝛿,

𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] for 𝜖 = 𝑂

(︃√︂
log(1/𝛿)

𝑡𝑑
·𝐵(𝑡)

)︃
.

Note that in the special case of the two-dimensional torus, by Lemma 4.3.4, we
can set 𝛽(𝑚) = 1/(𝑚+ 1) and hence 𝐵(𝑡) = 𝑂(log 2𝑡), recovering Theorem 4.3.1.

Proof. Let 𝒲 denote the 𝑡-step random walk of an agent executing Algorithm 1.
E[𝑑|𝒲 ] = 𝑑 (Lemma 4.3.2) still holds as the regularity of the graph ensures that agents
remain uniformly distributed on the nodes in every round (the stable distribution of
any regular graph is the uniform distribution).

Further, following the moment calculations in Claim 4.3.14, E[𝑐𝑘𝑗 |𝒲 , 𝑐𝑗 ≥ 1] ≤
𝑘!𝑤𝑘𝐵(𝑡)𝑘 for some constant 𝑤. Claim 4.3.13 and Lemma 4.3.12 still hold, giving
that the bound of Lemma 4.3.11 holds unchanged:

E[𝑐𝑘𝑗 |𝒲 ] ≤ 𝑡𝑤𝑘

𝐴
· 𝑘!𝐵(𝑡)𝑘.

As in Corollary 4.3.17, this gives that
∑︀𝑛

𝑗=1 𝑐𝑗 satisfies the sub-exponential condition

E
[︁
𝑒𝜆(

∑︀𝑛
𝑗=1 𝑐𝑗−E[

∑︀𝑛
𝑗=1 𝑐𝑗])

]︁
≤ 𝑒

𝜆2𝜎2

2−2𝑏|𝜆|

for 𝑏 = Θ(𝐵(𝑡)) and 𝜎2 = Θ(𝑡𝑑𝐵(𝑡)2). Plugging into Lemma 4.3.18 gives 𝜖2𝑡𝑑
𝐵(𝑡)2

=

𝑂(log(1/𝛿)). Rearranging yields the result.

4.4.2 Density Estimation on the Ring

We first consider the ring, where the following re-collision probability bound holds:

Lemma 4.4.2 (Re-collision Probability Bound – Ring). Consider two agents 𝑎1 and
𝑎2 randomly walking on a one-dimensional torus (a ring) with 𝐴 nodes. Assume that
𝑎1 and 𝑎2 collide in round 𝑟. For any 𝑚 ≥ 0, let 𝒲 be the 𝑚-step random walk
performed by 𝑎2 in rounds 𝑟 + 1, ..., 𝑟 +𝑚. Let 𝒞 be the event that 𝑎1 and 𝑎2 collide
again in round 𝑟 +𝑚. We have:

P[𝒞|𝒲 ] = 𝑂

(︂
1√
𝑚+ 1

+
1

𝐴

)︂
.

Proof. This bound holds via an essentially identical proof to the bound on 𝒞𝑥 given in
Claim 4.3.5. An 𝑚-step random walk on a line ends at any position with probability

176



𝑂(1/
√
𝑚+ 1). On a ring with 𝐴 nodes the slightly weaker bound of 𝑂

(︁
1√
𝑚+1

+ 1
𝐴

)︁
holds.

Density Estimation Bound: For 𝑚 ≤ 𝐴, the 𝑂
(︀
1
𝐴

)︀
term in Lemma 4.4.2 is

absorbed into the 𝑂
(︁

1√
𝑚+1

)︁
and one can show that

∑︀𝑡
𝑚=0 1/

√
𝑚+ 1 = Θ(

√
𝑡).

Plugging into Lemma 4.4.1, we obtain

𝜖 = 𝑂

(︃√︂
log(1/𝛿)

𝑡𝑑
·
√
𝑡

)︃
= 𝑂

(︃√︂
log(1/𝛿)

𝑑

)︃
.

Note that this bound does not depend on 𝑡. That is, since local mixing on the ring
is much worse than on the torus, our general technique is not strong enough to show
the convergence of random-walk-based density estimation.

We do note that we can give a density estimation accuracy bound by using an
alternative analysis which bounds the variance of the collision count 𝑐 =

∑︀
𝑐𝑗 and

applies Chebyshev’s inequality. This technique is very similar to what is used in our
network size estimation bounds in Section 4.6.1. A similar analysis can be applied to
the two-dimensional torus and the other graphs we consider, giving worse dependence
on the failure probability 𝛿, but slightly improved dependence on other parameters.

Theorem 4.4.3 (Alternative Accuracy Bound – Ring). After running for 𝑡 rounds,
assuming 𝑡 ≤ 𝐴2, an agent executing Algorithm 1 on a ring with 𝐴 nodes returns 𝑑
such that, for any 𝛿 > 0, with probability ≥ 1− 𝛿,

𝑑 ∈ [(1− 𝜖)𝑑, (1 + 𝜖)𝑑] for 𝜖 = 𝑂

(︃√︂
1

𝑡1/2𝑑𝛿

)︃
.

This implies that, for any 𝜖, 𝛿 ∈ (0, 1) if 𝑡 = Ω
(︁

1
(𝑑𝜖2𝛿)2

)︁
, 𝑑 ∈ [(1 − 𝜖)𝑑, (1 + 𝜖)𝑑] with

probability ≥ 1− 𝛿.

Note that in Theorem 4.4.3, 𝑡 is required to be quadratic in 1
𝑑𝜖2

, rather than linear
as in Theorem 4.3.1. The weakness of this bound is again due to the poor local
mixing on the ring which means that, over 𝑡 steps, we expect to see Θ(

√
𝑡) rather

than Θ(log 𝑡) repeat collisions with every agent interacted with.

Proof. We first note that, if we do not condition on the path of either agent, the
collision count 𝑐𝑗 with any agent 𝑗 is identically distributed to the number of times
that a single random walk of length 2𝑡, initially placed uniformly at random, visits
some location on the ring. We gave a bound on the moments of this visit count on the

177



two-dimensional torus in Corollary 4.3.15. A nearly identical analysis gives a similar
bound on the ring. On the ring, the calculation of E[𝑐|𝑐 ≥ 1] in (4.6) becomes

E[𝑐𝑗|𝑐𝑗 ≥ 1] =
𝑡−𝑟∑︁
𝑚=0

Θ

(︂
1√
𝑚+ 1

)︂
= Θ

(︀√
𝑡− 𝑟

)︀
where 𝑟 is the round in which the first visit occurs. We again argue that 𝑟 < 𝑡/2 with
probability 1/2, which lets us show that P[𝑐𝑗 ≥ 1] = 𝑂

(︁√
𝑡
𝐴

)︁
and overall:

E[𝑐𝑘𝑗 ] ≤
𝑡𝑤𝑘

𝐴
𝑘! · 𝑡(𝑘−1)/2.

where 𝑐𝑗 = 𝑐𝑗 − E[𝑐𝑗]. In particular, this gives the variance bound:

E[𝑐2𝑗 ] = 𝑂

(︂
𝑡3/2

𝐴

)︂
.

We then have, recalling that 𝑐 =
∑︀𝑛

𝑖=1 𝑐𝑗 and letting 𝑐 = 𝑐− E[𝑐],

E
[︀
𝑐2
]︀
= E

⎡⎣(︃ 𝑛∑︁
𝑖=1

𝑐𝑗

)︃2
⎤⎦ =

𝑘∑︁
𝑖=1

E
[︀
𝑐2𝑗
]︀
+

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

2E [𝑐𝑖 · 𝑐𝑗]

= 𝑂

(︂
𝑛𝑡3/2

𝐴

)︂
+

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

2E[𝑐𝑖 · 𝑐𝑗]. (4.8)

Let 𝒲 be the path taken by the central agent 𝑎 and let 𝒮 be the set of all possible
instantiations of this path. 𝑐𝑖 and 𝑐𝑗 are independent conditioned on this path. So:

E[𝑐𝑖 · 𝑐𝑗] =
∑︁
𝑤∈𝒮

P[𝒲 = 𝑤] · E[𝑐𝑖|𝒲 = 𝑤] · E[𝑐𝑗|𝒲 = 𝑤]

= 0

where we use that E[𝑐𝑖] = 𝑡𝑑 = E[𝑐𝑖|𝒲 = 𝑤] for all 𝑤, and thus E[𝑐𝑖|𝒲 = 𝑤] = 0.

Plugging back into (4.8) gives E [𝑐2] = 𝑂
(︁
𝑛𝑡3/2

𝐴

)︁
= 𝑂

(︀
𝑑𝑡3/2

)︀
. Recall that E[𝑐] = 𝑑𝑡

and we thus have, via Chebyshev’s inequality,

𝛿
def
= P [|𝑐− E[𝑐]| ≥ 𝜖E[𝑐]] = 𝑂

(︂
𝑑𝑡3/2

(𝜖𝑑𝑡)2

)︂
= 𝑂

(︂
1

𝜖2𝑑
√
𝑡

)︂
.

Rearranging gives 𝜖 = 𝑂
(︁√︁

1
𝑡1/2𝑑𝛿

)︁
and so the theorem.

178



4.4.3 Density Estimation on 𝑘-Dimensional Tori

We next consider density estimation on 𝑘-dimensional tori for general 𝑘 ≥ 3. As
𝑘 increases, local mixing becomes stronger, fewer re-collisions occur, and density
estimation becomes easier. In fact, for any constant 𝑘 ≥ 3, although the torus still
mixes slowly (with global mixing time on the order of 𝐴2/𝑘 [AF02]), density estimation
is as accurate as on the complete graph! Throughout this section we assume that 𝑘 is
a small constant and so hide multiplicative factors in 𝑓(𝑘) for any function 𝑓 in our
asymptotic notation. We subscript the notation with 𝑘 to make this clear.

Lemma 4.4.4 (Re-collision Probability Bound – High-Dimensional Torus). Consider
two agents 𝑎1 and 𝑎2 randomly walking on a 𝑘-dimensional torus with 𝐴 nodes. As-
sume that 𝑎1 and 𝑎2 collide in round 𝑟. For any 𝑚 ≥ 0, let 𝒲 be the 𝑚-step random
walk performed by 𝑎2 in rounds 𝑟 + 1, ..., 𝑟 + 𝑚. Let 𝒞 be the event that 𝑎1 and 𝑎2

collide again in round 𝑟 +𝑚. We have:

P[𝒞|𝒲 ] = 𝑂𝑘

(︂
1

(𝑚+ 1)𝑘/2
+

1

𝐴

)︂
.

Proof. We closely follow the proof of Lemma 4.3.4. In total, 𝑎1 takes 𝑚 steps: 𝑀𝑖 in
each dimension for 𝑖 ∈ [1, ..., 𝑘]. Let 𝒞𝑖 be the event that the agents have the same
position in the 𝑖𝑡ℎ dimension in round 𝑟 +𝑚. By the analysis of Lemma 4.3.5,

P[𝒞𝑖|𝑀𝑖 = 𝑚𝑖] = 𝑂

(︂
1√

𝑚𝑖 + 1
+

1

𝐴1/𝑘

)︂
.

So, following the analysis of Corollary 4.3.8, since movement in each of the 𝑘 directions
is independent,

P[𝒞|𝑀1 = 𝑚1, ...,𝑀𝑘 = 𝑚𝑘] = 𝑂

(︂
1√

𝑚1 + 1
+

1

𝐴1/𝑘

)︂
· .... ·𝑂

(︂
1√

𝑚𝑘 + 1
+

1

𝐴1/𝑘

)︂
.

(4.9)

We can then remove the conditioning on 𝑀1, ...,𝑀𝑘 similarly to Lemma 4.3.9. In
expectation, 𝑀𝑖 = 𝑚/𝑘. So by a Chernoff bound,

P
[︁
𝑀𝑖 ≤

𝑚

2𝑘

]︁
≤ 2𝑒−(1/2)2·𝑚/3𝑘 = 𝑂

(︂
1

(𝑚+ 1)𝑘/2

)︂
again assuming 𝑘 is a small constant. Union bounding over all 𝑘 dimensions, we have

179



𝑀𝑖 ≥ 𝑚/(2𝑘) for all 𝑖 except with probability 𝑂
(︁

1
(𝑚+1)𝑘/2

)︁
and hence by (4.9):

P[𝒞] = 𝑂

(︂
1

(𝑚+ 1)𝑘/2

)︂
+

[︃
𝑂

(︃
1√︀

𝑚/(2𝑘) + 1
+

1

𝐴1/𝑘

)︃]︃𝑘
= 𝑂𝑘

(︂
1

(𝑚+ 1)𝑘/2
+

1

𝐴

)︂
,

giving the lemma (again, asymptotic notation hides multiplicative factors in 𝑘 since
it is a constant).

Density Estimation Bound: We can plug the bound of Lemma 4.4.4 into Lemma
4.4.1. For 𝑡 ≤ 𝐴 and 𝑘 ≥ 3,

𝑡∑︁
𝑚=0

(︂
1

(𝑚+ 1)𝑘/2
+

1

𝐴

)︂
< 1 +

∞∑︁
𝑚=0

1

(𝑚+ 1)𝑘/2
= 𝑂(1).

So we can set 𝐵(𝑡) = 𝑂𝑘(1) and have 𝜖 = 𝑂𝑘

(︂√
log(1/𝛿)

𝑡𝑑

)︂
. Rearranging, we require 𝑡 =

𝑂𝑘

(︁
log(1/𝛿)
𝜖2𝑑

)︁
. This matches independent sampling up to constants and multiplicative

factors in 𝑘.

4.4.4 Density Estimation on Regular Expanders

When a graph does mix well globally, it mixes well locally. An obvious example is the
complete graph, on which random-walk-based and independent-sampling-based den-
sity estimation are equivalent. We extend this intuition to any regular expander. An
expander is a graph whose random walk matrix has its second eigenvalue bounded
away from 1, and so on which random walks mix quickly. Expanders are ‘well-
connected’ graphs with many applications, including in the design of robust commu-
nication networks [BP73] and efficient sampling schemes [Gil98].

Lemma 4.4.5 (Re-collision Probability Bound – Regular Expander). Let 𝐺 be a 𝑘-
regular expander with 𝐴 nodes and adjacency matrix M. Let W = 1

𝑘
·M be its random

walk matrix, with eigenvalues 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝐴. Let 𝜆 = max{|𝜆2|, |𝜆𝐴|} < 1.
Consider two agents 𝑎1 and 𝑎2 randomly walking on 𝐺. Assume that 𝑎1 and 𝑎2

collide in round 𝑟. For any 𝑚 ≥ 0, let 𝒲 be the 𝑚-step random walk performed by
𝑎2 in rounds 𝑟+1, ..., 𝑟+𝑚. Let 𝒞 be the event that 𝑎1 and 𝑎2 collide again in round
𝑟 +𝑚. We have:

P[𝒞|𝒲 ] ≤ 𝜆𝑚 + 1/𝐴.

180



Proof. Suppose that 𝑎1 and 𝑎2 collide at node 𝑖 in round 𝑟. For any 𝑚-step path 𝑤

on 𝐺, conditioning on 𝒲 = 𝑤 fixes 𝑎2’s position in round 𝑟 + 𝑚, which we denote
as node 𝑗. A re-collision occurs at around 𝑟 +𝑚 if and only if 𝑎1 is also located at
node 𝑗 in this round. The probability of this event can be bounded by the maximum
probability of 𝑎1 being at any node 𝑗 in round 𝑟+𝑚 after starting from node 𝑖. This
equals max𝑗∈{1,...,|𝐴|}(W

𝑚e𝑖)𝑗, which we can bound using the following lemma on how
rapidly an expander random walk converges to its stable distribution:

Lemma 4.4.6 (See [Lov93]). Let 𝐺 be a 𝑘-regular expander with 𝐴 nodes, adjacency
matrix M, and random walk matrix W = 1

𝑘
· M. Let 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝐴 be the

eigenvalues of W and 𝜆 = max{|𝜆2|, |𝜆𝐴|} < 1. For each 1 ≤ 𝑖, 𝑗 ≤ 𝐴,⃒⃒⃒⃒
(W𝑚 · e𝑖)𝑗 −

1

𝐴

⃒⃒⃒⃒
≤ 𝜆𝑚.

This gives max𝑗∈{1,...,|𝐴|}(W
𝑚e𝑖)𝑗 ≤ 𝜆𝑚 + 1

𝐴
, giving the Lemma.

Density Estimation Bound: Again, we plug Lemma 4.4.5 in Lemma 4.4.1, setting
𝐵(𝑡) =

∑︀𝑡
𝑚=0 𝛽(𝑚) ≤ 1

1−𝜆 + 𝑡/𝐴. Assuming 𝑡 = 𝑂(𝐴),

𝜖 = 𝑂

(︃√︂
log(1/𝛿)

𝑡𝑑
·
(︂

1

1− 𝜆
+

𝑡

𝐴

)︂2
)︃

= 𝑂

(︃√︃
log(1/𝛿)

𝑡𝑑(1− 𝜆)2

)︃
.

Rearranging, 𝑡 = 𝑂
(︁

log(1/𝛿)
𝜖2𝑑(1−𝜆)2

)︁
, matching independent sampling up to a factor of

𝑂(1/(1− 𝜆)2).

4.4.5 Density Estimation 𝑘-Dimensional Hypercubes

Finally, we give bounds for a 𝑘-dimensional hypercube. Such a graph has 𝐴 = 2𝑘

vertices mapped to the elements of {±1}𝑘, with an edge between any two vertices that
differ by hamming distance 1. The hypercube is relatively fast mixing. Its adjacency
matrix eigenvalues are [−𝑘,−𝑘+2, ..., 𝑘−2, 𝑘]. Since it is bipartite, we can ignore the
negative eigenvalues: to return to its origin, a random walk must take an even number
of steps, so we need only need to consider the squared walk matrix W2, which has all
positive eigenvalues. Applying Lemma 4.4.5 with 𝜆 = Θ(1− 2/𝑘) = Θ(1− 1/ log𝐴),
gives 𝑡 = 𝑂

(︁
log(1/𝛿) log2(𝐴)

𝜖2𝑑

)︁
. However, it is possible to remove the dependence on 𝐴

via a more refined analysis – while the global mixing time of the graph increases as
𝐴 grows, local mixing becomes stronger!

181



Lemma 4.4.7 (Re-collision Probability Bound – 𝑘-Dimensional Hypercube). Con-
sider two agents 𝑎1 and 𝑎2 randomly walking on a 𝑘-dimensional hypercube with
𝐴 = 2𝑘 vertices. Assume that 𝑎1 and 𝑎2 collide in round 𝑟. For any 𝑚 ≥ 0, let
𝒲 be the 𝑚-step random walk performed by 𝑎2 in rounds 𝑟 + 1, ..., 𝑟 +𝑚. Let 𝒞 be
the event that 𝑎1 and 𝑎2 collide again in round 𝑟 +𝑚. We have:

P[𝒞|𝒲 ] ≤ (9/10)𝑚−1 +
1√
𝐴
.

Proof. A node of the hypercube can be represented as a 𝑘-bit string and each ran-
dom walk step seen as choosing one of the bits uniformly at random and flipping it.
Without loss of generality, assume that 𝑎1 and 𝑎2 collide at the node corresponding
to bit string [0, 0, ..., 0] in round 𝑟. For any 𝑚-step path 𝑤, conditioning on 𝒲 = 𝑤

fixes 𝑎2’s position in round 𝑟 +𝑚, which we denote as node 𝑝𝑒𝑛𝑑. We can write this
position using its associate bit string as 𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘]. A re-collision occurs at
around 𝑟+𝑚 if and only if 𝑎1 is also located at 𝑝𝑒𝑛𝑑 in this round. The probability of
this event can be bounded by the maximum probability of 𝑎1 being at any position
𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘] in round 𝑟 +𝑚 after starting from position [0, 0, ..., 0]. We bound
this probability below, giving the lemma.

Lemma 4.4.8. Consider an agent 𝑎1 randomly walking on a 𝑘-dimensional hypercube
with 𝐴 = 2𝑘 vertices, each labeled by a bit string in {0, 1}𝑘. Assume that 𝑎1 starts at
position [0, 0, ..., 0]. For any 𝑚 ≥ 0 and position 𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘], let 𝒞 be the event
that 𝑎1 is at position 𝑝𝑒𝑛𝑑 after 𝑚 steps. We have:

P[𝒞] ≤ (9/10)𝑚−1 +
1√
𝐴
.

Proof. We will upper bound the probability that 𝑎1 ends at any position 𝑝𝑒𝑛𝑑, denoted
by the bit string 𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘] after 𝑚 steps, assuming that 𝑚 is even. If 𝑚 is odd,
the probability of ending at 𝑝𝑒𝑛𝑑 after 𝑚 steps is equal to the sum over all 𝑝′𝑒𝑛𝑑 with
hamming distance 1 from 𝑝𝑒𝑛𝑑 of the probability of ending at 𝑝′𝑒𝑛𝑑 after 𝑚− 1 steps.
There are 𝑘 such positions. Further, the probability of moving from any 𝑝′𝑒𝑛𝑑 to 𝑝𝑒𝑛𝑑
in a single random-walk step is 1/𝑘. Thus, the probability of ending at 𝑝𝑒𝑛𝑑 after 𝑚
steps is the mean of the probabilities of ending at each 𝑝′𝑒𝑛𝑑 after 𝑚 − 1 steps. This
will be bounded by our bound on ending at any position after 𝑚 − 1 steps (noting
that 𝑚− 1 is even).

We first argue that the number of paths that 𝑎1 can take ending in position
𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘] in round 𝑟+𝑚 is upper bounded by the number of paths it can take

182



ending at [0, 0, ..., 0]. We do this by describing an injection from paths ending at 𝑝𝑒𝑛𝑑
to paths ending at [0, 0, ..., 0].

Since 𝑚 is even, the parity of 𝑝𝑒𝑛𝑑 = [𝑝1, ..., 𝑝𝑘] is even. We can thus arbitrarily
pair up nonzero indices in this string. For any index pair (𝑖, 𝑗), any path ending at
𝑝𝑒𝑛𝑑 must take an odd number of steps in both the 𝑖 and 𝑗 directions. By flipping
the last step in the path which is in either the 𝑖 or 𝑗 direction to the other direction,
we obtain a path which makes an even number of steps in each direction. Further,
this path is unique – given it, we can recover the path ending at 𝑝𝑒𝑛𝑑 simply by again
flipping the last step in either direction 𝑖 or 𝑗 to be in the other direction. In this
way, but iterating through our arbitrary pairings, we can map any path ending at
[𝑝1, ..., 𝑝𝑘] to a unique path ending at [0, ..., 0], giving us the injection.

We now bound the number of paths ending at [0, ..., 0], which is identical to the
number of ways 𝑚 flips can be placed into 𝑘 buckets, where each bucket has an even
number of elements. This quantity is:

∑︁
𝑠1+...+𝑠𝑘=𝑚
(𝑠𝑖 mod 2)≡0

𝑚!

𝑠1! · . . . · 𝑠𝑘!
.

This value is equal to the coefficient of 𝑥𝑚 in the exponential generating function

𝑚!

(︂
1 +

𝑥2

2!
+
𝑥4

4!
+ . . .

)︂𝑘
= 𝑚!

(︂
𝑒𝑥 + 𝑒−𝑥

2

)︂𝑘
=
𝑚!

2𝑘

𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑒𝑥(2𝑖−𝑘).

By differentiating 𝑚 times, we find that the coefficient of 𝑥𝑚 is:

1

2𝑘

𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
(2𝑖− 𝑘)𝑚 =

𝑘∑︁
𝑖=0

(︂(︂
𝑘

𝑖

)︂
/2𝑘
)︂
· (2𝑖− 𝑘)𝑚.

This summation is exactly E [𝑋𝑚], where 𝑋 is a sum of 𝑘 i.i.d. random variables
each equal to 1 with probability 1/2 and −1 otherwise. For any 𝑐 ∈ (0, 1], we can
split the expectation:

E [𝑋𝑚] = E [𝑋𝑚||𝑋| ≥ 𝑐𝑘] · P[|𝑋| ≥ 𝑐𝑘] + E [𝑋𝑚||𝑋| ≤ 𝑐𝑘] · P[|𝑋| ≤ 𝑐𝑘]

≤ 𝑘𝑚 · P[|𝑋| ≥ 𝑐𝑘] + (𝑐𝑘)𝑚.

To bound the return probability, we divide this count by the the total number of

183



possible paths taken by 𝑎1 𝑚 steps, 𝑘𝑚, giving an upper bound of:

P[|𝑋| ≥ 𝑐𝑘] + 𝑐𝑚.

By a Hoeffding bound, P[|𝑋| ≥ 𝑐𝑘] ≤ 2𝑒−𝑐
2𝑘/2. If we set 𝑐 =

√︀
ln𝐴/𝑘 =

√
ln 2

then P[|𝑋| ≥ 𝑐𝑘] ≤ 1/
√
𝐴. So our final probability bound is:

P[|𝑋| ≥ 𝑐𝑘] + 𝑐𝑚 ≤ 1√
𝐴

+ (
√
ln 2)𝑚 <

1√
𝐴

+ (9/10)𝑚,

yielding the lemma. Note that in the lemma the stated bound is 1√
𝐴
+ (9/10)𝑚−1

to account for odd 𝑚, as discussed. Also note that, by adjusting 𝑐, it is possible to
trade off the terms in the above bound, giving stronger inverse dependence on 𝐴 at
the expense of slower exponential decay in 𝑚.

Density Estimation Bound: Plugging Lemma 4.4.7 into Lemma 4.4.1, we have
𝐵(𝑡) =

∑︀𝑡
𝑚=0 𝛽(𝑚) ≤ 10 + 𝑡/

√
𝐴. If we assume 𝑡 = 𝑂(

√
𝐴), this gives 𝜖 =

𝑂

(︂√︁
log(1/𝛿)

𝑡𝑑

)︂
and so 𝑡 = 𝑂

(︁
log(1/𝛿)
𝜖2𝑑

)︁
, matching independent sampling.

4.5 Independent-Sampling-Based Density Estimation

In this section we show that, if agents are not restricted to random walking, but can
instead take arbitrary steps in each round, they can avoid collision correlations by
splitting into ‘stationary’ and ‘mobile’ groups and counting collisions only between
members of different groups. This allows them to essentially simulate independent
sampling of grid locations to estimate density. This algorithm is not ‘natural’ in a
biological sense, however it is easy to analyze and gives slightly better bounds than
the random-walk-based approach on the grid (Theorem 4.3.1).

We give pseudocode in Algorithm 2. Recall that 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is an ordered pair
denoting an agent’s (𝑥, 𝑦) coordinates on the torus graph, and 𝑐𝑜𝑢𝑛𝑡(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) returns
the number of other agents at the current position.

184



Algorithm 2 Independent-Sampling-Based Density Estimation
Each agent independently executes:

Set 𝑐 := 0 and with probability 1/2, 𝑠𝑡𝑎𝑡𝑒 := 𝑤𝑎𝑙𝑘𝑖𝑛𝑔, else 𝑠𝑡𝑎𝑡𝑒 := 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦.
for 𝑟 = 1, ..., 𝑡 do

if 𝑠𝑡𝑎𝑡𝑒 := 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 then
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 := 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+ (0, 1) ◁ Deterministic walk step.

end if
𝑐 := 𝑐+ 𝑐𝑜𝑢𝑛𝑡(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ◁ Update collision count.

end for
𝑐 := 𝑐 (mod 𝑡)

return 𝑑 = 2𝑐
𝑡

Our main accuracy bound for the independent sampling algorithm is given below.

Theorem 4.5.1 (Independent Sampling Accuracy Bound). After running for 𝑡 rounds,
assuming 𝑡 <

√
𝐴 and 𝑑 ≤ 1, an agent executing Algorithm 2 returns 𝑑 such that, for

any 𝛿 > 0, with probability ≥ 1 − 𝛿, 𝑑 ∈ [(1 − 𝜖)𝑑, (1 + 𝜖)𝑑] for 𝜖 = 𝑂

(︂√︁
log(1/𝛿)

𝑡𝑑

)︂
.

In other words, for any 𝜖, 𝛿 ∈ (0, 1) if 𝑡 = Θ
(︁

log(1/𝛿)
𝑑𝜖2

)︁
, 𝑑 is a (1 ± 𝜖) multiplicative

estimate of 𝑑 with probability ≥ 1− 𝛿.

Proof. Our analysis is from the perspective of an agent with 𝑠𝑡𝑎𝑡𝑒 = 𝑤𝑎𝑙𝑘𝑖𝑛𝑔. By
symmetry, the distribution of 𝑑 is identical for walking and stationary agents, so
considering this case is sufficient.

Initially, assume that no two walking agents start in the same location. Given
this assumption, we know that a walking agent never collides with another walking
agent – by assumption they all start in different positions and update these positions
identically in each round. In the written implementation, agents always step up,
however any fixed pattern (e.g. a spiral) suffices.

Further, assume that agents do not execute the step of setting 𝑐 := 𝑐 (mod 𝑡).
This step will be used to handle walking agents which start at the same location, and
will be analyzed at the end of the proof.

In 𝑡 steps, a walking agent visits 𝑡 unique squares (here we use the assumption
that 𝑡 <

√
𝐴, the diameter of the grid). Each of the 𝑛 other agents is located in

this set of squares and stationary with probability 𝑡
2𝐴

. Further, each of these events
is entirely independent from the rest, as the agents are positioned and choose their
state independently. So, for a walking agent, 𝑐 is just a sample of 𝑛 independent
random coin flips, each with success probability 𝑡

2𝐴
. Clearly, E[𝑐] = 𝑛 · 𝑡

2𝐴
= 𝑡𝑑

2
so

185



E[𝑑] = E
[︀
2𝑐
𝑡

]︀
= 𝑑. Further, by a Chernoff bound, for any 𝜖 ∈ (0, 1), the probability

that 𝑑 is not a (1± 𝜖) multiplicative estimate of 𝑑 is:

𝛿 = P
[︁
|𝑑− 𝑑| ≥ 𝜖𝑑

]︁
= P [|𝑐− E[𝑐]| ≥ 𝜖E[𝑐]] ≤ 2𝑒−𝜖

2 E[𝑐]/3 ≤ 2𝑒−𝜖
2𝑡𝑑/6.

This gives: log(1/𝛿) ≥ 𝜖2𝑡𝑑/6 so 𝜖 = 𝑂

(︂√︁
log(1/𝛿)

𝑡𝑑

)︂
, yielding the result.

We now remove the assumption that no two walking agents start in the same
location by considering the step where each agent sets 𝑐 := 𝑐 (mod 𝑡) before returning
𝑑 = 2𝑐

𝑡
. If an agent starts alone and is involved in < 𝑡 collisions, this operation has

no effect – the above bound holds.
If a walking agent is involved in < 𝑡 ‘true collisions’ but starts in the same position

as 𝑤 ≥ 1 other walking agents, the agents move in lockstep throughout the algorithm
and are involved in 𝑤 ·𝑡 ‘spurious collisions’ (𝑤 in each round). Setting 𝑐 := 𝑐 (mod 𝑡)

exactly corrects for these spurious collisions and since 𝑐 now only includes collisions
with stationary agents, the bound above holds.

Finally, if an agent is involved in ≥ 𝑡 true collisions, this modification cannot
worsen their estimate. If 𝑐 ≥ 𝑡 and the agent does not set 𝑐 := 𝑐 (mod 𝑡), they
compute 𝑑 ≥ 2𝑡

𝑡
≥ 2. For 𝜖 < 1, the agent fails since 𝑑 ≤ 1. So setting 𝑐 := 𝑐 (mod 𝑡)

can only increase the probability of success.

4.6 Applications

We next discuss algorithmic applications of our ant-inspired density estimation algo-
rithm (Algorithm 1) and the analysis techniques we develop.

4.6.1 Social Network Size Estimation

Random-walk-based density estimation is closely related to work on estimating the
size of social networks and other massive graphs using random walks [KLSC14,
KBM12, LL12, LW14]. In these applications, one does not have access to the full
graph (so cannot exactly count the nodes), but can simulate random walks by fol-
lowing links between nodes [MMG+07, GKBM09]. One approach is to run a single
random walk and count repeat node visits [LL12, KBM12]. Alternatively, [KLSC14]
proposes running multiple random walks and counting their collisions, which gives
an estimate of the walk’s density. Since the number of walks is known, this yields an
estimate for network size.

186



This approach can be significantly more efficient since the dominant cost is typi-
cally in link queries to the network. With multiple, shorter random walks, this cost
can be trivially distributed to multiple servers simulating walks independently. Visit
information can then be aggregated and the collision count can be computed in a
centralized manner.

Walks are first run for a ‘burn-in period’ so that their locations are distributed
approximately by the stable distribution of the network. The walks are then halted,
and the number of collisions in this final round are counted. The collision count gives
an estimate of the walks’ density. Since the number of walks is known, this yields an
estimate for network size.

We show that ant-inspired algorithms can give runtime improvements over this
method. After burn-in, instead of halting the walks immediately, we run them for
multiple rounds, recording encounter rates as in Algorithm 1. This allows the use of
fewer walks, decreasing total burn-in cost, and giving faster runtimes when mixing
time is relatively slow, as is common in social network graphs [MYK10].

Random-Walk-Based Algorithm for Network Size Estimation

Consider an undirected, connected, non-bipartite graph 𝐺 = (𝑉,𝐸). Let 𝑆 be the set
of vertices of 𝐺 that are ‘known’. Initially, 𝑆 = {𝑣} where 𝑣 is a seed vertex. We can
access 𝐺 by looking up the neighborhood Γ(𝑣𝑖) of any vertex 𝑣𝑖 ∈ 𝑆 and adding Γ(𝑣𝑖)

to 𝑆.
To compute the network size |𝑉 |, we could scan 𝑆, looking up the neighbors of

each vertex and adding them to the set. Repeating this process until no new nodes
are added ensures that 𝑆 = 𝑉 and we know the network size. However, this method
requires |𝑉 | neighborhood queries. The goal is to use significantly fewer queries using
random-walk-based sampling.

A number of challenges are introduced by this application. While we can simulate
many random walks on 𝐺, we can no longer assume these random walks start at
randomly chosen nodes, as we do not have the ability to uniformly sample nodes
from the network. Instead, we must allow the random walks to run for a burn-in
phase of length proportional to the mixing time of 𝐺. After this phase, the walks are
distributed approximately according to the stable distribution of 𝐺.

Further, in general 𝐺 is not regular. In the stable distribution, a random walk is
located at a vertex with probability proportional to its degree. Hence, collisions tend
to occur more at higher degree vertices. To correct for this bias, we count a collision
at vertex 𝑣𝑖 with weight 1/ deg(𝑣𝑖).

187



Our results depend on a natural generalization of re-collision probability. For any
𝑖, 𝑗, let 𝑝(𝑣𝑖, 𝑣𝑗,𝑚) be the probability that an 𝑚-step random walk starting at 𝑣𝑖 ends
at 𝑣𝑗. Define:

𝛽(𝑚)
def
=

max𝑖,𝑗 𝑝(𝑣𝑖, 𝑣𝑗,𝑚)

deg(𝑣𝑗)
.

Intuitively, 𝛽(𝑚) is the maximum 𝑚-step collision probability, weighted by degree
since higher degree vertices are visited more in the stable distribution. Let 𝐵(𝑡) =∑︀𝑡

𝑚=1 𝛽(𝑚). Note that this weighted 𝐵(𝑡) is trivially upper bounded by the un-
weighted measure used in Lemma 4.4.1.

For simplicity, we initially ignore burn-in and assume that our walks start dis-
tributed exactly by the stable distribution of 𝐺. A walk starts at vertex 𝑣𝑖 with
probability 𝑝𝑖

def
= deg(𝑣𝑖)∑︀

𝑖 deg(𝑣𝑖)
= deg(𝑣𝑖)

2|𝐸| and initial locations are independent. We also
assume knowledge of the average degree deg = 2|𝐸|/|𝑉 |. We later rigorously analyze
burn-in and show to estimate deg, completing our analysis.

Algorithm 3 Random-Walk-Based Network Size Estimation
input: step count 𝑡, average degree deg, 𝑛 random starting locations [𝑤1, ..., 𝑤𝑛]

distributed independently according to the network’s stable distribution

[𝑐1, ..., 𝑐𝑛] := [0, 0, ..., 0]

for 𝑟 = 1, ..., 𝑡 do
∀𝑗, set 𝑤𝑗 := 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑙𝑒𝑚𝑒𝑛𝑡(Γ(𝑤𝑗))◁ Γ(𝑤𝑗) denotes the neighborhood of 𝑤𝑗.
∀𝑗, set 𝑐𝑗 := 𝑐𝑗 +

𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)

deg(𝑤𝑗)
◁ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑗) returns the number of other walkers

currently at 𝑤𝑗.
end for
𝐶 :=

deg
∑︀
𝑐𝑗

𝑛(𝑛−1)𝑡

return 𝐴 = 1/𝐶

Note that there are many ways to implement the 𝑐𝑜𝑢𝑛𝑡(·) function used in Algo-
rithm 3. One possibility is to simulate the random walks in parallel, recording their
paths, and then to perform centralized post-processing to count collisions. As queries
to the network are considered to dominate time cost, this collision counting step is
relatively inexpensive.

Theorem 4.6.1. If Algorithm 3 is run using 𝑛 random walks for 𝑡 steps, if 𝑛2𝑡 =

188



Θ
(︁
𝐵(𝑡)deg+1

𝜖2𝛿
· |𝑉 |

)︁
, then with probability at least 1− 𝛿, it returns

𝐴 ∈ [(1− 𝜖)|𝑉 |, (1 + 𝜖)|𝑉 |] .

Analysis of Idealized Algorithm

We start with the analysis of Algorithm 3, which is given the average degree deg

as input and random walk starting locations distributed according to the network’s
stable distribution.

Throughout this section, we work directly with the weighted total collision count
𝐶 =

deg
∑︀
𝑐𝑗

𝑛(𝑛−1)𝑡
, showing that it is close to its expectation with high probability and

hence giving the accuracy bound for 𝐴. As in the density estimation case, we start
by showing that 𝐶 is correct in expectation.

Lemma 4.6.2. E[𝐶] = 1/|𝑉 |.

Proof. Let 𝑐𝑗(𝑟) be the number of collisions, weighted by inverse vertex degree, walk
𝑗 expects to be involved in at round 𝑟. In each round all walks are at vertex 𝑣𝑖 with
probability 𝑝𝑖 = deg(𝑣𝑖)

2|𝐸| , so:

E[𝑐𝑗(𝑟)] =
|𝑉 |∑︁
𝑖=1

[︂
deg(𝑣𝑖)

2|𝐸|
· (𝑛− 1) deg(𝑣𝑖)

2|𝐸|
· 1

deg(𝑣𝑖)

]︂
=
𝑛− 1

4|𝐸|2

|𝑉 |∑︁
𝑖=1

deg(𝑣𝑖) =
𝑛− 1

2|𝐸|
.

By linearity of expectation, E[𝑐𝑗] = 𝑡(𝑛−1)
2|𝐸| , E [

∑︀
𝑐𝑗] = 𝑡𝑛(𝑛−1)

2|𝐸| and hence, E[𝐶] =
deg
2|𝐸| = 1/|𝑉 |.

We now show concentration of 𝐶 about its expectation. Let 𝑐𝑖,𝑗 be the weighted
collision count between walks 𝑤𝑖 and 𝑤𝑗 where 𝑖 ̸= 𝑗. It is possible to follow the
moment bound proof of Lemma 4.3.11 and bound all moments of 𝑐𝑖,𝑗. However, there
is no clear event we can condition on to ensure independence of all 𝑐𝑖,𝑗’s. Hence, we
cannot prove a bound analogous to Corollary 4.3.17 and employ the concentration
result of Lemma 4.3.18.

Instead, we bound just second moment (the variance) of each 𝑐𝑖,𝑗 and obtain our
concentration results via Chebyshev’s inequality as in Theorem 4.4.3. This leads to
a linear rather than logarithmic dependence on the failure probability 1/𝛿. However,
we note that we can simply perform log(1/𝛿) estimates each with failure probability
1/3 and return the median, which will be correct with probability 1− 𝛿.

189



Lemma 4.6.3 (Degree Weighted Collision Variance Bound). For all 𝑖, 𝑗 ∈ [1, ..., 𝑛]

with 𝑖 ̸= 𝑗, let 𝑐𝑖,𝑗
def
= 𝑐𝑖,𝑗 − E[𝑐𝑖,𝑗]. E

[︀
𝑐2𝑖,𝑗
]︀
= 𝑂

(︁
𝑡(𝐵(𝑡)+|𝑉 |/|𝐸|)

|𝐸|

)︁
.

Proof. We can write E
[︀
𝑐2𝑖,𝑗
]︀
= E

[︀
𝑐2𝑖,𝑗
]︀
− (E [𝑐𝑖,𝑗])

2 ≤ E [𝑐𝑖,𝑗]
2. We can then split 𝑐𝑖,𝑗

over rounds to give:

E
[︀
𝑐2𝑖,𝑗
]︀
≤ E

⎡⎣(︃ 𝑡∑︁
𝑟=1

𝑐𝑖,𝑗(𝑟)

)︃2
⎤⎦ =

𝑡∑︁
𝑟=1

E
[︀
𝑐𝑖,𝑗(𝑟)

2
]︀
+ 2

𝑡−1∑︁
𝑟=1

𝑡∑︁
𝑟′=𝑟+1

E [𝑐𝑖,𝑗(𝑟)𝑐𝑖,𝑗(𝑟
′)] .

Since the walks are in the stable distribution, and hence located at 𝑣𝑖 in each round
with probability deg(𝑣𝑖)

2|𝐸| , we have the weighted collision 𝑐𝑖,𝑗(𝑟) = 1
deg(𝑣𝑖)

with probability
deg(𝑣𝑖)

2

(2|𝐸|)2 . We thus have E [𝑐𝑖,𝑗(𝑟)
2] =

∑︀|𝑉 |
𝑖=1

(︁
deg(𝑣𝑖)

2

(2|𝐸|)2 · 1
deg(𝑣𝑖)2

)︁
. E [𝑐𝑖,𝑗(𝑟)𝑐𝑖,𝑗(𝑟

′)] can
be computed similarly by summing over all pairs of vertices 1

deg(𝑣) deg(𝑢)
times the

probability that the agents collide at vertex 𝑣 in round 𝑟 and then again at vertex 𝑢
in round 𝑟′. Overall this gives:

E
[︀
𝑐2𝑖,𝑗
]︀
≤ 𝑡

|𝑉 |∑︁
𝑖=1

(︂
deg(𝑣𝑖)

2

(2|𝐸|)2
· 1

deg(𝑣𝑖)2

)︂

+ 2
𝑡−1∑︁
𝑟=1

𝑡∑︁
𝑟′=𝑟+1

⎛⎝ |𝑉 |∑︁
𝑖=1

⎛⎝deg(𝑣𝑖)
2

(2|𝐸|)2
· 1

deg(𝑣𝑖)
·

|𝑉 |∑︁
𝑗=1

𝑝(𝑣𝑖, 𝑣𝑗, 𝑟 − 𝑟′)2

deg(𝑣𝑗)

⎞⎠⎞⎠
≤ 𝑡|𝑉 |

4|𝐸|2
+ 2𝑡

𝑡−1∑︁
𝑚=1

⎛⎝ |𝑉 |∑︁
𝑖=1

⎛⎝deg(𝑣𝑖)

(2|𝐸|)2
· 𝛽(𝑚)

|𝑉 |∑︁
𝑗=1

𝑝(𝑣𝑖, 𝑣𝑗,𝑚)

⎞⎠⎞⎠
where in the last step we write 𝑟−𝑟′ = 𝑚 and use the fact that 𝛽(𝑚)

def
=

max𝑖,𝑗 𝑝(𝑣𝑖,𝑣𝑗 ,𝑚)

deg(𝑣𝑗)
.

We have
∑︀|𝑉 |

𝑗=1 𝑝(𝑣𝑖, 𝑣𝑗,𝑚) = 1 and so can simplify the above as:

E
[︀
𝑐2𝑖,𝑗
]︀
≤ 𝑡|𝑉 |

4|𝐸|2
+ 2𝑡

𝑡−1∑︁
𝑚=1

∑︀|𝑉 |
𝑖=1 deg(𝑣𝑖)

(2|𝐸|)2
· 𝛽(𝑚)

=
𝑡|𝑉 |
4|𝐸|2

+ 2𝑡
𝑡−1∑︁
𝑚=1

𝛽(𝑚)

2|𝐸|
= 𝑂

(︂
𝑡(𝐵(𝑡) + |𝑉 |/|𝐸|)

|𝐸|

)︂
.

Lemma 4.6.4 (Total Collision Variance Bound). Let 𝐶 =
deg

∑︀
𝑗 𝑐𝑗

𝑛(𝑛−1)𝑡
.

E
[︀
𝐶2
]︀
= 𝑂

(︂
1

𝑛2𝑡
· 𝐵(𝑡)|𝐸|+ |𝑉 |

|𝑉 |2

)︂
.

190



Proof.
∑︀𝑛

𝑗=1 𝑐𝑗 =
∑︀

𝑖,𝑗∈[1,...,𝑛],𝑖 ̸=𝑗 𝑐𝑖,𝑗. We closely follow the variance calculation in
[KLSC14]:

E

⎡⎣⎛⎝ ∑︁
𝑖,𝑗∈[1,...,𝑛],𝑖 ̸=𝑗

𝑐𝑖,𝑗

⎞⎠2⎤⎦ =
∑︁

𝑖,𝑗∈[1,...,𝑛],𝑖 ̸=𝑗

⎡⎣ ∑︁
𝑖′,𝑗′∈[1,...,𝑛],𝑖 ̸=𝑗

𝑐𝑖,𝑗 · 𝑐𝑖′,𝑗′

⎤⎦
= 2

(︂
𝑛

2

)︂
E
[︀
𝑐2𝑖,𝑗
]︀
+ 4!

(︂
𝑛

4

)︂
E[𝑐𝑖,𝑗]2 + 2 · 3!

(︂
𝑛

3

)︂
E[𝑐𝑖,𝑗𝑐𝑖,𝑘].

The first term corresponds to the cases when 𝑖 = 𝑖′ and 𝑗 = 𝑗′. The second corresponds
to 𝑖 ̸= 𝑖′ and 𝑗 ̸= 𝑗′, in which case 𝑐𝑖,𝑗 and 𝑐𝑖′,𝑗′ are independent and identically
distributed. The 4!

(︀
𝑛
4

)︀
multiplier is the number of ways to choose an ordered set

of four distinct indices. The last term corresponds to all cases when either 𝑖 = 𝑖′

or 𝑗 = 𝑗′. There are 3!
(︀
𝑛
3

)︀
ways to choose an ordered set of three distinct indices,

multiplied by two to account for the repeated index being in either the first or second
position. Using E[𝑐𝑖,𝑗] = 0 and the bound on E

[︀
𝑐2𝑖,𝑗
]︀

from Lemma 4.6.3:

E

⎡⎣⎛⎝ ∑︁
𝑖,𝑗∈[1,...,𝑛],𝑖 ̸=𝑗

𝑐𝑖,𝑗

⎞⎠2⎤⎦ = 𝑂

(︂
𝑛2𝑡(𝐵(𝑡) + |𝑉 |/|𝐸|)

|𝐸|

)︂
+ 0 + 2 · 3!

(︂
𝑛

3

)︂
E[𝑐𝑖,𝑗𝑐𝑖,𝑘].

(4.10)

When 𝑗 ̸= 𝑘, 𝑐𝑖,𝑗 and 𝑐𝑖,𝑘 are independent and identically distributed conditioned on
the path that walk 𝑤𝑖 traverses (this is similar to the independence used to prove
Corollary 4.3.17). Let Ψ𝑖 be the 𝑡-step path chosen by 𝑤𝑖.

E [𝑐𝑖,𝑗𝑐𝑖,𝑘] =
∑︁
𝜓𝑖

P [Ψ𝑖 = 𝜓𝑖] · E [𝑐𝑖,𝑗|Ψ𝑖 = 𝜓𝑖] · E [𝑐𝑖,𝑘|Ψ𝑖 = 𝜓𝑖]

=
∑︁
𝜓𝑖

P [Ψ𝑖 = 𝜓𝑖] · E [𝑐𝑖,𝑗|Ψ𝑖 = 𝜓𝑖]
2

=
∑︁
𝜓𝑖

P [Ψ𝑖 = 𝜓𝑖] · (E [𝑐𝑖,𝑗|Ψ𝑖 = 𝜓𝑖]− E [𝑐𝑖,𝑗])
2 . (4.11)

E [𝑐𝑖,𝑗|Ψ𝑖 = 𝜓𝑖] =
∑︀𝑡

𝑟=1
deg(𝜓𝑖(𝑟))

2|𝐸| · 1
deg(𝜓𝑖(𝑟))

= 𝑡
2|𝐸| = E [𝑐𝑖,𝑗]. That is, the expected

number of collisions is identical for every path of 𝑤𝑖. Plugging into (4.11),

E [𝑐𝑖,𝑗𝑐𝑖,𝑘] = 0.

191



So finally, plugging back into equation (4.10),

E

⎡⎣⎛⎝ ∑︁
𝑖,𝑗∈[1,...,𝑛],𝑖 ̸=𝑗

𝑐𝑖,𝑗

⎞⎠2⎤⎦ = 𝑂

(︂
𝑛2𝑡(𝐵(𝑡) + |𝑉 |/|𝐸|)

|𝐸|

)︂

and thus:

E
[︁
𝐶

2
]︁
= 𝑂

(︃
𝑛2𝑡(𝐵(𝑡) + |𝑉 |/|𝐸|)

|𝐸|
·
(︂

deg

𝑛(𝑛− 1)𝑡

)︂2
)︃

= 𝑂

(︂
1

𝑛2𝑡
· (𝐵(𝑡) + |𝑉 |/|𝐸|) · |𝐸|

|𝑉 |2

)︂
= 𝑂

(︂
1

𝑛2𝑡
· 𝐵(𝑡)|𝐸|+ |𝑉 |

|𝑉 |2

)︂
.

With this variance bound in place, we can finally prove Theorem 4.6.1.

Proof of Theorem 4.6.1. Note that 𝐶 = 𝐶−E[𝐶] and by Lemma 4.6.2, E[𝐶] = 1/|𝑉 |.
By Chebyshev’s inequality Lemma 4.6.4 gives:

P [|𝐶 − E[𝐶]| ≥ 𝜖E[𝐶]] ≤ 1

𝜖2𝑛2𝑡
· (𝐵(𝑡)|𝐸|+ |𝑉 |).

Rearranging gives us that, in order to have 𝐶 ∈
[︁
1−𝜖
|𝑉 | ,

1+𝜖
|𝑉 |

]︁
with probability 𝛿, we

must have:

𝑛2𝑡 = Θ

(︂
𝐵(𝑡)|𝐸|+ |𝑉 |

𝜖2𝛿

)︂
.

Since 𝐴 = 1/𝐶, if 𝐶 ∈
[︁
1−𝜖
|𝑉 | ,

1+𝜖
|𝑉 |

]︁
then 𝐴 ∈

[︁
|𝑉 |
1+𝜖

, |𝑉 |
1−𝜖

]︁
⊆ [(1− 2𝜖)|𝑉 |, (1 + 2𝜖)|𝑉 |] as

long as 𝜖 < 1/2. This gives the theorem after adjusting constants on 𝜖 and recalling
that deg = |𝐸|/|𝑉 |.

Estimating The Average Degree

We now show how to estimate the value of deg used in Algorithm 3. Specifically,
we need a (1 ± 𝜖) approximation to 1

deg
. If we then substitute this into the formula

𝐴 =
∑︀

𝑗 𝑐𝑗

deg·𝑛(𝑛−1)𝑡
, we still have a (1±𝑂(𝜖)) approximation to the true network size. We

use the algorithm and analysis of [KLSC14], which gives a simple approximation via
inverse degree sampling.

192



Algorithm 4 Average Degree Estimation
input: 𝑛 random starting locations [𝑤1, ..., 𝑤𝑛] distributed independently according
to the network’s stable distribution.

∀𝑗, set 𝑑𝑗 := 1
deg(𝑤𝑗)

◁ Sampling

return 𝐷 :=
∑︀
𝑑𝑗
𝑛

Theorem 4.6.5 (Average Degree Estimation). If 𝑛 = Θ
(︁

1
𝜖2𝛿

· deg
degmin

)︁
, Algorithm 4

returns 𝐷 such that, with probability at least 1− 𝛿, 𝐷 ∈
[︁
1−𝜖
deg
, 1+𝜖
deg

]︁
.

Proof. Using that in the stable distribution a walk is at vertex 𝑣𝑖 with probability
deg(𝑣𝑖)
2|𝐸| we have:

E[𝐷] =
1

𝑛

𝑛∑︁
𝑗=1

E[𝑑𝑗] =
1

𝑛
· 𝑛 ·

|𝑉 |∑︁
𝑖=1

(︂
deg(𝑣𝑖)

2|𝐸|
· 1

deg(𝑣𝑖)

)︂
=

|𝑉 |
2|𝐸|

=
1

deg
.

For each 𝑑𝑗 let 𝑑𝑗 = 𝑑𝑗 E[𝑑𝑗]. We have E[𝑑2𝑗 ] = E[𝑑2𝑗 ] − E[𝑑𝑗]2 ≤ E[𝑑2𝑗 ]. We can
explicitly compute this expectation as:

E[𝑑2𝑗 ] =
|𝑉 |∑︁
𝑖=1

deg(𝑣𝑖)

2|𝐸|
1

deg(𝑣𝑖)2
≤ |𝑉 |

2|𝐸| degmin

=
1

degmin

· 1

deg
.

Additionally, since each 𝑑𝑗 is independent and identically distributed, and since
�̄� = 1

𝑛

∑︀
𝑑𝑗, letting �̄� = 𝐷 − E[𝐷],

E
[︀
�̄�2
]︀
=

1

𝑛
E[𝑑2𝑗 ] ≤

1

𝑛
E[𝑑2𝑗 ] =

1

𝑛 degmin

· 1

deg

Applying Chebyshev’s inequality and the fact that E[𝐷] = 1
deg

:

P
[︂
|𝐷 − E[𝐷]| ≤ 𝜖

deg

]︂
≤ deg

𝜖2𝑛 deg𝑚𝑖𝑛
.

Rearranging, to succeed with probability ≥ 1−𝛿 it suffices to set 𝑛 = Θ
(︁

1
𝜖2𝛿

· deg
degmin

)︁
.

Handling Burn-In Error

Finally, we remove our assumption that walks start distributed exactly according to
the network’s stable distribution, rigorously bounding the length of burn-in required

193



before running Algorithm 3.

Let 𝒟* ∈ R|𝑉 |𝑛 be a vector representing the true stable distribution of 𝑛 random
walks on 𝐺 and 𝒟𝑡 ∈ R|𝑉 |𝑛 be a vector representing the distribution of the walks after
running for 𝑡 burn-in steps. Specifically, each walk 𝑤1, ..., 𝑤𝑛 is initialized at a single
seed vertex 𝑣. For 𝑡 rounds we then update the location of each walk independently
by moving to a randomly chosen neighbor. Both vectors are probability distributions:
they have all entries in [0, 1] and ‖𝒟*‖1 = ‖𝒟‖1 = 1.

Let Δ = 𝒟* − 𝒟𝑡 and assume that ‖Δ‖1 ≤ 𝛿. We can consider two equiva-
lent algorithms: draw an initial set of locations 𝑊 = 𝑤1, ..., 𝑤𝑛 from 𝒟*, run Algo-
rithm 3, and then artificially fail with probability max{0,Δ(𝑊 )}. Alternatively, draw
𝑊 = 𝑤1, ..., 𝑤𝑛 from 𝒟𝑡, run Algorithm 3, and then artificially fail with probability
max{0,−Δ(𝑊 )}. These algorithms are clearly equivalent. The first obtains a good
estimator with probability 1−2𝛿: probability 𝛿 that Algorithm 3 fails when initialized
via the stable distribution 𝒟* by Theorem 4.6.1 plus an artificial failure probability
of ≤ ‖Δ‖1 ≤ 𝛿. The second then clearly also fails with probability 2𝛿. This can only
be higher than if we did not perform the artificial failure after running Algorithm
3. Therefore, running Algorithm 3 with a set of random walks initially distributed
according to 𝒟𝑡 yields success probability ≥ 1− 2𝛿.

How long must the burn-in period be to ensure ‖𝒟* − 𝒟𝑡‖1 ≤ 𝛿? Let W be the
random walk matrix of 𝐺. Let 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝐴 be the eigenvalues of W and
𝜆 = max{|𝜆2|, |𝜆|𝑉 ||}. Let 𝒞𝑡 ∈ R|𝑉 | denote the location distribution for a single
random walk after burn-in and 𝒞* ∈ R|𝑉 | denote the stable distribution of a single
random walk. If we have, for all 𝑖, |𝒞𝑡(𝑣𝑖)− 𝒞*(𝑣𝑖)| ≤ 𝛿/𝑛 · 𝒞*(𝑣𝑖) then for any 𝑊 :

|𝒟𝑡(𝑊 )−𝒟*(𝑊 )| =

⃒⃒⃒⃒
⃒
𝑛∏︁
𝑖=1

𝒞𝑡(𝑤𝑖)−
𝑛∏︁
𝑖=1

𝒞*(𝑤𝑖)

⃒⃒⃒⃒
⃒

≤
𝑛∏︁
𝑖=1

(𝒞*(𝑤𝑖) + 𝛿/𝑛 · 𝒞*(𝑤𝑖))−
𝑛∏︁
𝑖=1

𝒞*(𝑤𝑖)

< 𝒟*(𝑊 )
𝑛∑︁
𝑖=1

(︂
𝑛

𝑖

)︂
(𝛿/𝑛)𝑖 ≤ 𝒟*(𝑊 )

𝑛∑︁
𝑖=1

𝛿𝑖 ≤ 2𝛿 · 𝒟*(𝑊 ),

as long as 𝛿 < 1/2. This multiplicative bound gives ‖𝒟* − 𝒟𝑡‖1 ≤ 2𝛿. By standard
mixing time bounds ([Lov93], Theorem 5.1), |𝒞𝑡(𝑣𝑖) − 𝒞*(𝑣𝑖)| ≤ 𝛿

𝑛|𝐸| · 𝒞
*(𝑣𝑖) for all

𝑖 after 𝑀 = 𝑂
(︁

log(𝑛|𝐸|/𝛿)
1−𝜆

)︁
= 𝑂

(︁
log(|𝐸|/𝛿)

1−𝜆

)︁
burn-in steps (since 𝑛 < |𝐸| or else we

could have scanned the full graph.)

194



Overall Runtime and Comparison to Previous Work

Let 𝑀 = 𝑂
(︁

log(|𝐸|/𝛿)
1−𝜆

)︁
denote the burn-in time required before running Algorithm

3. In order to obtain a (1 ± 𝜖) estimate of network size with probability 1 − 𝛿 we
must run 𝑛 random walks for 𝑀 + 𝑡 steps, making 𝑛(𝑀 + 𝑡) link queries, where by
Theorems 4.6.1 and 4.6.5:

𝑛 = Θ

⎛⎝max

⎧⎨⎩ deg

degmin 𝜖
2𝛿
,

√︃
|𝑉 | · (𝐵(𝑡)deg + 1)

𝑡 · 𝜖2𝛿

⎫⎬⎭
⎞⎠ . (4.12)

Typically, the second term dominates since deg << |𝑉 |. Hence, by increasing 𝑡, we
are able to use fewer random walks, significantly decreasing the number of link queries
if 𝑀 is large.

[KLSC14] uses a different approach, halting random walks and counting colli-
sions immediately after burn-in. For reasonable node degrees they require 𝑛 =

Θ

(︂
|𝑉 |·deg

𝜖2𝛿·
√∑︀

deg(𝑣𝑖)2

)︂
. Assuming that

√︀∑︀
deg(𝑣𝑖)2 < 𝑛, and setting 𝑡 = 1, this is

somewhat smaller than our bound as
∑︀

deg(𝑣𝑖)
2 ≥ |𝑉 | · deg. However, (4.12) gives

an important tradeoff – by increasing 𝑡 we can increase the number of steps in our
random walks, decreasing the total number of walks.

As an illustrative example, consider a 𝑘-dimensional torus graph for 𝑘 ≥ 3 (for
𝑘 = 2 mixing time is Θ(|𝑉 |) so we might as well census the full graph). The burn-in
mixing time required for Algorithm 3 is 𝑀 = Θ(log(|𝑉 |/𝛿)|𝑉 |2/𝑘). All nodes have
degree 2𝑘, and using the bounds above, to obtain a (1 ± 𝜖) estimate of |𝑉 |, the
algorithm of [KLSC14] requires

𝑀 · 𝑛 = Θ

(︂
log(|𝑉 |/𝛿)

𝜖
√
𝑑

· |𝑉 |2/𝑘+1/2

)︂

link queries. In contrast, assuming |𝑉 | is large, we require 𝑛 = Θ

(︂√︁
|𝑉 |
𝑡·𝜖2𝛿

)︂
since by

Lemma 4.4.4, 𝐵(𝑡) = 𝑂(1/𝑘) and deg = degmin = 𝑘. If we set 𝑡 = Θ(𝑀), the total
number of link queries needed is

𝑛(𝑀 + 𝑡) = 𝑂

(︃√︀
log(|𝑉 |/𝛿)
𝜖
√
𝑑

· |𝑉 |(𝑘+1)/2𝑘

)︃
.

This beats [KLSC14] by improving dependence on |𝑉 | and the logarithmic burn-in
term. Ignoring error dependencies, if 𝑘 = 3, [KLSC14] requires Θ(𝑛7/6) queries which

195



is more expensive than fully censusing the graph. We require 𝑂(𝑛2/3) queries, which
is sublinear in the graph size.

We leave open comparing our bounds with those of [KLSC14] on more natural
classes of graphs. It would be interesting to determine typical values of 𝐵(𝑡) in real
work networks or popular graph models, such as preferential attachment models and
others with power-law degree distributions.

4.6.2 Distributed Density Estimation by Robot Swarms

Algorithm 1 can be directly applied as a simple and robust density estimation al-
gorithm for robot swarms moving on a two-dimensional plane modeled as a grid.
Additionally, the algorithm can be used to estimate the frequency of certain proper-
ties within the swarm. Let 𝑑 be the overall population density and 𝑑𝑃 be the density
of agents with some property 𝑃 . Let 𝑓𝑃 = 𝑑𝑃/𝑑 be the relative frequency of 𝑃 .

Assuming that agents with property 𝑃 are distributed uniformly in population
and that agents can detect this property (through direct communication or some
other signal), then they can separately track encounters with these agents. They
can compute an estimate 𝑑 of 𝑑 and 𝑑𝑃 of 𝑑𝑃 . By Theorem 4.3.1, after running for
𝑡 = Θ

(︁
log(1/𝛿)[log log(1/𝛿)+log(1/𝑑𝜖)]2

𝑑𝑃 𝜖2

)︁
steps, with probability 1− 2𝛿,

𝑑𝑃/𝑑 ∈
[︂(︂

1− 𝜖

1 + 𝜖

)︂
𝑓𝑃 ,

(︂
1 + 𝜖

1− 𝜖

)︂
𝑓𝑃

]︂
= [(1−𝑂(𝜖))𝑓𝑃 , (1 +𝑂(𝜖))𝑓𝑃 ]

for small 𝜖.
In an ant colony, properties may include whether or not an ant has recently

completed a successful foraging trip [Gor99], or if an ant is a nestmate or enemy
[Ada90]. In a robotics setting, properties may include whether a robot is part of a
certain task group, whether it has completed a certain task, or whether it has detected
a certain event or environmental property.

4.7 Discussion and Future Work

We have presented a theoretical analysis of random-walk-based density estimation
by agents on a two-dimensional torus graph. We have also presented applications
of our techniques to density estimation on other regular graph topologies and to the
problems of social network size estimation and density estimation on robot swarms.
Our work leaves open a number of open questions which we discuss below.

196



4.7.1 Extensions to Our Model

We feel that our simple model of density estimation on the two-dimensional torus
(Section 4.2) well reflects the behavior of ants estimating density via collision rates
while moving around a two-dimensional surface. However, extending our results to
more realistic models would be a very interesting direction.

We believe that it is important to consider a model in which agents are not posi-
tioned uniformly at random on the torus. Without the uniform placement assump-
tion, solving the global density estimation problem that we have defined may become
difficult. If most agents are placed in a very small portion of the torus, any other
agent initially located far away from these agents must traverse a large portion of the
torus to find them with good probability, and hence, to estimate the global population
density accurately.

There are several ways to overcome this difficulty. First, given some distribution
of the agents over the torus, it may be possible to give bounds parameterized by the
distance from this distribution to the uniform distribution. If the distribution is close
to uniform, random-walk-based estimation should do a good job estimating density.
If it is very far from uniform (e.g., in the example above, where many agents are
concentrated in a small area), global density estimation will become more difficult.

Alternatively, as discussed in Section 4.2.2, it would be very interesting to formally
define a local density estimation problem, which takes an agent’s initial location into
account when defining the density which they aim to estimate. In such a problem,
agents located in more densely populated areas of the torus will return higher local
density estimates.

Another interesting direction is to modify our assumption that agents move via
random walk, considering more complex models based on empirical studies of ant
movement [GPT93, NTD05, BFKN18]. It may be interesting to study a model in
which agents sense and sometimes avoid collisions, or in which they move away from
previously encountered ants. It may also be interesting to consider random-walk-
based models, but with asynchronous movement, or continuous movement along a
surface. Empirically, while there is some work directly testing the assumption of
random movement by considering re-collision rates [BFKN18], providing further evi-
dence of how closely our model predicts re-collision probabilities and, in turn, density
estimation accuracy, would be very interesting.

Finally, it would be valuable to explore the robustness of random-walk-based
density estimation to noise and other perturbations. One possibility is to model noisy
collision detection, in which each collision is only detected with some probability, or

197



in which spurious collisions may occasionally be detected. We may also model noise
in ant behavior. For example, each agent may not move via pure random walk,
but via some perturbed behavior which assigns nonuniform probabilities to the steps
{(0, 1), (0,−1), (1, 0), (−1, 0), (0, 0)}.

4.7.2 Biological Applications

As discussed in Section 4.1, density estimation is used as a subroutine in many ant
behaviors such as quorum sensing [Pra05] in house-hunting, task allocation [Gor99,
SHG06], and appraisal of enemy colony strength [Ada90]. Modeling these behaviors
theoretically, and studying how our approximate density estimation results can be
composed with higher level algorithms is a very interesting direction.

In our own work, we have considered the use of density estimation in the house-
hunting process in Temnothorax ants [Rad17, RML17], demonstrating that approx-
imate density estimation , where the density estimate is correct in expectation and
within a (1 ± 𝜖) factor of the true density with high probability, suffices for efficient
decision making in the house-hunting process. It would be interesting, for example,
to prove similar results for task-allocation, where density estimation may be used to
approximate the number of workers currently performing a given task.

Density estimation behavior may also be used in other species. For example,
there is evidence that higher work density stimulates certain reproductive behaviors
in honeybee colonies [SKP17]. Studying theoretically how bees estimate and respond
to increased density, and how this behavior compares to ant colony behavior would
be valuable.

Finally, we note that the accuracy bound of Theorem 4.3.1 depends inversely on
the density 𝑑, and so becomes large when 𝑑 is small. In many of the above biological
applications, such as in quorum sensing for decision making in ant colonies, agents
only need to detect when 𝑑 is above some fixed threshold. In this case, better bounds,
where 𝑡 depends not on the true density, but just on this detection threshold, may
be possible. Additionally, it may be interesting to understand how multiple agents
with different density estimates can cooperate to learn if a density threshold has been
reached, with more accuracy than if just a single agent were attempting to detect
such a threshold.

198



4.7.3 Algorithmic Applications

We conclude by discussing algorithmic applications of our analysis techniques, ex-
tending the results presented in Section 4.6.

Random-Walk-Based Sensor Network Sampling

We believe our moment bounds for a single random walk (Corollaries 4.3.15 and
4.3.16) can be applied to random-walk-based distributed algorithms for sensor net-
work sampling. Random-walk-based sensor network sampling [LB07, AB04] is a tech-
nique in which a query message (a ‘token’) is initially sent by a base station to some
sensor. The token is relayed randomly between sensors, which are connected via a
grid communication network, and its value is updated appropriately at each step to
give an answer to the query. This scheme is robust and efficient - it easily adapts to
node failures and does not require setting up or storing spanning tree communication
structures.

Random-walk-based sampling could be used, for example, to estimate the per-
centage of sensors that have recorded a specific condition, or the average value of
some measurement at each sensor. However, as in density estimation, unless an effort
is made to record which sensors have been previously visited, additional error may
be added due to repeat visits. Recording previous visits introduces computational
burden – either the token message size must increase or nodes themselves must re-
member which tokens they have seen. We are hopeful that our moment bounds can
be used to show that this is unnecessary – due to strong local mixing, the number of
repeat sensor visits will be low, and the performance reduction limited.

We remark that estimating the percentage of sensors in a network or the density
of robots in a swarm with a property that is uniformly distributed is a special case of
a more general data aggregation problem: each agent or sensor holds a value 𝑣𝑖 drawn
independently from some distribution 𝒟. The goal is to estimate some statistic of 𝒟,
such as its expectation. In the case of density estimation, 𝑣𝑖 is simply an indicator
random variable which is 1 with probability 𝑑 and 0 otherwise. Extending our results
to more general data aggregation problems and showing that random walk sampling
matches independent sampling in some cases is an interesting future direction.

Size Estimation of Realistic Networks

We leave open studying the effectiveness of the algorithm for social network size
estimation presented in Section 4.6.1 in real world networks, or on popular random

199



graph models for social networks [NWS02]. It may also be interesting to give bounds
for the algorithm in general graphs, parameterized by the global mixing time, rather
than the 𝑚-step recollision probability 𝛽(𝑚). While such bounds may give a coarser
characterization of the algorithm’s performance, they could be used to compare again
worst case bounds for related random-walk-based network size estimation approaches
parameterized by the mixing time [BHOP18].

Beyond Encounter Rate

In social network size estimation, robot swarm density estimation, and sensor network
sampling, it is possible to leverage more information than just the random walk
encounter rate. For example, a size estimation algorithm can store each agent’s full 𝑡-
step path, and count the number of intersections between these paths. A robot swarm
algorithm may assign ids to each agent and use them to identify repeat collisions. It
would be valuable to understand if these strategies can be used to improve our bounds,
or if they do not give significant advantages.

Other Potential Applications

Finally, there are many potential applications of random-walk-based density estima-
tion and sampling that we have not yet considered. For example, density estimation
may be employed as a subroutine in swarm robot coverage and exploration routines,
which aim to explore an unknown environment, or survey a known environment, as
quickly as possible [BMF+00, BS02]. It may be interesting to use density estima-
tion to detect regions with high robot density, and to then spread out this density
to more efficiently distribute exploration. Similar techniques may be interesting in
robot formation problems in which the goal is the spread a swarm of robots or sen-
sors regularly across a surface (or according to some specified distribution) using a
distributed algorithm [GCD+03, CMKB04, GLMN09].

200



Chapter 5

Computation in Spiking Neural
Networks

In this chapter, we study biological neural networks from an algorithmic perspective,
focusing on understanding tradeoffs between computation time and network com-
plexity. We use a biologically plausible yet simplified neural computational model.
Our goal is to abstract real neural networks in a way that, while not capturing all
interesting features, preserves high-level behavior and allows us to make biologically
relevant conclusions. Towards this goal, we consider the implementation of algorith-
mic primitives in a simple yet biologically plausible model of stochastic spiking neural
networks.

We show how the stochastic behavior of neurons in this model can be leveraged
to solve a basic symmetry-breaking task in which we are given neurons with identical
firing rates and want to select a distinguished one. In computational neuroscience,
this is known as the winner-take-all (WTA) problem, and it is believed to serve as a
basic building block in many tasks, e.g., learning, pattern recognition, and clustering.
We provide efficient constructions of WTA circuits in our stochastic spiking neural
network model, as well as lower bounds in terms of the number of auxiliary neurons
required to drive convergence to WTA in a given number of steps. These lower bounds
demonstrate that our constructions are near-optimal in some cases.

This chapter covers work originally published in [LMP17a]. In related work,
[LMP17b, LMP17c] we study simple compression and similarity testing tasks in the
same model of neural computation.

201



5.1 Background and Introduction to Results

Neural networks are studied in a number of academic communities from a wide range
of perspectives. Significant work in computational neuroscience focuses on developing
somewhat realistic mathematical models for these networks and generally studying
their capacity to process information [Izh04, Tra09]. On the more theoretical side,
a variety of artificial network models such as perceptron and sigmoidal networks,
Hopfield networks, and Boltzmann machines have been developed. These models
are tractable to theoretical analysis and studied in the context of their computational
power, and applications to general function approximation, classification, and memory
storage [HSW89, MSS91, SS95, Maa97]. In practical machine learning, biological
fidelity and often theoretical tractability are put aside, and researchers study how
neural-like networks and learning rules can be used to efficiently represent and learn
complex concepts [Hay09, LBH15].

In contrast to the common approach in computational neuroscience and machine
learning, in our work we focus not on general computation ability or broad learning
tasks, but on specific algorithmic implementation and analysis. We define a model of
neural computation along with algorithmic problems that seem to be an important
building blocks for higher level processing and learning tasks. We then design neural
networks in our model that solve these problems, rigorously analyzing the complexity
of our solutions in terms of asymptotic runtime and network size bounds. We hope
that this new paradigm will provide new insights about computational tradeoffs, the
power of randomness, and the role of noise in biological systems.

While focusing on somewhat different questions, our line of work is inspired by (1)
work on the computational power of spiking neural networks, most notably by Maass
et al. [Maa97, Maa99, Maa00] and (2) the work of Les Valiant [Val00a, Val00b, Val05],
who defined the neuroidal model of computation and investigated implementations of
basic learning modules within this model.

5.1.1 Spiking Neural Networks

We consider a model of spiking neural networks (SNNs) [Maa96, Maa97, GK02, Izh04,
HJM13], defined formally in Section 5.2, in which neurons fire in discrete pulses, in
response to a sufficiently high membrane potential. This potential is induced by
spikes from neighboring neurons, which can have either an excitatory or inhibitory
effect (increasing or decreasing the potential). Our model is stochastic – each neuron
functions as a probabilistic threshold unit, spiking with probability given by apply-

202



ing a sigmoid function to the membrane potential. In this respect, our networks are
similar to the popular Boltzmann machine [AHS85], with the important distinction
that synaptic weights are not required to be symmetric and, as observed in nature,
neurons are either strictly inhibitory (all outgoing edge weights are negative) or exci-
tatory. Additionally, in this thesis, we focus on networks with fixed edge weights. The
literature on Boltzmann machines tends to focus on learning, in which edge weights
are adjusted iteratively until the network converges to some desired distribution on
firing patterns. While a rich literature focuses on deterministic threshold circuits
[MP69, HT+86] we employ a stochastic model as it is widely accepted that neural
computation is inherently stochastic [AS94, SN94, FSW08], and that while this can
lead to a number of challenges, it also affords significant computational advantages
[Maa14].

5.1.2 The Winner-Take-All Problem

In this chapter, we focus on the Winner-Take-All (WTA) problem, which is one of
the most studied problems in computational neuroscience. A WTA network has 𝑛
input neurons, 𝑛 corresponding outputs, and a set of auxiliary neurons that facilitate
computation. The goal is to pick a ‘winning’ input – that is, the network should
produce a single firing output which corresponds to a firing input. Often the winning
input is the one with the highest firing rate, in which case WTA serves as a neural
max function. We focus on the case when all inputs have the same or similar firing
rates, in which case WTA serves as a leader election unit. A formal definition of the
WTA problem is given in Section 5.2.6.

WTA is widely applicable, including in circuits that implement visual atten-
tion via WTA competition between groups of neurons that process different input
classes [KU87, LIKB99, IK01]. It is also the foundation of competitive learning
[Now89, KK94, GL09], in which classifiers compete to respond to specific input
types. More broadly, WTA is known to be a powerful computational primitive
[Maa99, Maa00] – a network equipped with WTA units can perform some tasks sig-
nificantly more efficiently than with just linear threshold neurons (McCulloch-Pitts
neurons or perceptrons).

Due to its importance, there has been significant work on WTA, including in bio-
logically plausible spiking networks [LRMM88, YG89, Tho90, CGL92, WS03, OL06,
ODL09, ASNN+15]. This work is extremely diverse – while mathematical analysis is
typically given, different papers show different guarantees and apply varying levels of

203



rigor. To the best of our knowledge, prior to our work, no asymptotic time bounds
(e.g., as a function of the number of inputs 𝑛) for solving WTA in spiking neural
networks have been established.1 Additionally, previous analysis often requires a spe-
cific initial network state to show convergence and does not show that the network
is self-stabilizing and converges from an arbitrary starting state, as is necessary in a
biological system.

5.1.3 Our Contributions

We explore the tradeoff between the number of auxiliary neurons used in a WTA
network (i.e., the complexity of the network) and the time required to select a winning
output (to converge to a WTA state).

Network Constructions and Runtime Bounds

One the upper bound side, in Section 5.3 we describe, for any input size 𝑛 and failure
probability 𝛿 > 0, a family of networks using just two auxiliary inhibitory neurons
which solve the WTA problem in 𝑂(log 𝑛) steps in expectation, and with probability
≥ 1− 𝛿 in 𝑂(log 𝑛 · log(1/𝛿)) steps (see Theorems 5.3.2 and 5.3.3).

Our two-inhibitor construction is based on a simple random competition idea.
Outputs that fire in response to stimulation from their firing inputs excite two in-
hibitors, which, in turn, inhibit all the outputs. When more than one output fires,
both inhibitors are excited. This leads to high levels of inhibition, causing firing out-
puts to stop firing and ‘drop out’ of the WTA competition. When exactly one output
fires, just one of the inhibitors, known as the stability inhibitor, is excited. This
inhibitor is responsible for maintaining a WTA steady-state: once a single output
fires at a time step it becomes the winner of the network. It has a positive feedback
self-loop that allows it to keep firing at subsequent times, while all other outputs do
not fire due to inhibition from the stability inhibitor.

The basic network construction described above employs biologically plausible
structures. In particular, convergence is driven using reciprocal excitatory-inhibitory
connections, and stability is maintained via excitatory self-loops. Both these struc-
tures are used in many biological models of WTA computation [YG89, CGL92, RB15].
It is widely believed that inhibition is crucial for solving WTA – outputs compete
for activation via lateral inhibition or recurrent inhibition [CGL92, RB15]. In our

1Aside from immediate bounds for deterministic circuits using many (Ω(𝑛)) auxiliary neurons
[LRMM88, Maa00].

204



network, this inhibition is achieved through the two auxiliary inhibitors. Previous
work has conjectured that widespread use of simple WTA implementations in the
brain may explain how complex computation is possible even when inhibition is rela-
tively limited and localized [Maa00]. Our work shows that WTA can be achieved and
maintained efficiently using very few inhibitors and with a very simple connectivity
structure.

We also demonstrate that, with a larger number of auxiliary neurons, it is possible
to obtain faster convergence. In particular, in Section 5.5, we describe, for any input
size 𝑛 and failure probability 𝛿 > 0, a family of networks using 𝑂(log 𝑛) auxiliary
inhibitory neurons which solve the WTA problem in 𝑂(1) steps in expectation, and
with probability ≥ 1 − 𝛿 in 𝑂(log(1/𝛿)) steps (see Theorems 5.5.2 and 5.5.3). At
a high level, more auxiliary inhibitors allow for more fine-tuned levels of inhibition
which drive faster convergence. In Section 5.5.7 we sketch two constructions that allow
for more general runtime-inhibitor tradeoffs, interpolating between our two-inhibitor
and 𝑂(log 𝑛)-inhibitor constructions.

Lower Bounds

Aside from the above network constructions and runtime analysis, we also prove lower
bounds, showing that these constructions are optimal or near optimal. In Section 5.4
we prove that no network can solve WTA (in a reasonable parameter regime) using
just a single auxiliary neuron (see Theorem 5.4.3). Roughly, it is not possible for a
single neuron to both drive fast convergence and maintain stability of a valid WTA
configuration once one has been reached. The dual role that inhibition plays in two-
inhibitor construction of driving convergence and maintaining stability requires at
least two inhibitors.

We also show that, considering a slightly restricted class of networks, our two-
inhibitor construction is near-optimal. No network with just two-auxiliary neurons
can solve WTA with constant probability in 𝑜

(︁
log𝑛

log log𝑛

)︁
steps (see Theorem 5.4.14).

This matches the runtime of our network up to a 𝑂(log log 𝑛) factor.

5.1.4 Road Map

In Section 5.2 we describe our spiking neural network model and specify the WTA
problem. In Section 5.3 we describe and analyze the convergence of our simple family
of two-inhibitor WTA networks. In Section 5.4 we prove lower bounds that show
the near optimality of our two-inhibitor construction. In Section 5.5 we show how

205



to obtain faster convergence using a network construction with 𝑂(log 𝑛) auxiliary
inhibitors. This construction also requires generalizing our model to allow for a
history period, over which the firing of a neuron’s neighbors can affect its membrane
potential. Finally, in Section 5.6 we conclude by discussing open questions arising
from our work and possible directions for future work.

5.2 Spiking Neural Network Model

In this section we describe our basic neural network model, which consists of a set
of neurons connected by weighted synaptic connections. Each neuron fires (spikes)
stochastically at each time step, with probability dependent on the firing of its neigh-
bors in the previous time step. These neighbors may have either an excitatory (induc-
ing more firing) or inhibitory (suppressing firing) effect. In Section 5.5 we describe
a variation on this model in which the probability that a neuron spikes depends not
just on the spiking of its neighbors in the previous time step, but on the spikes during
some history period preceding the current time.

5.2.1 Network Structure

We first describe the basic network structure and parameters. A Spiking Neural
Network (SNN) 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ consists of:

∙ 𝑁 , a set of neurons, partitioned into a set of input neurons 𝑋, a set of output
neurons 𝑌 , and a set of auxiliary neurons 𝐴. 𝑁 is also partitioned into a set of
excitatory and inhibitory neurons 𝐸 and 𝐼. All input and output neurons are
excitatory. That is, 𝑋 ∪ 𝑌 ⊆ 𝐸.

∙ 𝑤 : 𝑁×𝑁 → R, a weight function describing the weighted synaptic connections
between the neurons in the network. 𝑤 is restricted in a few notable ways:

– 𝑤(𝑢, 𝑥) = 0 for all 𝑢 ∈ 𝑁 , 𝑥 ∈ 𝑋.

– Each excitatory neuron 𝑣 ∈ 𝐸 has 𝑤(𝑣, 𝑢) ≥ 0 for every 𝑢. Each inhibitory
neuron 𝑣 ∈ 𝐼 has 𝑤(𝑣, 𝑢) ≤ 0 for every 𝑢.

∙ 𝑏 : 𝑁 → R, a bias function, assigning an activation bias to each neuron.

∙ 𝑓 : R → [0, 1], a spike probability function, satisfying a few restrictions:

– 𝑓 is continuous and monotonically increasing.

– lim𝑥→∞ 𝑓(𝑥) = 1 and lim𝑥→−∞ 𝑓(𝑥) = 0.

206



Remarks on Network Structure

Before describing the dynamics of our neural network, we give a few remarks on, and
explanations of, the above parameters determining the network structure.

Weight Function (𝑤): The weight function 𝑤 describes the strength of the synaptic
connections between neurons in 𝑁 . The restriction that 𝑤(𝑢, 𝑥) = 0 for every input
neuron 𝑥 ∈ 𝑋 is motivated by the desire for networks to be composable. The input
neurons in𝑋 may be output neurons of another network, and so incoming connections
are avoided to simplify definitions and analysis when networks are composed in higher
level modular designs.

The restriction that each neuron 𝑣 is either inhibitory or excitatory is motivated
by the observation, known as Dale’s principle, that neurons typically employ the same
neurotransmitter at each outgoing synapse, regardless of its target [Osb13]. Thus, all
outgoing connections are either inhibitory or excitatory, depending on the transmit-
ter used. For example, inhibitory connections predominantly stem from inhibitory
GABAergic neurons, which employ the neurotransmitter gamma-Aminobutyric acid
(GABA) [WMK+02, RFLHL11].

We often view the weight function as defining the edge weights of a directed graph,
whose edges are the synaptic connections. Formally we can define:

Definition 5.2.1 (Synaptic Connection Graph). Given spiking neural network 𝒩 =

⟨𝑁,𝑤, 𝑏, 𝑓⟩, let 𝐺(𝒩 ) be the weighted directed graph with vertex set 𝑁 and a directed
edge (𝑢, 𝑣) with weight 𝑤(𝑢, 𝑣) for all 𝑢, 𝑣 with 𝑤(𝑢, 𝑣) ̸= 0.

Note that the weight function 𝑤(𝑢, 𝑣) need not be symmetric, and typically will
not be. Additionally, we allow 𝑢 ∈ 𝑁 with 𝑤(𝑢, 𝑢) ̸= 0. That is, 𝐺(𝒩 ) may have
self-loops.

Bias Function (𝑏): The bias function, along with the spike probability function,
determines how large a neuron’s membrane potential must be for the neuron to spike
with good probability. The larger the bias, the more excited the neuron must be
before it fires. We will see in Section 5.2.2 exactly how the bias affects the spiking
probability.

Spike Probability Function (𝑓): Common choices for the spike probability func-
tion 𝑓 are symmetric functions with 𝑓(0) = 1

2
. For example, we will typically set 𝑓

to the sigmoid function 𝑓(𝑥) = 1
1+𝑒−𝑥/𝜆 for some temperature parameter 𝜆 > 0.

207



5.2.2 Network Dynamics

We now describe in detail the dynamics of our neural network model.
A configuration 𝐶 : 𝑁 → {0, 1} of an SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a mapping from

each neuron in the network to a firing state. 𝐶(𝑢) = 1 indicates that 𝑢 fires (i.e.,
generates a spike). 𝐶(𝑢) = 0 indicates that it does not fire. We similarly define an
input configuration 𝐶𝑋 : 𝑋 → {0, 1} to be a mapping from each input neuron to a
firing state and an output configuration 𝐶𝑌 : 𝑌 → {0, 1} to be a mapping from each
output neuron to a firing state. For any configuration 𝐶 and set of neurons 𝑀 ⊆ 𝑁 ,
we let 𝐶(𝑀) be the restriction of 𝐶 to the domain 𝑀 .

An SNN evolves in a sequence of discrete, synchronous times, which we label
with integers 𝑡 = 0, 1, .... We denote the configuration at time 𝑡 by 𝑁 𝑡. Similarly, we
denote the input and output configurations at time 𝑡 by 𝑋 𝑡 def=𝑁 𝑡(𝑋) and 𝑌 𝑡 def=𝑁 𝑡(𝑌 )

respectively.
Formally, an execution is a finite or infinite sequence of configurations. The length

of a finite execution 𝑁0𝑁1...𝑁 𝑡 is defined to be 𝑡 + 1. The length of an infinite
execution 𝑁0𝑁1... is defined to be ∞. We analogously define an input execution
and an output execution as a sequence of input configurations 𝑋0𝑋1... and output
configurations 𝑌 0𝑌 1... respectively.

For each neuron 𝑢 ∈ 𝑁 , we use the notation 𝑢𝑡 def= 𝑁 𝑡(𝑢) to denote the firing state
of neuron 𝑢 in the configuration 𝑁 𝑡. More generally, for any ordered set of neurons
𝑀 = {𝑚1, ...,𝑚𝑛} we let 𝑀 𝑡 ∈ {0, 1}𝑛 denote the binary vector with 𝑚𝑡

𝑗 as its 𝑗𝑡ℎ

entry. For any configuration 𝐶, we let ‖𝐶‖1 = |{𝑢 ∈ 𝑁 : 𝐶(𝑢) = 1}| denote the
number of firing neurons in 𝐶.

We will typically use 𝛼 to denote an execution, and 𝛼𝑋 , 𝛼𝑌 to denote an input
or output execution respectively. We will use a superscript to denote the length of a
finite execution. For any execution 𝛼 let output(𝛼) be the output execution of the
same length obtained by restricting each configuration in 𝛼 to the output neurons 𝑌 .

The behavior of an SNN is determined as follows:

∙ Input Neurons: For each problem we consider, we will specify how the infinite
input execution 𝑋0𝑋1.... is determined. In this work, we will typically fix the
input so that for each 𝑢 ∈ 𝑋, 𝑢𝑡 is constant for all 𝑡 ≥ 0. However, we may also
specify a distribution from which 𝑋0𝑋1.... is drawn. For example, this sequence
may be generated by setting 𝑢𝑡 = 1 with some probability 𝑝𝑢 and 𝑢𝑡 = 0 with
probability 1− 𝑝𝑢, independently at random for each 𝑢 ∈ 𝑋 and each time 𝑡.

∙ Initial Firing States: For each non-input 𝑢 ∈ 𝑁 ∖ 𝑋, the firing state 𝑢0 is

208



arbitrary. In this work, we typically show convergence results that hold for
all possible settings of these initial states, giving our networks a self-stabilizing
property, since they will converge from any arbitrary perturbation of the state
(see e.g., Theorem 5.2.8).

∙ Firing Dynamics: For each non-input neuron 𝑢 ∈ 𝑁 ∖ 𝑋 and every time
𝑡 ≥ 1, let pot(𝑢, 𝑡) denote the membrane potential at time 𝑡 and 𝑝(𝑢, 𝑡) denote
the corresponding firing probability. These values are calculated as:

pot(𝑢, 𝑡) =

(︃∑︁
𝑣∈𝑁

𝑤(𝑣, 𝑢) · 𝑣𝑡−1

)︃
− 𝑏(𝑢) and 𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)) (5.1)

where 𝑓 is the spike probability function. At time 𝑡, each non-input neuron 𝑢

fires independently with probability 𝑝(𝑢, 𝑡).

Any SSN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩, initial configuration 𝑁0, and infinite input execution
𝛼𝑋 define a probability distribution over infinite executions, 𝒟(𝒩 , 𝑁0, 𝛼𝑋). This dis-
tribution is the natural distribution that follows from applying the stochastic firing
dynamics of (5.1). Formally, for any finite execution 𝛼, we define the cone of ex-
ecutions extending 𝛼, 𝐴(𝛼), to be the set of all infinite executions that start with
𝛼. 𝒟(𝒩 , 𝑁0, 𝛼𝑋) : ℱ → [0, 1] is a probability measure where the 𝜎-algebra ℱ con-
sists of all such cones, closed under complement, countable unions, and countable
intersections.

Given 𝒟(𝒩 , 𝑁0, 𝛼𝑋) we can also define a distribution 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋) on infinite
output executions. Given any finite output execution 𝛼𝑌 , we define the cone 𝐴(𝛼𝑌 )
to be the set of all infinite output executions extending 𝛼𝑌 . We define the 𝜎-algebra
ℱ𝑌 to be the set of all such cones, closed under complement, countable union, and
countable intersection. Finally, for 𝐹𝑌 ∈ ℱ𝑌 , we define 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋) : ℱ𝑌 → [0, 1]

by:
𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋)[𝐹𝑌 ] = 𝒟(𝒩 , 𝑁0, 𝛼𝑋)[{𝛼 : output(𝛼) ∈ 𝐹𝑌 }].

5.2.3 Problems and Solving Problems

A problem 𝑃 is a mapping from an infinite input execution 𝛼𝑋 to a set of output
distributions. A network 𝒩 is said to solve problem 𝑃 on input 𝛼𝑋 if, for any initial
configuration 𝑁0, the output distribution 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋) is an element of 𝑃 (𝛼𝑋). A
network 𝒩 is said to solve problem P if it solves 𝑃 on every infinite input execution
𝛼𝑋 . For an example of such a problem definition see Section 5.2.6, where we formally

209



define the winner-take-all problem.

5.2.4 Basic Results and Properties of the Model

In this section we prove some basic properties of the spiking neural network model
described in the preceding sections. The first property is a simple Markov indepen-
dence claim: conditioned on the configuration at time 𝑡 − 1, a network’s execution
from time 𝑡 on is independent of all times before 𝑡− 1. Formally:

Lemma 5.2.2 (Markov Property). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be an SNN. For any time
𝑡 ≥ 1, and finite execution 𝐶0...𝐶𝑡−1 of 𝒩 , and any configuration 𝐶 of 𝒩 :

P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1𝑁 𝑡−2...𝑁0 = 𝐶𝑡−1𝐶𝑡−2...𝐶0] = P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1 = 𝐶𝑡−1].

Proof. The potential of every 𝑢 ∈ 𝑁 at time 𝑡 as computed in (5.1) is determined by
𝑁 𝑡−1. Thus, the spike probability 𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)) is fully determined by 𝑁 𝑡−1.

So, conditioned on 𝑁 𝑡−1 = 𝐶𝑡−1, 𝑝(𝑢, 𝑡) is a deterministic function of 𝐶𝑡−1. We
can compute:

P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1 = 𝐶𝑡−1] =
∏︁
𝑢∈𝑁

[𝐶(𝑢) · 𝑝(𝑢, 𝑡) + (1− 𝐶(𝑢)) · (1− 𝑝(𝑢, 𝑡))] .

So P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1 = 𝐶𝑡−1] is a deterministic function of 𝐶 and all the 𝑝(𝑢, 𝑡) collec-
tively and thus of 𝐶 and 𝐶𝑡−1. So for any 𝐶0...𝐶𝑡−2,

P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1 = 𝐶𝑡−1] = P[𝑁 𝑡 = 𝐶|𝑁 𝑡−1𝑁 𝑡−2...𝑁0 = 𝐶𝑡−1𝐶𝑡−2...𝐶0],

giving the lemma.

In our proofs, we will often bound the probability of some event ℰ𝑡 occurring at
time 𝑡, giving a bound independent of the preceding network configuration 𝑁 𝑡−1.
However, ℰ𝑡 itself will depend on 𝑁 𝑡−1, and there may be correlations between ℰ𝑡 and
ℰ𝑡′ for 𝑡 ̸= 𝑡′. Below, we give a useful lemma which allows us to bound the number of
times that ℰ𝑡 occurs over a given time period by comparing to the number of times
that a coin tossed independently at each time would come up heads in the same time
period.

Lemma 5.2.3. For every 𝑡 ∈ Z>0 let 𝐴𝑡 ∈ 𝒜 be a random variable in some domain
𝒜, 𝑓 : 𝒜 → {0, 1} be any function, and 𝐵𝑡 = 𝑓(𝐴𝑡). Let 𝑍𝑡 ∈ {0, 1} be a set of
independent random variables. Suppose:

210



1. P[𝐵1 = 1] ≥ P[𝑍1 = 1].

2. For every 𝑡 ≥ 2, P[𝐵𝑡 = 1|𝐴𝑡−1, ..., 𝐴1] ≥ P[𝑍𝑡 = 1].

Then for every 𝑡 and 𝑑 ∈ Z≥0,

P

[︃
𝑡∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃
≥ P

[︃
𝑡∑︁
𝑖=1

𝑍𝑖 ≥ 𝑑

]︃
. (5.2)

Lemma 5.2.3 and its proof are similar to Lemma 2.2 of [KKKL11]. However, we
include a full proof for completeness and since we are in a slightly different setting,
where we condition on the full past state, rather than just the preceding values of
𝐵𝑡 = 𝑓(𝑋𝑡).

Proof. We prove the result via induction on 𝑡. The base case with 𝑡 = 1 is given by
assumption (1). For any 𝑡 > 1, assuming that (5.2) holds for all 𝑡′ < 𝑡, we have:

P

[︃
𝑡∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃
= P

[︃
𝐵𝑡 = 1 |

𝑡−1∑︁
𝑖=1

𝐵𝑖 = (𝑑− 1)

]︃
· P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 = (𝑑− 1)

]︃
+ P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃

≥ P [𝑍𝑡 = 1] · P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 = 𝑑− 1

]︃
+ P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃

= P [𝑍𝑡 = 1] ·

(︃
P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑− 1

]︃
− P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃)︃
+ P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃

= P [𝑍𝑡 = 1] · P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑− 1

]︃
+ P [𝑍𝑡 = 0] · P

[︃
𝑡−1∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃
.

By the inductive assumption we can then bound:

P

[︃
𝑡∑︁
𝑖=1

𝐵𝑖 ≥ 𝑑

]︃
≥ P [𝑍𝑡 = 1] · P

[︃
𝑡−1∑︁
𝑖=1

𝑍𝑖 ≥ 𝑑− 1

]︃
+ P [𝑍𝑡 = 0] · P

[︃
𝑡−1∑︁
𝑖=1

𝑍𝑖 ≥ 𝑑

]︃

= P

[︃
𝑡∑︁
𝑖=1

𝑍𝑖 ≥ 𝑑

]︃

which gives the lemma.

We next prove a related theorem, but in a more specialized setting. We consider
a set of neurons {𝑢1, ..., 𝑢𝑠} for which we can lower bound the probability of each
𝑢𝑖 spiking at time 𝑡 + 1 given that it spiked at time 𝑡 (i.e., given that 𝑢𝑡𝑖 = 1). We
show that, while the behavior of the neurons may be highly correlated, the number
of neurons in the set that spike for 𝑡 consecutive times can be lower bounded by

211



comparing these neurons to a set of independent random variables with comparable
spiking probabilities.

Lemma 5.2.4. Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be an SNN, and let {𝑢1, ..., 𝑢𝑠} ⊆ 𝑁 be any set
of neurons in the network. Let 𝑍𝑖,𝑡 ∈ {0, 1} be a set of independent random variables.
Suppose that:

1. The initial configuration 𝑁0 of 𝒩 has 𝑁0(𝑢𝑖) = 1 for every 𝑖 ∈ {1, ..., 𝑠}.

2. For every 𝑖 ∈ {1, ..., 𝑠}, any configuration 𝐶 of 𝒩 with 𝐶(𝑢𝑖) = 1, and any
𝑡 ≥ 0:

P[𝑢𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ P[𝑍𝑖,𝑡+1 = 1].

Let ℐ𝑖(𝑡) ∈ {0, 1} be an indicator variable for the event that 𝑢1𝑖 = ... = 𝑢𝑡𝑖 = 1. Let
ℐ̄𝑖(𝑡) ∈ {0, 1} be an indicator variable for the event that 𝑍𝑖,1 = ... = 𝑍𝑖,𝑡 = 1. Then
for every 𝑡 and 𝑑 ∈ Z≥0,

P

[︃
𝑠∑︁
𝑖=1

ℐ𝑖(𝑡) ≥ 𝑑

]︃
≥ P

[︃
𝑠∑︁
𝑖=1

ℐ̄𝑖(𝑡) ≥ 𝑑

]︃
. (5.3)

Proof. We prove the lemma via a coupling argument. At a high level, we define a
set of auxiliary random variables ℐ̂𝑖(𝑡) for 𝑖 ∈ {1, ..., 𝑠}. We construct these random
variables such that their joint distribution is identical to that of the random variables
ℐ𝑖(𝑡). Additionally, we correlate ℐ̂𝑖(𝑡) with the variables {𝑍𝑖,𝑡} in such a way that we
always have ℐ̂𝑖(𝑡) ≥ ℐ̄𝑖(𝑡). We thus have:

P

[︃
𝑠∑︁
𝑖=1

ℐ𝑖(𝑡) ≥ 𝑑

]︃
= P

[︃
𝑠∑︁
𝑖=1

ℐ̂𝑖(𝑡) ≥ 𝑑

]︃
≥ P

[︃
𝑠∑︁
𝑖=1

ℐ̄𝑖(𝑡) ≥ 𝑑

]︃
, (5.4)

which gives the lemma.

Definition of Coupled Random Variables ℐ̂𝑖(𝑡).

Given 𝒩 , the distribution on executions of 𝒩 with initial configuration 𝑁0 and
input configuration 𝛼𝑋 , induced by the update rules described in Section 5.2.2 is given
by 𝒟(𝒩 , 𝑁0, 𝛼𝑋). We define the distribution �̂�(𝒩 , 𝑁0, 𝛼𝑋), which is identical to
𝒟(𝒩 , 𝑁0, 𝛼𝑋) except coupled to the auxiliary random variables {𝑍𝑖,𝑡} in the following
way:

For any 𝑡 ≥ 0, execution 𝛼𝑡 = 𝐶0...𝐶𝑡, and 𝑖 ∈ {1, ..., 𝑠} with 𝐶0(𝑢𝑖) = .... =

212



𝐶𝑡(𝑢𝑖) = 1 let

𝜖𝑖,𝛼𝑡 = P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑢𝑡+1
𝑖 = 1|𝑁0...𝑁 𝑡 = 𝛼𝑡]− P[𝑍𝑖,𝑡+1 = 1]. (5.5)

By assumption (2) in the lemma statement and Lemma 5.2.2 we have 𝜖𝑖,𝛼𝑡 ≥ 0. Let
𝐸𝑖,𝛼𝑡 ∈ {0, 1} be a random variable which is independently set to 1 with probability

𝜖𝑖,𝛼𝑡

1−P[𝑍𝑖,𝑡+1=1]
and 0 otherwise. The distribution �̂�(𝒩 , 𝑁0, 𝛼𝑋) is given by iteratively

drawing a configuration 𝑁 𝑡+1 in the same way as in 𝒟(𝒩 , 𝑁0, 𝛼𝑋), with spiking
probabilities given by the potentials induced by 𝑁 𝑡. However, if 𝑖 ∈ {1, ..., 𝑠} and
𝑁0...𝑁 𝑡 = 𝛼𝑡 with 𝑁0(𝑢𝑖) = .... = 𝑁 𝑡(𝑢𝑖) = 1, we set

𝑢𝑡+1
𝑖 = max(𝑍𝑖,𝑡+1, 𝐸𝑖,𝛼𝑡). (5.6)

Using (5.5) and the definition of 𝐸𝑖,𝛼𝑡 we can see that

P
�̂�(𝒩 ,𝑁0,𝛼𝑋)

[𝑢𝑡+1
𝑖 = 1|𝑁0...𝑁 𝑡 = 𝛼𝑡] = 1− P

�̂�(𝒩 ,𝑁0,𝛼𝑋)
[𝑢𝑡+1
𝑖 = 0|𝑁0...𝑁 𝑡 = 𝛼𝑡]

= 1− (1− P[𝑍𝑖,𝑡+1 = 1]) ·
(︀
1− P[𝐸𝑖,𝛼𝑡 = 1]

)︀
= 1− (1− P[𝑍𝑖,𝑡+1 = 1]) ·

(︂
1−

𝜖𝑖,𝛼𝑡

1− P[𝑍𝑖,𝑡+1 = 1]

)︂
= P[𝑍𝑖,𝑡+1 = 1] + 𝜖𝑖,𝛼𝑡

= P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑢𝑡+1
𝑖 |𝑁0...𝑁 𝑡 = 𝛼𝑡]. (By (5.5))

Thus, the probability that any neuron spikes at time 𝑡 conditioned on the network
configuration at all times before 𝑡 is identical in executions drawn from �̂�(𝒩 , 𝑁0, 𝛼𝑋)

and 𝒟(𝒩 , 𝑁0, 𝛼𝑋). So for any 𝑡, if 𝑁0...𝑁 𝑡 is drawn from 𝒟(𝒩 , 𝑁0, 𝛼𝑋) and �̂�0...�̂� 𝑡

from �̂�(𝒩 , 𝑁0, 𝛼𝑋), these two executions are identically distributed. In particular, if
ℐ̂𝑖(𝑡) ∈ {0, 1} is an indicator variable for the event that �̂�1(𝑢𝑖) = ... = �̂� 𝑡(𝑢𝑖) = 1,
then ℐ̂𝑖(𝑡) and ℐ𝑖(𝑡) are identically distributed.

Proof that Coupled Random Variables Upper Bound Independent Vari-
ables.

We can see that ℐ̂𝑖(𝑡) ≥ ℐ̄𝑖(𝑡) via an inductive argument. In the base case, since
we assume 𝑁0(𝑢𝑖) = 1 for all 𝑖 ∈ {1, ..., 𝑠}, we apply (5.6) to generate �̂�1(𝑢𝑖).
We set �̂�1(𝑢𝑖) = max(𝑍𝑖,1, 𝐸𝑖,𝛼0) ≥ 𝑍𝑖,1 which gives ℐ̂𝑖(1) ≥ ℐ̄𝑖(1). For 𝑡 ≥ 1, if
ℐ̄𝑖(𝑡) = 0 the claim holds trivially since ℐ̂𝑖(𝑡), ℐ̄𝑖(𝑡) ∈ {0, 1}. Otherwise, we have
ℐ̄𝑖(𝑡) = 1 which implies that ℐ̄𝑖(𝑡 − 1) = 1 and so ℐ̂𝑖(𝑡 − 1) = 1 by the inductive
assumption. If ℐ̂𝑖(𝑡−1) = 1 then again we apply (5.6) to generate �̂� 𝑡(𝑢𝑖) and so have

213



�̂� 𝑡(𝑢𝑖) = max(𝑍𝑖,𝑡, 𝐸𝑖,𝛼𝑡−1) ≥ 𝑍𝑖,𝑡, giving ℐ̂𝑖(𝑡) ≥ ℐ̄𝑖(𝑡).

Since ℐ̂𝑖(𝑡) is identically distributed to ℐ𝑖(𝑡) this completes the lemma by (5.4).

Our next lemma pertains specifically to networks with a sigmoid spike probability
function, 𝑓(𝑥) = 1

1+𝑒−𝑥/𝜆 , which we use throughout this chapter. We show that given
a network with temperature parameter 𝜆 > 0, we can construct a network with an
identical execution distribution for any �̂� > 0. Thus, we will always consider the case
of 𝜆 = 1, which implies the existence of networks satisfying all bounds given for all
𝜆 > 0.

Lemma 5.2.5 (Equivalence of Temperature Parameters). For 𝜆, �̂� > 0, let 𝑓(𝑥) =
1

1+𝑒−𝑥/𝜆 and 𝑓(𝑥) = 1

1+𝑒−𝑥/�̂�
. Given 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩, let ̂︀𝒩 = ⟨𝑁, �̂�, �̂�, 𝑓⟩ where for all

𝑢, 𝑣 ∈ 𝑁 , �̂�(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) · 𝜆
�̂�

and �̂�(𝑢) = 𝑏(𝑢) · 𝜆
�̂�
. For any length initial configuration

𝑁0 and any infinite input execution 𝛼𝑋 :

𝒟(𝒩 , 𝑁0, 𝛼𝑋) = 𝒟( ̂︀𝒩 , 𝑁0, 𝛼𝑋).

Proof. For any 𝑡 ≥ 1 and any configuration 𝐶, we can compute the probability that
𝒩 is in this configuration at time 𝑡 conditioned on all past configurations as:

P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁 𝑡 = 𝐶|𝑁 𝑡−1...𝑁0] =
∏︁
𝑢∈𝑁

[𝐶(𝑢) · 𝑝(𝑢, 𝑡) + (1− 𝐶(𝑢)) · (1− 𝑝(𝑢, 𝑡))] (5.7)

where 𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)). Fixing 𝑁 𝑡−1...𝑁0, we can see that the potential com-
putation (5.1) is a linear function of 𝑤(𝑢, 𝑣) and 𝑏(𝑢) for all 𝑢, 𝑣 ∈ 𝑁 . Thus, lettinĝ︁pot(𝑢, 𝑡) be the potential of 𝑢 at time 𝑡 in ̂︀𝒩 given𝑁 𝑡−1...𝑁0, since �̂�(𝑢, 𝑣) = 𝑤(𝑢, 𝑣)·𝜆

�̂�

and �̂�(𝑢) = 𝑏(𝑢) · 𝜆
�̂�
, ̂︁pot(𝑢, 𝑡) = pot(𝑢, 𝑡) · 𝜆

�̂�
.

This gives that the probability of 𝑢 spiking at time 𝑡 in ̂︀𝒩 given 𝑁 𝑡−1...𝑁0 equals :

𝑝(𝑢, 𝑡) = 𝑓(̂︁pot(𝑢, 𝑡)) = 𝑓

(︂
pot(𝑢, 𝑡) · 𝜆

�̂�

)︂
= 𝑓(pot(𝑢, 𝑡)) = 𝑝(𝑢, 𝑡).

And since 𝑝(𝑢, 𝑡) = 𝑝(𝑢, 𝑡) for all 𝑢 ∈ 𝑁 we have using (5.7), for any 𝐶,

P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁 𝑡 = 𝐶|𝑁 𝑡−1...𝑁0] = P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁 𝑡 = 𝐶|𝑁 𝑡−1...𝑁0]. (5.8)

214



Finally inducting on 𝑡 we can show that for any finite execution 𝐶0...𝐶𝑡:

P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡] = P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡]. (5.9)

This holds trivially for 𝑡 = 0 since

P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁0 = 𝐶0] = P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁0 = 𝐶0] = 1

if 𝑁0 = 𝐶0. Both probabilities are zero otherwise. For 𝑡 ≥ 1, assume that (5.9) holds
for all 𝑡′ < 𝑡. Combined with (5.8) this gives:

P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡] = P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡−1 = 𝐶0...𝐶𝑡−1]

· P
𝒟(𝒩 ,𝑁0,𝛼𝑋)

[𝑁 𝑡 = 𝐶𝑡|𝑁0...𝑁 𝑡−1 = 𝐶0...𝐶𝑡−1]

= P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡−1 = 𝐶0...𝐶𝑡−1]

· P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁 𝑡 = 𝐶𝑡|𝑁 𝑡−1...𝑁0 = 𝐶0...𝐶𝑡−1]

= P
𝒟( ̂︀𝒩 ,𝑁0,𝛼𝑋)

[𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡].

This completes the lemma.

5.2.5 Potential Modifications to the Basic Model

There are many potential modifications to the basic network model described in
Sections 5.2.1 and 5.2.2 which may be interesting to consider in future work. We
present some below.

∙ One interesting extension is to add a history period ℎ > 1 to the network, so
that the spiking probability of a neuron at time 𝑡 depends on the configuration
of the network at times 𝑡 − 1, ..., 𝑡 − ℎ. In Section 5.5, for example, we use a
model with history period ℎ = 2 to design very fast WTA networks.

∙ We could consider a very general history model, defining

pot(𝑢, 𝑡) = 𝑓(𝑢,𝑁 𝑡−1, ..., 𝑁 𝑡−ℎ)

where 𝑓 is any function.

215



∙ A history period ℎ can be thought of as giving each neuron access to a length
ℎ queue of firing patterns on which pot(𝑢, 𝑡) depends. It may be interesting
to model such a queue as residing within the neuron’s state. We could also
consider neurons with other types of state, capturing various types of observed
biological phenomena. For example, we could model a refractory period, in
which a neuron cannot fire again for a certain number of time steps after firing
[And03, Izh04].

∙ A history period may be used, for example, to model a universal decay in the
influence of spikes over time. We may specify a non-increasing weight vector
= (𝑐1, 𝑐2, ..., 𝑐ℎ) ∈ R≥0 and modify the potential computation of (5.1) such that
for any 𝑡 ≥ ℎ:

pot(𝑢, 𝑡) =

(︃
ℎ∑︁
𝑖=1

∑︁
𝑣∈𝑁

𝑐𝑖 · 𝑤(𝑣, 𝑢) · 𝑣𝑡−𝑖
)︃

− 𝑏(𝑢).

∙ It may be interesting to consider networks with neurons of multiple types, with
different firing dynamics. The human brain contains as many as 10,000 distinct
neuron types [Stu]. Understanding how important neuron specialization is and
for what reasons it arises is a very interesting question.

∙ Similarly, we note that there is evidence that Dale’s principal can be violated and
that some neurons do have both inhibitory and excitatory outgoing connections
[Osb79]. Modeling such neurons to better understand their role and importance
is an interesting direction.

5.2.6 The Winner-Take-All Problem

We now define the main problem that we consider in this chapter, the binary winner-
take-all (WTA) problem. In this problem, given 𝑛 input neurons, the goal is to
converge to a configuration in which a single output neuron, corresponding to a firing
input, fires. This neuron is referred to as the ‘winner’ of the computation. We first
define a valid WTA output configuration for a given input configuration:

Definition 5.2.6 (Valid WTA Output Configuration). Consider any network 𝒩 with
𝑛 input neurons, labeled 𝑥1, ..., 𝑥𝑛, and 𝑛 output neurons, labeled 𝑦1, ..., 𝑦𝑛. For any
input configuration 𝐶𝑋 of 𝒩 , a valid WTA output configuration for 𝐶𝑋 is any
output configuration 𝐶𝑌 with 𝐶𝑌 (𝑦𝑖) ≤ 𝐶𝑋(𝑥𝑖) for all 𝑖 ∈ {1, ..., 𝑛} and ‖𝐶𝑌 ‖1 =

min(1, ‖𝐶𝑋‖1).

216



Interpreting the above definition, the restriction that ‖𝐶𝑌 ‖1 = min(1, ‖𝐶𝑋‖1)
requires that if at least one input fires, exactly one output fires. The condition
𝐶𝑌 (𝑦𝑖) ≤ 𝐶𝑋(𝑥𝑖) for all 𝑖 requires that this firing output corresponds to a firing
input. If no inputs fire (i.e., if ‖𝐶𝑋‖1 = 0), then no outputs should fire. With this
definition, we can define the WTA problem (see Section 5.2.3 for a description of how
problems are defined in our SNN model):

Definition 5.2.7 (Winner-Take-All Problem). Given input size 𝑛 ∈ Z>0, convergence
time 𝑡𝑐 ∈ Z>0, stability time 𝑡𝑠 ∈ Z>0, and failure probability 𝛿 > 0, the winner-take-
all problem WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) is defined as follows:

∙ If 𝛼𝑋 is an input execution with 𝑋 𝑡 fixed for all 𝑡, the output distribution
𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋) can be any distribution on executions of 𝑛 output neurons sat-
isfying:

– With probability ≥ 1 − 𝛿, there exists some 𝑡 ≤ 𝑡𝑐 such that the output
configuration is fixed at times 𝑡, 𝑡+ 1, ..., 𝑡+ 𝑡𝑠 and is a valid WTA output
configuration for 𝑋 𝑡 (Def. 5.2.6).

∙ If 𝛼𝑋 is any other input execution, the output distribution is unconstrained.

Thus, to solve WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), with probability ≥ 1− 𝛿, the network must con-
verge to a valid output configuration within 𝑡𝑐 time steps and maintain this configu-
ration for 𝑡𝑠 time steps.

Due to the random firing behavior of our neurons, the network will eventually
move to a different configuration with some probability. However, if the network
solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), since convergence is required given any initial configuration
𝑁0, we can show that it must be self-stabilizing. That is, once it leaves a valid
output configuration, it will converge again with probability ≥ 1− 𝛿 within 𝑡𝑐 steps,
and maintain the new valid configuration again for 𝑡𝑠 steps. Formally:

Theorem 5.2.8 (Self Stabilization of Winner-Take-All Networks). If 𝒩 solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for input execution 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡, given any finite exe-
cution 𝐶0...𝐶𝑡 of 𝒩 , conditioned on 𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡, with probability ≥ 1− 𝛿 there
is some time 𝑡′ ≤ 𝑡 + 𝑡𝑐 such that the output configuration for 𝒩 is fixed at times
𝑡′, 𝑡′ + 1, ..., 𝑡′ + 𝑡𝑠 and is a valid WTA output configuration for 𝑋 𝑡.

Proof. Consider the distribution on infinite executions 𝑁 𝑡+1𝑁 𝑡+2... conditioned on
𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡. Since the configuration at time 𝑡′ ≥ 𝑡 + 1 depends only on the
configuration at time 𝑡′ − 1, this distribution is identical to 𝒟𝑌 (𝒩 , 𝐶𝑡, 𝛼𝑋).

217



Thus, if 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) on 𝛼𝑋 , conditioned on 𝑁0...𝑁 𝑡 = 𝐶0...𝐶𝑡, with
probability 1 − 𝛿, there is some time 𝑡′ ≤ 𝑡 + 𝑡𝑐 in which 𝒩 reaches a valid WTA
output configuration for 𝑋 𝑡 and remains there for 𝑡𝑠 steps, giving the lemma.

We can also define an expected-time version of the winner-take-all problem as
follows:

Definition 5.2.9 (Expected-Time Winner-Take-All Problem). For any infinite input
execution 𝛼𝑋 = 𝑋0𝑋1..., stability time 𝑡𝑠 ∈ Z>0, and infinite output execution 𝛼𝑌 =

𝑌 0𝑌 1... define:

𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 ) = min
{︀
𝑡 : 𝑌 𝑡 is a valid WTA output configuration and 𝑌 𝑡 = ... = 𝑌 𝑡+𝑡𝑠

}︀
.

Given input size 𝑛 ∈ Z>0, convergence time 𝑡𝑐 ∈ Z>0, stability time 𝑡𝑠 ∈ Z>0, the
expected-time winner-take-all problem WTA-EXP(𝑛, 𝑡𝑐, 𝑡𝑠) is defined as follows:

∙ If 𝛼𝑋 is an input execution with 𝑋 𝑡 fixed for all 𝑡, the output distribution
𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋) can be any distribution on executions of 𝑛 output neurons sat-
isfying:

E
𝒟𝑌 (𝒩 ,𝑁0,𝛼𝑋)

𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 ) ≤ 𝑡𝑐.

∙ If 𝛼𝑋 is any other input execution, the output distribution is unconstrained.

5.3 A Two-Inhibitor Solution to the WTA Problem

We now present a simple solution to the WTA problems in Definitions 5.2.7 and 5.2.9
in networks with spike probability given by a sigmoid function. We begin by defining
a family of networks 𝒯𝑛,𝛾 for any input size 𝑛 and weight scaling parameter 𝛾 ∈ R+

that solve these problems.

5.3.1 Network Definition

We first give a full definition of our family of two-inhibitor WTA networks, before de-
scribing the intuition behind why these networks solve the WTA problem (Definitions
5.2.7 and 5.2.9).

Definition 5.3.1 (Two-Inhibitor WTA Network). For any positive integer 𝑛 and
𝛾 ∈ R+, let 𝒯𝑛,𝛾 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ where the spike probability, weight, and bias functions
are defined as follows:

218



∙ The spike probability function 𝑓 is defined to be the basic sigmoid function:

𝑓(𝑥)
def
=

1

1 + 𝑒−𝑥
. (5.10)

∙ The set of neurons 𝑁 consists of a set of 𝑛 input neurons 𝑋, labeled 𝑥1, ..., 𝑥𝑛,
a set of 𝑛 corresponding outputs 𝑌 , labeled 𝑦1, ..., 𝑦𝑛, and two auxiliary inhibitor
neurons labeled 𝑎𝑠, 𝑎𝑐.

∙ The weight function 𝑤 is given by:

– 𝑤(𝑥𝑖, 𝑦𝑖) = 3𝛾, for all 𝑖.

– 𝑤(𝑦𝑖, 𝑦𝑖) = 2𝛾, for all 𝑖.

– 𝑤(𝑎𝑠, 𝑦𝑖) = 𝑤(𝑎𝑐, 𝑦𝑖) = −𝛾, for all 𝑖.

– 𝑤(𝑦𝑖, 𝑎𝑠) = 𝑤(𝑦𝑖, 𝑎𝑐) = 𝛾, for all 𝑖.

– 𝑤(𝑢, 𝑣) = 0 for any 𝑢, 𝑣 whose connection is not specified above.

∙ The bias function 𝑏 is given by:

– 𝑏(𝑦𝑖) = 3𝛾 for all 𝑖.

– 𝑏(𝑎𝑠) = 𝛾/2.

– 𝑏(𝑎𝑐) = 3𝛾/2.

A diagram of 𝒯𝑛,𝛾 is shown in Figure 5-1. Note that the two inhibitors 𝑎𝑠 and 𝑎𝑐

have identical outgoing connections, and differ just in their bias.

Figure 5-1: Our two-inhibitor WTA network 𝒯𝑛,𝛾 as described in Definition 5.3.1.

219



Intuition Behind the Two-Inhibitor Network

Before giving a formal analysis of the behavior of 𝒯𝑛,𝛾, we give some intuition behind
why this family of two-inhibitor networks solves the WTA problem. In the description
below, we informally refer to events that occur ‘with high probability’. We will
quantify the meaning of such statements in our full analysis.

In 𝒯𝑛,𝛾, each input is connected to its corresponding output with a positive weight.
Thus, firing inputs will initially cause their corresponding outputs to fire with high
probability. For the network to solve WTA, it must converge to a state in which just
a single one of these outputs fires.

To ensure this convergence, 𝒯𝑛,𝛾 has two inhibitors 𝐴 = {𝑎𝑠, 𝑎𝑐}. The neuron 𝑎𝑠

is a stability inhibitor that maintains a valid WTA output configuration once it has
been reached. It fires with high probability at time 𝑡 whenever at least one output
fires at time 𝑡 − 1. The neuron 𝑎𝑐 is a convergence inhibitor that fires with high
probability whenever at least two outputs fire at time 𝑡− 1.

The weights connecting 𝑎𝑠 and 𝑎𝑐 to the outputs are set such that when both fire
at time 𝑡, any output that fired at time 𝑡 will fire with probability 1/2 at time 𝑡+ 1.
Any output that did not fire at time 𝑡 will not fire at time 𝑡+1 with high probability.
This distinguished behavior between previously firing and non-firing outputs is due to
the self-loops on each output neuron, which allow firing outputs to partially overcome
the strong inhibition from 𝑎𝑠 and 𝑎𝑐.

In this way, if two or more outputs fire at time 𝑡, both inhibitors fire with high
probability and the high level of inhibition causes outputs to ‘drop out of contention’
for the winning position with probability 1/2. After 𝑂(log 𝑛) time steps, nearly all
the outputs stop firing and, with constant probability, there is a time step in which
exactly one output fires. Once this step occurs, with high probability, 𝑎𝑐 ceases firing
and just 𝑎𝑠 fires. This decreased level of inhibition allows the winner to keep firing
with high probability, as the inhibition is fully offset by the winner’s excitatory self-
loop. However, with high probability, the inhibition prevents any other output whose
excitatory self-loop is inactive from firing. Thus the network remains in the valid
WTA output configuration for a large number of time steps with high probability.

In the event that a time in which a single output fires does not occur, then the
network ‘resets’. No outputs fire at some time, causing the inhibitors to both cease
firing. Thus, all outputs with firing inputs are able to fire, and convergence starts
again. Within 𝑂(log 1/𝛿) of these resets each reaching a valid WTA output state with
constant probability, the network reaches a valid WTA output state with probability
≥ 1 − 𝛿 and so solves the WTA problem of Definition 5.2.7. Similarly, the network

220



requires 𝑂(1) resets in expectation to reach a valid WTA output state, giving a
solution to the expected-time version of the problem in Definition 5.2.9. Formally, we
will prove the following:

Theorem 5.3.2 (Two-Inhibitor WTA). For 𝛾 ≥ 4 ln((𝑛 + 2)𝑡𝑠/𝛿) + 10, 𝒯𝑛,𝛾 solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any 𝑡𝑐 ≥ 72(log2 𝑛+ 1) · (log2(1/𝛿) + 1).

Theorem 5.3.3 (Two-Inhibitor Expected-Time WTA). For 𝛾 ≥ 4 ln((𝑛+2)𝑡𝑠)+10,
𝒯𝑛,𝛾 solves WTA-EXP(𝑛, 𝑡𝑐, 𝑡𝑠) for any 𝑡𝑐 ≥ 108(log2 𝑛+ 3).

Proof Roadmap. We prove Theorems 5.3.2 and 5.3.3 in in Sections 5.3.2-5.3.7. The
analysis is broken down as follows:

Section 5.3.2: Prove basic one-step lemmas which characterize single time step
transitions of 𝒯𝑛,𝛾, showing that the neurons behave as described in the above
high-level description.

Section 5.3.3: Prove that, once in a valid WTA configuration, 𝒯𝑛,𝛾 stays in
this configuration with high probability (that is, valid WTA configurations are
stable).

Section 5.3.4: Show that all configurations of 𝒯𝑛,𝛾 transition with high proba-
bility within two time steps to a small set of good configurations, from which
we will prove fast convergence.

Section 5.3.5 Show basic transition lemmas for this set of good configurations,
characterizing the network’s behavior at the times immediately following a good
configuration.

Section 5.3.6 Use the above transition lemmas to show that the network con-
verges, with constant probability, from any good configuration (and hence any
configuration by Section 5.3.4) to a valid WTA configuration within 𝑂(log 𝑛)

time steps.

Section 5.5.6 Complete the analysis, demonstrating with what parameters 𝒯𝑛,𝛾
solves the winner-take-all problem (Definitions 5.2.7 and 5.2.9).

5.3.2 Basic Results and One-step Lemmas

We begin with some basic results that will be important throughout our analysis,
including a few ‘one-step’ lemmas, which characterize the transition probabilities
from a set of configurations at time 𝑡 to a set of configurations at time 𝑡+ 1.

221



We first show that, unless a neuron has potential 0, either it fires with high
probability (i.e., except with probability that is inverse exponential in 𝛾) or it does
not fire with high probability.

Lemma 5.3.4 (Characterization of Firing Probabilities). For any time 𝑡 ≥ 1 and
any 𝑢 ∈ 𝑁 :

If pot(𝑢, 𝑡) = 0, then 𝑝(𝑢, 𝑡) = 1/2.

If pot(𝑢, 𝑡) < 0, then 𝑝(𝑢, 𝑡) ≤ 𝑒−𝛾/2.

If pot(𝑢, 𝑡) > 0, then 𝑝(𝑢, 𝑡) ≥ 1− 𝑒−𝛾/2.

Proof. If pot(𝑢, 𝑡) = 0, then by (5.1) 𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)) = 1
1+𝑒0

= 1/2. Otherwise
consider the potential calculation of (5.1) in the case when ℎ = 1:

pot(𝑢, 𝑡) =
∑︁
𝑣∈𝑁

𝑤(𝑣, 𝑢) · 𝑣𝑡−1 − 𝑏(𝑢).

By Definition 5.3.1, for all 𝑢, 𝑣, 𝑤(𝑣, 𝑢) and 𝑏(𝑢) are integer multiples of 𝛾/2. Thus,
since 𝑣𝑡−1 ∈ {0, 1}, pot(𝑢, 𝑡) is also an integer multiple of 𝛾/2. So, if pot(𝑢, 𝑡) < 0,
then pot(𝑢, 𝑡) ≤ −𝛾/2 and:

𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)) ≤ 𝑓(−𝛾/2) = 1

1 + 𝑒𝛾/2
≤ 𝑒−𝛾/2.

Similarly, if pot(𝑢, 𝑡) > 0, then pot(𝑢, 𝑡) ≥ 𝛾/2 and so:

𝑝(𝑢, 𝑡+ 1) = 𝑓(pot(𝑢, 𝑡)) ≥ 𝑓(𝛾/2) =
1

1 + 𝑒−𝛾/2
≥ 1− 𝑒−𝛾/2.

We next show that if output 𝑦𝑖 does not correspond to a firing input (i.e., 𝑥𝑡𝑖 = 0),
then starting from any configuration of 𝒯𝑛,𝛾 at time 𝑡, with high probability 𝑦𝑖 does
not fire at time 𝑡 + 1. That is, with high probability, outputs that are not valid
winners of the WTA computation do not fire.

Lemma 5.3.5 (Correct Output Behavior). For any time 𝑡, any configuration 𝐶 of
𝒯𝑛,𝛾, and any 𝑖 with 𝐶(𝑥𝑖) = 0,

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≤ 𝑒−𝛾/2.

222



Proof. If 𝑁 𝑡 = 𝐶 then 𝑥𝑡𝑖 = 𝐶(𝑥𝑖). We can compute 𝑦𝑖’s potential at time 𝑡 + 1,
assuming 𝑥𝑡𝑖 = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

≤ 0 + 2𝛾 + 0 + 0− 3𝛾 = −𝛾.

Thus, by Lemma 5.3.4, since pot(𝑦𝑖, 𝑡+ 1) < 0, 𝑝(𝑦𝑖, 𝑡+ 1) ≤ 𝑒−𝛾/2.

Applying Lemma 5.3.5 and a simple union bound over all 𝑛 outputs yields the
following corollary:

Corollary 5.3.6 (Correct Output Behavior, All Neurons). For any time 𝑡 and
configuration 𝐶 of 𝒯𝑛,𝛾,

P[𝑦𝑡+1
𝑖 ≤ 𝑥𝑡𝑖 for all 𝑖|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2.

Proof. If 𝐶(𝑥𝑖) = 1 then conditioned on 𝑁 𝑡 = 𝐶, 𝑥𝑡𝑖 = 1 and so 𝑦𝑡+1
𝑖 ≤ 𝑥𝑡𝑖 always.

Otherwise, by Lemma 5.3.5, if 𝐶(𝑥𝑖) = 0, then P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥ 1−𝑒−𝛾/2. Union

bounding over all such inputs (of which there are at most 𝑛) gives the corollary.

We next show that the inhibitors 𝑎𝑠 and 𝑎𝑐 behave as expected with high proba-
bility.

Lemma 5.3.7 (Correct Inhibitor Behavior). For any time 𝑡 and configuration 𝐶 of
𝒯𝑛,𝛾,

1. If ‖𝐶(𝑌 )‖1 = 0, then P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

2. If ‖𝐶(𝑌 )‖1 = 1, then P[𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

3. If ‖𝐶(𝑌 )‖1 ≥ 2, then P[𝑎𝑡+1
𝑠 = 1 = 𝑎𝑡+1

𝑐 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

Proof. We prove each case above separately. Note that, conditioned on 𝑁 𝑡 = 𝐶,
𝑌 𝑡 = 𝐶(𝑌 ).

Case 1: ‖𝐶(𝑌 )‖1 = 0.

In this case, the inhibitors receive no excitatory signal from the outputs so,

pot(𝑎𝑠, 𝑡+ 1) = −𝑏(𝑎𝑠) < 0 and pot(𝑎𝑐, 𝑡+ 1) = −𝑏(𝑎𝑐) < 0.

223



Thus by Lemma 5.3.4 and a union bound over the two inhibitors,

P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

Case 2: ‖𝐶(𝑌 )‖1 = 1.

In this case we have:

pot(𝑎𝑠, 𝑡+ 1) =
𝑛∑︁
𝑗=1

𝑤(𝑦𝑗, 𝑎𝑠)𝑦
𝑡
𝑗 − 𝑏(𝑎𝑠)

= 𝛾 − 𝛾/2 = 𝛾/2.

pot(𝑎𝑐, 𝑡+ 1) =
𝑛∑︁
𝑗=1

𝑤(𝑦𝑗, 𝑎𝑐)𝑦
𝑡
𝑗 − 𝑏(𝑎𝑐)

= 𝛾 − 3𝛾/2 = −𝛾/2.

Again by Lemma 5.3.4 and a union bound, P[𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0|𝑁 𝑡 = 𝐶] ≥
1− 2𝑒−𝛾/2.

Case 3: ‖𝐶(𝑌 )‖1 ≥ 2

Finally, in this case:

pot(𝑎𝑠, 𝑡+ 1) =
𝑛∑︁
𝑗=1

𝑤(𝑦𝑗, 𝑎𝑠)𝑦
𝑡
𝑗 − 𝑏(𝑎𝑠)

≥ 2𝛾 − 𝛾/2 = 3𝛾/2.

pot(𝑎𝑐, 𝑡+ 1) =
𝑛∑︁
𝑗=1

𝑤(𝑦𝑗, 𝑎𝑐)𝑦
𝑡
𝑗 − 𝑏(𝑎𝑐)

≥ 2𝛾 − 3𝛾/2 = 𝛾/2.

So by Lemma 5.3.4 and a union bound, P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 1|𝑁 𝑡 = 𝐶] ≥ 1 − 2𝑒−𝛾/2,
completing the lemma.

Combined with Corollary 5.3.6, Lemma 5.3.7 conclusion (1) gives:

Lemma 5.3.8 (Quiescent Behavior). Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡

fixed for all 𝑡 and ‖𝑋 𝑡‖1 = 0. For any time 𝑡 and configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

P[‖𝑁 𝑡+2‖1 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 2(𝑛+ 1)𝑒−𝛾/2.

224



Proof. Let ℰ10 be the event that 𝑁 𝑡 = 𝐶 and ‖𝑌 𝑡+1‖1 = 0. Let ℰ20 be the event that
‖𝑁 𝑡+2‖1 = 0. That is, that no neurons fire at time 𝑡 + 2. Conditioned on ℰ10, by
Lemma 5.3.7 conclusion (1), with probability ≥ 1 − 2𝑒−𝛾/2, 𝑎𝑡+2

𝑠 = 𝑎𝑡+2
𝑐 = 0. Again

by Corollary 5.3.6, conditioned on ℰ10, with probability ≥ 1 − 𝑛𝑒−𝛾/2, ‖𝑌 𝑡+2‖1 = 0.
So, overall by a union bound,

P[ℰ20|ℰ10] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

By Corollary 5.3.6, since ‖𝑋 𝑡‖1 = 0, P[ℰ10|𝑁 𝑡 = 𝐶] ≥ 1−𝑛𝑒−𝛾/2. We can thus bound:

P[ℰ20|𝑁 𝑡 = 𝐶] ≥ P[ℰ10|𝑁 𝑡 = 𝐶] · P[ℰ20|ℰ10, 𝑁 𝑡 = 𝐶]

= P[ℰ10|𝑁 𝑡 = 𝐶] · P[ℰ20|ℰ10]
(Since, by definition, ℰ10 implies 𝑁 𝑡 = 𝐶.)

≥
(︀
1− 𝑛𝑒−𝛾/2

)︀
·
(︀
1− (𝑛+ 2)𝑒−𝛾/2

)︀
≥ 1− 2(𝑛+ 1)𝑒−𝛾/2,

which gives the lemma.

We next show that the stability inhibitor, with high probability, induces exactly
the outputs that fired at the previous time step to fire in the next step. We show
the lemma in fact for any configuration in which exactly one inhibitor fires. Since
𝑎𝑠 and 𝑎𝑐 have identical outgoing edges, they have a symmetric effect on the firing
probabilities of other neurons.

Lemma 5.3.9 (Stability Inhibitor Effect). For any time 𝑡 and configuration 𝐶 of
𝒯𝑛,𝛾 with (𝐶(𝑎𝑠) = 1 and 𝐶(𝑎𝑐) = 0) or (𝐶(𝑎𝑠) = 0 and 𝐶(𝑎𝑐) = 1) and 𝐶(𝑦𝑖) ≤
𝐶(𝑥𝑖) for all 𝑖,

P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2.

Proof. For any configuration 𝐶 with 𝐶(𝑎𝑐) = 1 and 𝐶(𝑎𝑠) = 0, let 𝐶 denote the
configuration with 𝐶(𝑎𝑐) = 0, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑢) = 𝐶(𝑢) for all other 𝑢 ∈ 𝑁 ∖
{𝑎𝑐, 𝑎𝑠}. Since 𝑎𝑐 and 𝑎𝑠 have no self-loops and have identical outgoing connections,
the distribution of 𝑁 𝑡+1 given 𝑁 𝑡 = 𝐶 is identical to its distribution given 𝑁 𝑡 = 𝐶.
Thus, we can assume without loss of generality in the proof of this lemma that
𝐶(𝑎𝑠) = 1 and 𝐶(𝑎𝑐) = 0.

Conditioned on 𝑁 𝑡 = 𝐶, 𝑦𝑡𝑖 ≤ 𝑥𝑡𝑖 by assumption. So for any output with 𝑦𝑡𝑖 = 1,

225



we have 𝑥𝑡𝑖 = 1. This gives:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

= 3𝛾 + 2𝛾 − 𝛾 + 0− 3𝛾

= 𝛾.

In contrast, for any output with 𝑦𝑡𝑖 = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

≤ 3𝛾 + 0− 𝛾 + 0− 3𝛾

= −𝛾.

Thus, by Lemma 5.3.4, if 𝑦𝑡𝑖 = 1, then 𝑦𝑡+1
𝑖 = 1 with probability ≥ 1 − 𝑒−𝛾/2. If

𝑦𝑡𝑖 = 0, then 𝑦𝑡+1
𝑖 = 0 with probability ≥ 1 − 𝑒−𝛾/2. The lemma follows after union

bounding over all 𝑛 outputs.

Finally, we show that when both the stability and convergence inhibitors fire
at time 𝑡, not only do outputs not firing at time 𝑡 not fire at time 𝑡 + 1 with high
probability, but also, all firing outputs at time 𝑡 stop firing with probability 1/2 at time
𝑡+1. Conditioned on the configuration at time 𝑡, these outputs fire independently, a
property which will be useful in our eventual proof of progress towards a valid WTA
configuration in Lemma 5.3.23.

Lemma 5.3.10 (Convergence Inhibitor Effect). For any time 𝑡 and configuration
𝐶 of 𝒯𝑛,𝛾 with 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 1 and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖,

1. P[𝑦𝑡+1
𝑖 ≤ 𝑦𝑡𝑖 for all 𝑖|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2.

2. If 𝑦𝑡𝑖 = 1, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] = 1/2.

3. For 𝑖 ̸= 𝑗, 𝑦𝑡+1
𝑖 and 𝑦𝑡+1

𝑗 are independent conditioned on 𝑁 𝑡 = 𝐶.

Proof. Conditioned on 𝑁 𝑡 = 𝐶, if 𝑦𝑡𝑖 = 1, by assumption 𝑥𝑡𝑖 = 1. We can thus
compute:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

= 3𝛾 + 2𝛾 − 𝛾 − 𝛾 − 3𝛾

= 0.

226



We thus have P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] = 1/2 by Lemma 5.3.4. This gives conclusion (2).

Conclusion (3) holds trivially since, with 𝑁 𝑡 fixed, 𝑢𝑡+1 is independent of 𝑣𝑡+1 for all
𝑢 ̸= 𝑣.

We can also bound if 𝑦𝑡𝑖 = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

≤ 3𝛾 + 0− 𝛾 − 𝛾 − 3𝛾

= −2𝛾.

Thus, by Lemma 5.3.4, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≤ 𝑒−𝛾/2. By a union bound over at most

𝑛 such outputs, we have, with probability ≥ 1−𝑛𝑒−𝛾/2, 𝑦𝑡+1
𝑖 ≤ 𝑦𝑡𝑖 for all 𝑖 , completing

the lemma.

5.3.3 Stability

In this section we extend our definition of a valid WTA output configuration (Defi-
nition 5.2.6), to give a more restrictive notion of a valid WTA configuration, which
additionally requires that the auxiliary neurons 𝑎𝑠, 𝑎𝑐 are in a good state. We show
that once the network is in such a state at time 𝑡, it remains there with high proba-
bility at time 𝑡+ 1.

Definition 5.3.11 (Valid WTA Configuration). A valid WTA configuration of 𝒯𝑛,𝛾
is a configuration 𝐶 with 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖 ∈ {1, ..., 𝑛} and ‖𝐶(𝑌 )‖1 =

min(1, ‖𝐶(𝑋)‖1) (i.e., the outputs satisfy Definition 5.2.6) and further, 𝐶(𝑎𝑐) = 0

and 𝐶(𝑎𝑠) = min(1, ‖𝐶(𝑋)‖1).

In the above we require 𝐶(𝑎𝑠) = min(‖𝐶(𝑋)‖1, 1). That is, the stability inhibitor
fires in a valid WTA configuration, unless no inputs fire. If no inputs fire, a valid WTA
configuration requires that neither 𝑎𝑠 nor 𝑎𝑐 fire and additionally, that no outputs fire.

Lemma 5.3.12 (Stability of Valid Configurations). Assume the input execution 𝛼𝑋
of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and valid WTA configuration 𝐶 with
𝐶(𝑋) = 𝑋 𝑡,

P[𝑁 𝑡+1 = 𝑁 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

Proof. By Definition 5.3.11, since 𝐶 is a valid WTA configuration, we have

‖𝐶(𝑌 )‖1 = min(1, ‖𝐶(𝑋)‖1) ∈ {0, 1}.

227



We prove the lemma via a case analysis on ‖𝐶(𝑌 )‖1.

Case 1 : ‖𝐶(𝑌 )‖1 = 0

In this case, since 𝐶 is a valid WTA configuration, according to Definition 5.3.11,
conditioned on 𝑁 𝑡 = 𝐶, we must have ‖𝑋 𝑡‖1 = 0 and 𝑎𝑡𝑠 = 𝑎𝑡𝑐 = 0. By Corollary
5.3.6, since ‖𝑋 𝑡‖1 = 0,

P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2.

By Lemma 5.3.7 conclusion (1), since ‖𝐶(𝑌 )‖1 = 0, P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 0|𝑁 𝑡 = 𝐶] ≥
1 − 2𝑒−𝛾/2. By a union bound, recalling that 𝑋 𝑡 is fixed for all 𝑡 by assumption,
P[𝑁 𝑡+1 = 𝑁 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

Case 2 : ‖𝐶(𝑌 )‖1 = 1

In this case by Definition 5.3.11, we have 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖, 𝐶(𝑎𝑠) = 1,
and 𝐶(𝑎𝑐) = 0. We can thus apply Lemma 5.3.9, giving that P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 =

𝐶] ≥ 1 − 𝑛𝑒−𝛾/2. Additionally, by Lemma 5.3.7 conclusion (2), since ‖𝐶(𝑌 )‖1 = 1,
P[𝑎𝑡+1

𝑠 = 1 and 𝑎𝑡+1
𝑐 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2. So by a union bound,

P[𝑁 𝑡+1 = 𝑁 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2,

giving the result in this case and completing the lemma.

Lemma 5.3.12 immediately implies a bound on the probability that 𝒯𝑛,𝛾 remains
in a valid WTA configuration for 𝑡𝑠 consecutive times.

Corollary 5.3.13 (Stability of Valid WTA Configurations). Assume the input exe-
cution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and valid WTA configuration
𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

P[𝑁 𝑡 = 𝑁 𝑡+1 = ... = 𝑁 𝑡+𝑡𝑠|𝑁 𝑡 = 𝐶] ≥ 1− 𝑡𝑠(𝑛+ 2)𝑒−𝛾/2.

Proof. Applying Lemma 5.3.12 for each time 𝑡 + 1, ..., 𝑡 + 𝑡𝑠 in succession gives the
result.

5.3.4 Convergence to Good Configurations

With the stability bound of Corollary 5.3.13 in place, it remains to prove that 𝒯𝑛,𝛾
converges quickly to a valid WTA configuration. We do this in two main steps:

228



Configuration Type 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) ∀𝑖? ‖𝐶(𝑌 )‖1 𝐶(𝑎𝑠) 𝐶(𝑎𝑐)

Valid WTA (Def. 5.3.11) X min(1, ‖𝐶(𝑋)‖1) 1 0

Near-Valid WTA (Def. 5.3.15) X min(1, ‖𝐶(𝑋)‖1) 1 1

Valid 𝑘-WTA (Def. 5.3.14) X 𝑘 ≥ 2 1 1

Reset (Def. 5.3.16) – – 0 0

Table 5.1: Summary of good configuration types (Definition 5.3.17), from which we
show rapid convergence to a valid WTA configuration. We refer to the configuration
types shaded in gray as active configurations (Definition 5.3.18).

1. In this Section, we define three additional good configuration types and show
that all other network configurations converge to a good configuration within
just two time steps with high probability.

2. In Sections 5.3.5 and 5.3.6 we show that, in turn, each of these good configura-
tions rapidly converges to a valid WTA configuration with constant probability.

A high level illustration of our proof is shown in Figure 5-2.

Figure 5-2: A high level illustration of our proof that 𝒯𝑛,𝛾 solves the WTA problem.
We show that all configurations converge to the set of good configurations. Once in a
good configuration, 𝒯𝑛,𝛾 converges to a valid WTA state very rapidly, with constant
probability. In the illustration, arrow size corresponds to relative probability.

The first class of good configurations are valid 𝑘-WTA configurations. In such
configurations the network behaves as expected before convergence. Multiple outputs
corresponding to firing inputs fire and the inhibitors 𝑎𝑠 and 𝑎𝑐 fire, driving convergence
towards a valid WTA configuration.

Definition 5.3.14 (Valid 𝑘-WTA Configuration). For any 𝑘 ≥ 2, a valid 𝑘-WTA
configuration of 𝒯𝑛,𝛾 is a configuration 𝐶 with 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖 ∈ {1, ..., 𝑛},
‖𝐶(𝑌 )‖1 = 𝑘 and 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 1.

229



We next define a class of near-valid WTA configurations, each of which is a small
perturbation of a valid WTA configuration, with correct output but incorrect inhibitor
behavior. We will show in Section 5.3.6 that the network rapidly converges to a
near-valid WTA configuration from any configuration. In turn, it transitions with
probability ≈ 1/2 from a near-valid WTA configuration to a valid WTA configuration.

Definition 5.3.15 (Near-Valid WTA Configuration). A near-valid WTA configura-
tion of 𝒯𝑛,𝛾 is a configuration 𝐶 in which 𝐶(𝑌 ) is a valid WTA output configuration
for 𝐶(𝑋) (Definition 5.2.6) but 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 1.

Finally, we define the class of reset configurations with 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 0. Since
there is no inhibition in such a configuration, each output corresponding to a firing
input will fire with probability ≥ 1/2 at the next time. With probability ≈ 1/2, the
network will transition to either a valid 𝑘-WTA, a near-valid WTA, or a valid WTA
configuration within three steps (Lemma 5.3.22).

Definition 5.3.16 (Reset Configuration). A reset configuration of 𝒯𝑛,𝛾 is a configu-
ration 𝐶 with 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 0.

Definition 5.3.17 (Good Configuration). A good configuration is any configuration
that is either a valid WTA configuration (Definition 5.3.11), a valid 𝑘-WTA config-
uration (Definition 5.3.14), a reset configuration (Definition 5.3.16), or a near-valid
WTA configuration (Definition 5.3.15).

For conciseness, we also give a name to the good configurations excluding reset
configurations:

Definition 5.3.18 (Active Configuration). An active configuration is any configura-
tion that is either a valid WTA configuration (Definition 5.3.11), a valid 𝑘-WTA con-
figuration (Definition 5.3.14), or a near-valid WTA configuration (Definition 5.3.15).

We first give a simple lemma building on Lemma 5.3.9, which characterizes the
network’s behavior when a single inhibitor and at least one output corresponding to
a firing input fire at time 𝑡:

Lemma 5.3.19. Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For
any time 𝑡 and any configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡, (𝐶(𝑎𝑠) = 1 and 𝐶(𝑎𝑐) = 0)
or (𝐶(𝑎𝑠) = 0 and 𝐶(𝑎𝑐) = 1), ‖𝐶(𝑌 )‖1 ≥ 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖:

P[𝑁 𝑡+1 is a valid WTA or valid 𝑘-WTA configuration |𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

230



Proof. If ‖𝐶(𝑌 )‖1 = 1, then 𝐶 is a valid WTA configuration. Thus, by Lemma
5.3.12, conditioned in 𝑁 𝑡 = 𝐶, 𝑁 𝑡+1 is a valid WTA configuration with probability
≥ 1− (𝑛+ 2)𝑒−𝛾/2.

If ‖𝐶(𝑌 )‖1 ≥ 2, then by Lemma 5.3.7 conclusion (3),

P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

Further, by Lemma 5.3.9, P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2, which gives that 𝑁 𝑡+1

is a valid 𝑘-WTA configuration since, by conditioned on 𝑁 𝑡 = 𝐶, ‖𝑌 𝑡‖1 ≥ 2 and
𝑦𝑡𝑖 ≤ 𝑥𝑡𝑖 for all 𝑖. Thus, by a union bound, conditioned on 𝑁 𝑡 = 𝐶, 𝑁 𝑡+1 is a valid
𝑘-WTA configuration with probability ≥ 1− (𝑛+ 2)𝑒−𝛾/2, giving the lemma.

Theorem 5.3.20 (Convergence to a Good Configuration). Assume that the input
execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and configuration 𝐶 with
𝐶(𝑋) = 𝑋 𝑡,

P[at least one of {𝑁 𝑡+1, 𝑁 𝑡+2} is a good configuration |𝑁 𝑡 = 𝐶] ≥ 1−2(𝑛+1)𝑒−𝛾/2.

Proof. Let ℰ be the event that at least one of {𝑁 𝑡+1, 𝑁 𝑡+2} is a good configuration.
Let ℰ1 be the event that, 𝑁 𝑡 = 𝐶 and for all 𝑖, 𝑦𝑡+1

𝑖 ≤ 𝑥𝑡+1
𝑖 . By Corollary 5.3.6 and

the fact that 𝑋 𝑡 is fixed

P[ℰ1|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2. (5.11)

We now give a simple case analysis, considering all values of 𝑎𝑡+1
𝑐 and 𝑎𝑡+1

𝑠 .

Case 1: 𝑎𝑡+1
𝑐 = 𝑎𝑡+1

𝑠 = 0.

In this case, 𝑁 𝑡+1 is a reset configuration (Definition 5.3.16). So we have:

P
[︀
ℰ
⃒⃒
ℰ1, 𝑎𝑡+1

𝑐 = 𝑎𝑡+1
𝑠 = 0

]︀
= 1. (5.12)

Case 2: 𝑎𝑡+1
𝑐 = 𝑎𝑡+1

𝑠 = 1.

If ‖𝑌 𝑡+1‖1 = 0, then 𝑁 𝑡+2 is a reset configuration with probability ≥ 1 − 2𝑒−𝛾/2 by
Lemma 5.3.7 conclusion (1). If ‖𝑌 𝑡+1‖1 = 1 and ℰ1 occurs, then 𝑁 𝑡+1 is a near-valid
WTA configuration (Definition 5.3.15). If ‖𝑌 𝑡+1‖1 ≥ 2 and ℰ1 occurs, then 𝑁 𝑡+1 is a

231



valid 𝑘-WTA configuration (Definition 5.3.14). Thus:

P
[︀
ℰ
⃒⃒
ℰ1, 𝑎𝑡+1

𝑐 = 𝑎𝑡+1
𝑠 = 1

]︀
≥ 1− 2𝑒−𝛾/2. (5.13)

Case 3: (𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0) or (𝑎𝑡+1
𝑠 = 0 and 𝑎𝑡+1

𝑐 = 1).

Let ℰ2 be the event that (𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0) or (𝑎𝑡+1
𝑠 = 0 and 𝑎𝑡+1

𝑐 = 1). Again,
if ‖𝑌 𝑡+1‖1 = 0, then 𝑁 𝑡+2 is a reset configuration with probability ≥ 1 − 2𝑒−𝛾/2 by
Lemma 5.3.7 conclusion (1).

If ℰ2 and ℰ1 occur and ‖𝑌 𝑡+1‖1 ≥ 1, we can apply Lemma 5.3.19, giving that 𝑁 𝑡+2

is either a valid WTA or valid 𝑘-WTA configuration with probability ≥ 1−(𝑛+2)𝑒−𝛾/2.
We thus have:

P[ℰ|ℰ1, ℰ2] ≥ 1− (𝑛+ 2)𝑒−𝛾/2. (5.14)

Completing the lemma.

Combining (5.12), (5.13), and (5.14), by the law of total probability, P[ℰ|ℰ1] ≥
1− (𝑛+ 2)𝑒−𝛾/2. We can then use that P[ℰ1|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2 by (5.11) to give:

P[ℰ|𝑁 𝑡 = 𝐶] ≥ P[ℰ1|𝑁 𝑡 = 𝐶] · P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶]

= P[ℰ1|𝑁 𝑡 = 𝐶] · P[ℰ|ℰ1] (Since, by definition, ℰ1 implies 𝑁 𝑡 = 𝐶.)

≥ 1− 2(𝑛+ 1)𝑒−𝛾/2,

completing the lemma.

5.3.5 Transition Lemmas for Good Configurations

We now give a set of lemmas that characterize the transitions of 𝒯𝑛,𝛾 when start-
ing from a good configuration. We first show that a near-valid WTA configuration
transitions with probability ≈ 1/2 to the adjacent valid WTA configuration (i.e., the
configuration with the same output behavior, but correct inhibitor behavior).

Lemma 5.3.21 (From Near-Valid to Valid Configurations). Assume that the input
execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and near-valid WTA
configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

P[𝑁 𝑡+1 is a valid WTA configuration |𝑁 𝑡 = 𝐶] ≥ 1/2− (𝑛+ 2)𝑒−𝛾/2.

232



Proof. We give a proof similar to that of Lemmas 5.3.9 and 5.3.12. We consider two
cases:

Case 1: ‖𝐶(𝑌 )‖1 = 0.

In this case, for 𝐶 to be a near-valid WTA configuration, according to Definition
5.3.15, we must also have ‖𝐶(𝑋)‖1 = 0. So by Corollary 5.3.6,

P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2.

Additionally, by Lemma 5.3.7 conclusion (1), since ‖𝐶(𝑌 )‖1 = 0, P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 =

0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2. By a union bound,

P[‖𝑁 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

By Definition 5.3.11, since ‖𝑋 𝑡+1‖1 = 0, if ‖𝑁 𝑡+1‖1 = 0, then 𝑁 𝑡+1 is a valid WTA
configuration. So, conditioned on 𝑁 𝑡 = 𝐶, 𝑁 𝑡+1 is a valid WTA configuration with
probability ≥ 1− (𝑛+ 2)𝑒−𝛾/2, giving the lemma in this case.

Case 2: ‖𝐶(𝑌 )‖1 = 1.

In this case, for some 𝑖, 𝐶(𝑦𝑖) = 1 and 𝐶(𝑦𝑗) = 0 for all 𝑗 ̸= 𝑖. Further, we must
have 𝐶(𝑥𝑖) = 1 and 𝐶(𝑎𝑠) = 𝐶(𝑎𝑐) = 1 by the requirements of Definition 5.3.15.
Define the event ℰ1 by:

ℰ1
def
=
(︀
𝑦𝑡+1
𝑖 = 1, 𝑎𝑡+1

𝑠 = 1, 𝑎𝑡+1
𝑐 = 0 and 𝑦𝑡+1

𝑗 = 0 for all 𝑗 ̸= 𝑖
)︀
.

By Lemma 5.3.10, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] = 1/2 and P[𝑦𝑡𝑖 ≤ 𝑦𝑡+1

𝑖 for all 𝑖|𝑁 𝑡 = 𝐶] ≥
1−𝑛𝑒−𝛾/2. By Lemma 5.3.7 conclusion (2), since ‖𝐶(𝑌 )‖1 = 1, P[𝑎𝑡+1

𝑠 = 1 and 𝑎𝑡+1
𝑐 =

0|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2. By a union bound this gives,

P[ℰ1|𝑁 𝑡 = 𝐶] ≥ 1/2− (𝑛+ 2)𝑒−𝛾/2.

If ℰ1 occurs, then 𝑁 𝑡+1 is a valid WTA configuration, giving the lemma in this case.

We next show that a reset configuration transitions to some active configuration
(Defintion 5.3.18) with probability ≈ 1/2.

233



Lemma 5.3.22 (From Reset to Active Configurations). Assume the input execution
𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and reset configuration 𝐶 with
𝐶(𝑋) = 𝐶𝑡,

P[at least one of {𝑁 𝑡+1, 𝑁 𝑡+2, 𝑁 𝑡+3} is active |𝑁 𝑡 = 𝐶] ≥ 1/2− 3(𝑛+ 2)𝑒−𝛾/2.

Proof. Let ℰ be the event that at least one of {𝑁 𝑡+1, 𝑁 𝑡+2, 𝑁 𝑡+3} is an active config-
uration. We consider two cases:

Case 1: ‖𝑋 𝑡‖1 = 0.

Let ℰ20 be the event that ‖𝑁 𝑡+2‖1 = 0. That is, that no neurons fire at time 𝑡+2.
By Lemma 5.3.8, since ‖𝑋 𝑡‖1 = 0, P[ℰ20|𝑁 𝑡 = 𝐶] ≥ 1− 2(𝑛+ 1)𝑒−𝛾/2.

ℰ20 requires that no neurons fire in 𝑁 𝑡+2, which makes this a valid WTA con-
figuration since ‖𝑋 𝑡‖1 = 0 and the input is fixed for all 𝑡. Thus, P[ℰ|𝑁 𝑡 = 𝐶] ≥
P[ℰ20|𝑁 𝑡 = 𝐶] ≥ 1− 2(𝑛+ 1)𝑒−𝛾/2, completing the lemma in this case.

Case 2: ‖𝑋 𝑡‖1 ≥ 1.

Let ℰ11 be the event that 𝑁 𝑡 = 𝐶 and ‖𝑌 𝑡+1‖ ≥ 1 (i.e., at least one output fires
at time 𝑡+ 1) and 𝑦𝑡+1

𝑖 ≤ 𝑥𝑡+1
𝑖 for all 𝑖. For any 𝑦𝑖 with 𝑥𝑡𝑖 = 1, we have:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡
𝑐 − 𝑏(𝑦𝑖)

≥ 3𝛾 + 0 + 0 + 0− 3𝛾 = 0.

So, by Lemma 5.3.4, each output 𝑦𝑖 with 𝑥𝑡𝑖 = 1 fires with probability at least 1/2 at
time 𝑡+1. Each with 𝑥𝑡𝑖 = 0 does not fire with probability ≥ 1−𝑒−𝛾/2 by Lemma 5.3.5.
Since, by assumption, ‖𝑋 𝑡‖1 ≥ 1, by a union bound, with probability ≥ 1/2−𝑛𝑒−𝛾/2,
at least one output with 𝑥𝑡𝑖 = 1 fires in 𝑁 𝑡+1, and no outputs with 𝑥𝑡𝑖 = 0 fire. That
is,

P[ℰ11|𝑁 𝑡 = 𝐶] ≥ 1/2− 𝑛𝑒−𝛾/2. (5.15)

We now proceed with a case analysis on the inhibitor behavior at time 𝑡+ 1:

Sub-case 1: 𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 1.

In this case, assuming ℰ11 occurs, 𝑁 𝑡+1 is either a valid 𝑘-WTA configuration for

234



some 𝑘 or a near-valid WTA configuration. We thus have:

P
[︀
ℰ
⃒⃒
ℰ11, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 1

]︀
= 1. (5.16)

Sub-case 2: 𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 0.

Let ℰ21 be the event that ‖𝑌 𝑡+2‖1 ≥ 1, 𝑦𝑡+2
𝑖 ≤ 𝑥𝑡+2

𝑖 for all 𝑖, and 𝑎𝑡+2
𝑠 = 1.

Assuming ℰ11 occurs and 𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 0, any output with 𝑦𝑡+1
𝑖 = 1 has

pot(𝑦𝑖, 𝑡+ 2) = 𝑤(𝑥𝑖, 𝑦𝑖)𝑥
𝑡+1
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖)𝑦

𝑡+1
𝑗 + 𝑤(𝑎𝑠, 𝑦𝑖)𝑎

𝑡+1
𝑠 + 𝑤(𝑎𝑐, 𝑦𝑖)𝑎

𝑡+1
𝑐 − 𝑏(𝑦𝑖)

= 3𝛾 + 2𝛾 + 0 + 0− 3𝛾 > 0.

Thus, any such output has 𝑦𝑡+2
𝑖 = 1 with probability ≥ 1 − 𝑒−𝛾/2 by Lemma 5.3.4.

Combined with Corollary 5.3.5, with probability ≥ 1−𝑛𝑒−𝛾/2, at least one output fires
in 𝑁 𝑡+2, and no outputs with 𝑥𝑡+1

𝑖 = 0 fire. Further by Lemma 5.3.7 conclusions (2)
and (3), since ℰ11 requires that ‖𝑌 𝑡+1‖ ≥ 1, with probability ≥ 1− 2𝑒−𝛾/2, 𝑎𝑡+2

𝑠 = 1.
Thus,

P
[︀
ℰ21
⃒⃒
ℰ11, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 0

]︀
≥ 1− (𝑛+ 2)𝑒−𝛾/2. (5.17)

Assume that both ℰ11 and ℰ21 occur. ℰ21 requires that 𝑎𝑡+2
𝑠 = 1 and ‖𝑌 𝑡+2‖1 ≥ 1.

If we also have 𝑎𝑡+2
𝑐 = 1, then𝑁 𝑡+2 is a near-valid WTA or valid 𝑘-WTA configuration.

If 𝑎𝑡+2
𝑐 = 0 and ‖𝑌 𝑡+2‖1 = 1, then 𝑁 𝑡+2 is a valid WTA configuration. If 𝑎𝑡+2

𝑐 = 0

and ‖𝑌 𝑡+2‖1 ≥ 2, then by Lemma 5.3.7 conclusion (3), with probability ≥ 1− 2𝑒−𝛾/2,
𝑎𝑡+3
𝑠 = 𝑎𝑡+3

𝑐 = 1. Further, we can apply Lemma 5.3.9, giving that 𝑌 𝑡+3 = 𝑌 𝑡+2 with
probability ≥ 1−𝑛𝑒−𝛾/2. This ensures that 𝑁 𝑡+3 is a valid 𝑘-WTA configuration. So
we have by a union bound:

P
[︀
ℰ
⃒⃒
ℰ11, ℰ21, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 0

]︀
≥ 1− (𝑛+ 2)𝑒−𝛾/2.

Combined with (5.17) the above gives:

P
[︀
ℰ
⃒⃒
ℰ11, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 0

]︀
≥ P

[︀
ℰ21
⃒⃒
ℰ11, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 0

]︀
· P
[︀
ℰ
⃒⃒
ℰ11, ℰ21, 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 0

]︀
≥
(︀
1− (𝑛+ 2)𝑒−𝛾/2

)︀
·
(︀
1− (𝑛+ 2)𝑒−𝛾/2

)︀
≥ 1− 2(𝑛+ 2)𝑒−𝛾/2. (5.18)

Sub-case 3: (𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0) or (𝑎𝑡+1
𝑠 = 0 and 𝑎𝑡+1

𝑐 = 1).

235



Let ℰ13 denote the event that (𝑎𝑡+1
𝑠 = 1 and 𝑎𝑡+1

𝑐 = 0) or (𝑎𝑡+1
𝑠 = 0 and 𝑎𝑡+1

𝑐 = 1).
Assuming ℰ13 and ℰ11, we can apply Lemma 5.3.19, which gives that 𝑁 𝑡+2 is either a
valid WTA or valid 𝑘-WTA configuration with probability ≥ 1− (𝑛+ 2)𝑒−𝛾/2. I.e.,

P
[︀
ℰ
⃒⃒
ℰ11, ℰ13

]︀
≥ 1− (𝑛+ 2)𝑒−𝛾/2. (5.19)

Completing Case 2.

Overall, combining (5.16), (5.18), and (5.19), by the law of total probability
P[ℰ|ℰ11] ≥ 1− 2(𝑛+ 2)𝑒−𝛾/2. Recalling that by (5.15) P[ℰ11|𝑁 𝑡 = 𝐶] ≥ 1/2− 𝑛𝑒−𝛾/2:

P[ℰ|𝑁 𝑡 = 𝐶] ≥ P[ℰ11|𝑁 𝑡 = 𝐶] · P[ℰ|ℰ11, 𝑁 𝑡 = 𝐶]

= P[ℰ11|𝑁 𝑡 = 𝐶] · P[ℰ|ℰ11]
(Since, by assumption, ℰ11 implies 𝑁 𝑡 = 𝐶.)

≥ 1/2− 3(𝑛+ 2)𝑒−𝛾/2

which completes the lemma in this case.

We next show that, in each time step, with high probability, the number of firing
outputs 𝑘 does not increase. Further, with probability ≈ 1/2, 𝑘 is reduced by a factor
of 1/2. This ensures rapid convergence towards having just a single firing output
(i.e., a near-valid WTA state). While there is some chance that the convergence will
‘overshoot’ the target and zero outputs will fire at some time step, we show that the
probability of this event is upper bounded by the probability of the desired event –
i.e., reaching a near-valid WTA configuration.

Lemma 5.3.23 (Progress from 𝑘-WTA Configurations). Assume the input execution
𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡. For any time 𝑡 and any valid 𝑘-WTA configuration
𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

1. Letting ℰ be the event that 𝑁 𝑡+1 is either a near-valid WTA configuration, a
valid 𝑘-WTA configuration with ‖𝑌 𝑡+1‖1 ≤ ‖𝑌 𝑡‖1, or has ‖𝑌 𝑡+1‖1 = 0.

P[ℰ|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2.

2. P
[︁
‖𝑌 𝑡+1‖1 ≤

⌈︁
‖𝑌 𝑡‖1

2

⌉︁ ⃒⃒
𝑁 𝑡 = 𝐶

]︁
≥ 1/2− (𝑛+ 2)𝑒−𝛾/2.

3. P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2 ≤ P[𝑁 𝑡+1 is a near-valid |𝑁 𝑡 = 𝐶].

236



Proof. Since 𝐶 is a valid 𝑘-WTA configuration, conditioned on 𝑁 𝑡 = 𝐶, we have
‖𝑌 𝑡‖1 ≥ 2 and 𝑎𝑡𝑠 = 𝑎𝑡𝑐 = 1. Event ℰ in (1) above occurs if and only if 𝑎𝑡+1

𝑠 = 𝑎𝑡+1
𝑐 = 1,

and 𝑦𝑡+1
𝑖 ≤ 𝑦𝑡𝑖 for all 𝑖.

By Lemma 5.3.7 conclusion (3), since ‖𝑌 𝑡‖1 ≥ 2, both inhibitors remain firing at
time 𝑡+ 1 with high probability. That is,

P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

𝑐 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 2𝑒−𝛾/2.

Further, by Lemma 5.3.10, P[𝑦𝑡+1
𝑖 ≤ 𝑦𝑡𝑖 for all 𝑖|𝑁 𝑡 = 𝐶] ≥ 1 − 𝑛𝑒−𝛾/2. By a union

bound, this gives that P[ℰ|𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2, giving (1).

Let 𝑌 ⊆ 𝑌 denote the set of all output neurons with 𝑦𝑡𝑖 = 1. Let 𝑘 = ‖𝑌 𝑡‖1 =

‖𝑌 𝑡‖1 and 𝑘′ = ‖𝑌 𝑡+1‖1. By Lemma 5.3.10 properties (2) and (3), conditioned on
𝑁 𝑡 = 𝐶, 𝑘′ is distributed according to the binomial distribution 𝐵(𝑘, 1/2). That is, it
is the number of successes in 𝑘 independent trials each with success probability 1/2.
Since 𝐵(𝑘, 1/2) is symmetric with mean 𝑘/2, its median is upper bounded by ⌈𝑘/2⌉.
Thus, P [𝑘′ ≤ ⌈𝑘/2⌉|𝑁 𝑡 = 𝐶] ≥ 1/2. This gives by a union bound,

P
[︀
𝑘′ ≤ ⌈𝑘/2⌉ and ℰ|𝑁 𝑡 = 𝐶

]︀
≥ 1/2− (𝑛+ 2)𝑒−𝛾/2.

Note that if ℰ holds, then 𝑘′ = ‖𝑌 𝑡+1‖1 = ‖𝑌 𝑡+1‖1, which thus gives conclusion (2).

Finally, we have P[𝑘′ = 1|𝑁 𝑡 = 𝐶] = 𝑘 · 1
2𝑘

and P[𝑘′ = 0|𝑁 𝑡 = 𝐶] = 1
2𝑘

and so

P[𝑘′ = 0|𝑁 𝑡 = 𝐶] ≤ P[𝑘′ = 1|𝑁 𝑡 = 𝐶].

Let ℰ1 be the event that 𝑁 𝑡+1 is a near-valid WTA configuration. Assuming ℰ occurs,
𝑁 𝑡+1 is a near-valid WTA configuration if and only if 𝑘′ = 1. That is,

P[ℰ1|ℰ , 𝑁 𝑡 = 𝐶] = P[𝑘′ = 1|ℰ , 𝑁 𝑡 = 𝐶] = P[𝑘′ = 1|𝑁 𝑡 = 𝐶].

The second equality follows since ℰ and 𝑘′ are independent conditioned on 𝑁 𝑡. 𝑘′

only depends on the firing of 𝑦 ∈ 𝑌 while ℰ only depends on the firing of 𝑢 ∈
{𝑎𝑠, 𝑎𝑐} ∪ (𝑌 ∖ 𝑌 ). Using the above:

P[ℰ1|𝑁 𝑡 = 𝐶] ≥ P[ℰ|𝑁 𝑡 = 𝐶] · P[ℰ1|ℰ , 𝑁 𝑡 = 𝐶]

≥
(︀
1− (𝑛+ 2)𝑒−𝛾/2

)︀
· P[𝑘′ = 1|𝑁 𝑡 = 𝐶]

≥ P[𝑘′ = 0|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2

≥ P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2

237



where the last bound follows since ‖𝑌 𝑡+1‖1 ≥ ‖𝑌𝑡+1‖1 = 𝑘′ so ‖𝑌 𝑡+1‖1 = 0 at least
requires 𝑘′ = 0. This gives conclusion (3), completing the lemma.

5.3.6 Convergence to WTA

We now use the good configuration transition probabilities given in Section 5.3.5,
along with the results of Section 5.3.4, to show that, if sufficiently large 𝛾, starting
from any configuration 𝒯𝑛,𝛾 converges with probability ≥ 1/18 to a valid WTA con-
figuration within 𝑂(log 𝑛) steps (see Lemma 5.3.32). The proof is in four main parts,
which we outline here. We first define:

Definition 5.3.24 (Terminal Configuration). For 𝒯𝑛,𝛾, a terminal configuration is
any configuration 𝐶 which is either a near-valid WTA configuration or has ‖𝐶(𝑌 )‖1 =
0 (i.e., no outputs fire).

With this definition we can describe the general proof outline:

1. Monotonicity (Lemma 5.3.27). We prove that, starting from a 𝑘-WTA con-
figuration, with high probability, 𝒯𝑛,𝛾 remains in a 𝑘-WTA configuration, with
the number of firing outputs consistently decreasing until it reaches a terminal
configuration.

2. Convergence (Lemma 5.3.29). We prove that the number of firing outputs
decreases rapidly. That is, starting from a 𝑘-WTA configuration, with high
probability, a terminal configuration is reached within 𝑂(log 𝑛) steps.

3. Probability of valid WTA (Lemma 5.3.30, Corollary 5.3.31). We show that,
starting from a valid 𝑘-WTA configuration, with constant probability, the termi-
nal configuration reached is in fact a near-valid WTA configuration. By Lemma
5.3.21, with constant probability, this configuration transitions to a valid WTA
configuration.

4. Convergence from any starting configuration (Theorem 5.3.32). We
show that, starting in any configuration, with constant probability, the net-
work reaches either a valid WTA configuration or a 𝑘-WTA configuration in
few steps. Combined with our convergence results for 𝑘-WTA configurations,
this proves fast convergence to a valid WTA state from any starting configura-
tion.

238



We begin with a few definitions which we use to formalize the high level description
above.

Definition 5.3.25 (Termination Step). Given any infinite execution 𝛼 = 𝐶0𝐶1....

let term(𝛼, 𝑡,Δ) be the minimum value in {𝑡+ 1, ..., 𝑡+Δ} for which 𝐶term(𝛼,𝑡,Δ) is a
terminal configuration (Definition 5.3.24). If no such time exists let term(𝛼, 𝑡,Δ) =

𝑡+Δ.

Definition 5.3.26 (Monotonicity Until Termination). Let ℰ𝑚𝑜𝑛𝑜(𝑡,Δ) be the event
that the execution of 𝒯𝑛,𝛾 is in set of executions 𝛼 = 𝐶0𝐶1... satisfying:

{𝛼| for all 𝑡′ ∈ {𝑡+ 1, ..., term(𝛼, 𝑡,Δ)}, 𝐶𝑡′ is a valid 𝑘-WTA configuration

with ‖𝑌 𝑡′‖1 ≤ ‖𝑌 𝑡′−1‖1}.

We begin by showing that, starting from any 𝑘-WTA configuration, with high
probability 𝒯𝑛,𝛾 behaves monotonically as described above.

Lemma 5.3.27 (Monotonicity). Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed
for all 𝑡. For any time 𝑡, any valid 𝑘-WTA configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡, and
any Δ ≥ 1,

P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2.

Proof. Consider any Δ ≥ 2. If ℰ𝑚𝑜𝑛𝑜(𝑡,Δ − 1) occurs, then either 𝑁 𝑡+(Δ−1) is a
valid 𝑘-WTA configuration, or, for some 𝑡′ ∈ {𝑡 + 1, ..., 𝑡 +Δ− 1}, 𝑁 𝑡′ is a terminal
configuration. Thus, by conclusion (1) of Lemma 5.3.23 we have:

P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|ℰ𝑚𝑜𝑛𝑜(𝑡,Δ− 1), 𝑁 𝑡 = 𝐶] ≥ 1− (𝑛+ 2)𝑒−𝛾/2. (5.20)

Using (5.20) we can show by induction that for any Δ ≥ 1,

P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2. (5.21)

For any Δ ≥ 2, assume by way of induction that (5.21) holds for all Δ′ < Δ. The
assumption holds in the base case when Δ = 1 again by conclusion (1) of Lemma
5.3.23, since 𝐶 is a valid 𝑘-WTA configuration so P[ℰ𝑚𝑜𝑛𝑜(𝑡, 1)|𝑁 𝑡 = 𝐶] ≥ 1 − (𝑛 +

239



2)𝑒−𝛾/2. Applying (5.20) and the inductive assumption:

P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≥ P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ− 1)|𝑁 𝑡 = 𝐶] · P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|ℰ𝑚𝑜𝑛𝑜(𝑡,Δ− 1), 𝑁 𝑡 = 𝐶]

≥
(︁
1− (Δ− 1)(𝑛+ 2)𝑒−𝛾/2

)︁
·
(︁
1− (𝑛+ 2)𝑒−𝛾/2

)︁
≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2.

which gives (5.21) for all Δ ≥ 1, and so the lemma.

We next show that, starting from a 𝑘-WTA configuration, with high probability,
𝒯𝑛,𝛾 reaches a terminal configuration within𝑂(log 𝑛) steps. This requires showing that
for Δ = 𝑂(log 𝑛) with high probability, 𝑁 term(𝛼,𝑡,Δ) (where term(𝛼, 𝑡,Δ) is defined in
Definition 5.3.25) is actually a terminal configuration. We note that if the network
does not reach a terminal configuration within Δ steps after time 𝑡, then, by definition,
𝑁 term(𝛼,𝑡,Δ) = 𝑁 𝑡+Δ, which is some non-terminal configuration.

We first define a termination event:

Definition 5.3.28 (Termination by Δ). Let ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) be the intersection of ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)

(Definition 5.3.26) and the event that 𝑁 term(𝛼,𝑡,Δ) is a terminal configuration.

Lemma 5.3.29 (Convergence from 𝑘-WTA Configurations). Assume the input ex-
ecution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that 𝛾 ≥ 4 ln(𝑛 + 2) + 10. Let
Δ = 12(log2 𝑛 + 2). For any time 𝑡 and valid 𝑘-WTA configuration 𝐶 with
𝐶(𝑋) = 𝑋 𝑡,

P[ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2 − 1

7𝑛

Proof. Let ̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) be the event that ℰ𝑚𝑜𝑛𝑜(𝑡,Δ) occurs but ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) does not.
For any 𝑡′ ∈ {𝑡+1, ..., 𝑡+Δ}, define the indicator 𝐼𝑡′ ∈ {0, 1} with 𝐼𝑡′ = 1 if and only
if either:

∙ 𝑁 𝑡′−1 is a valid 𝑘-WTA configuration and ‖𝑌 𝑡′‖1 ≤ ⌈𝑘/2⌉.

∙ 𝑁 𝑡′−1 is not a valid 𝑘-WTA configuration for any 𝑘 ≥ 2.

̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) requires that each of 𝑁 𝑡, ..., 𝑁 𝑡+Δ is a valid 𝑘-WTA configuration and that

‖𝑌 𝑡‖1 ≥ ‖𝑌 𝑡+1‖1 ≥ ... ≥ ‖𝑌 𝑡+Δ‖1 ≥ 2.

Otherwise, a terminal configuration with ‖𝑌 𝑡′‖1 = 0 would be reached and ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)

would occur.

240



Initially ‖𝑌 𝑡‖1 ≤ 𝑛. Since each time 𝐼𝑡′ = 1, either ‖𝑌 𝑡‖1 is cut in half or a
configuration other than a valid 𝑘-WTA configuration occurs, ̂︀ℰ𝑡𝑒𝑟𝑚(𝑡) can only occur
if
∑︀𝑡+Δ

𝑡′=𝑡+1 𝐼𝑡′ < log2 𝑛+ 1. Thus we can bound:

P[̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≤ P

[︃
𝑡+Δ∑︁
𝑡′=𝑡+1

𝐼𝑡′ < (log2 𝑛+ 1)
⃒⃒
𝑁 𝑡 = 𝐶

]︃
. (5.22)

We will show that this probability is low since 𝐼𝑡′ = 1 with good probability.
Specifically, if𝑁 𝑡′−1 is not a valid 𝑘-WTA configuration, then 𝐼𝑡′ = 1 deterministically.
If 𝑁 𝑡′−1 is a valid 𝑘-WTA configuration, then by conclusion (2) of Lemma 5.3.23,
𝐼𝑡′ = 1 with probability ≥ 1/2 − (𝑛 + 2)𝑒−𝛾/2. Overall, we have: P[𝐼𝑡′ = 1|𝑁 𝑡′−1] ≥
1/2 − (𝑛 + 2)𝑒−𝛾/2. In fact, by Lemma 5.2.2, we can also condition on all past
configurations and have:

P[𝐼𝑡′ = 1|𝑁 𝑡′−1𝑁 𝑡′−2...𝑁 𝑡, 𝑁 𝑡 = 𝐶] ≥ 1/2− (𝑛+ 2)𝑒−𝛾/2.

The above bound lets us use Lemma 5.2.3 to upper bound the probability that∑︀𝑡+Δ
𝑡′=𝑡+1 𝐼𝑡′ is below any value 𝑑 by the probability that a sum of Δ independent coin

flips, each with success probability 1/2 − (𝑛 + 2)𝑒−𝛾/2, is below 𝑑. Specifically, let
𝑍𝑡+1, ..., 𝑍𝑡+Δ be i.i.d. random variables with 𝑍𝑡′ = 1 with probability 1/2 − (𝑛 +

2)𝑒−𝛾/2 and 𝑍𝑡′ = 0 otherwise. Invoking (5.22) and Lemma 5.2.3,

P[̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≤ P

[︃
𝑡+Δ∑︁
𝑡′=𝑡+1

𝐼𝑡′ < (log2 𝑛+ 1)
⃒⃒
𝑁 𝑡 = 𝐶

]︃
(5.23)

≤ P

[︃
𝑡+Δ∑︁
𝑡′=𝑡+1

𝑍𝑡′ < (log2 𝑛+ 1)

]︃
. (5.24)

By our assumption that 𝛾 ≥ 4 ln(𝑛+2)+ 10 and our setting of Δ = 12(log2 𝑛+2) ≤
14𝑛:

E

[︃
𝑡+Δ∑︁
𝑡′=𝑡+1

𝑍𝑡′

]︃
= Δ/2−Δ(𝑛+ 2)𝑒−𝛾/2 ≥ Δ/3 = 4(log2 𝑛+ 2).

By a standard Chernoff bound [MU05],

P

[︃
𝑡+Δ∑︁
𝑡′=𝑡+1

𝑍𝑡′ ≤ (log2 𝑛+ 1)

]︃
≤ 𝑒−

(3/4)2·4(log2 +2)
2 ≤ 𝑒−(log2 𝑛+2) ≤ 1

7𝑛
.

241



We thus have, by (5.23), P[̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶] ≤ 1
7𝑛

. Combined with Lemma 5.3.27
this gives:

P[ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶] = P[ℰ𝑚𝑜𝑛𝑜(𝑡,Δ)|𝑁 𝑡 = 𝐶]− P[̂︀ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶]

≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2 − 1

7𝑛
.

We next combine Lemma 5.3.29 with conclusion (3) of Lemma 5.3.23 and Lemma
5.3.21 to show that, starting from a valid 𝑘-WTA configuration, not only does 𝒯𝑛,𝛾
reach a terminal configuration quickly, but also, if 𝛾 is large enough, this terminal
configuration is a near-valid WTA configuration with probability ≈ 1/2.

Lemma 5.3.30 (Constant Probability of Near-Valid WTA, from 𝑘-WTA Config-
urations). Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that
𝛾 ≥ 4 ln(𝑛 + 2) + 10. Let Δ = 12(log2 𝑛 + 2) and ℰ1(𝑡) be the event that there is
some 𝑡′ ∈ {𝑡 + 1, ..., 𝑡 + Δ}, such that 𝑁 𝑡′ is a near-valid WTA configuration. For
any 𝑡 and valid 𝑘-WTA configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1

2
− Δ+ 1

2
(𝑛+ 2)𝑒−𝛾/2 − 1

14𝑛
.

Proof. ℰ1(𝑡) is equivalent to the event that ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) occurs and 𝑁 term(𝛼,𝑡,Δ) is a
near-valid WTA configuration. Let ℰ0(𝑡) be the event that ℰ𝑡𝑒𝑟𝑚(𝑡,Δ) occurs and
‖𝑌 term(𝛼,𝑡,Δ)‖1 = 0. ℰ0(𝑡) and ℰ1(𝑡) are disjoint with ℰ0(𝑡)∪ℰ1(𝑡) = ℰ𝑡𝑒𝑟𝑚(𝑡,Δ). So by
Lemma 5.3.29,

P[ℰ0(𝑡)|𝑁 𝑡 = 𝐶] + P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] = P[ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)|𝑁 𝑡 = 𝐶]

≥ 1−Δ(𝑛+ 2)𝑒−𝛾/2 − 1

7𝑛
. (5.25)

We will use conclusion (3) of Lemma 5.3.23 to show that

P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] ≥ P[ℰ0(𝑡)|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2, (5.26)

which combined with (5.25) gives the conclusion of the lemma, that

P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1

2
− Δ+ 1

2
(𝑛+ 2)𝑒−𝛾/2 − 1

14𝑛
. (5.27)

242



For each 𝑡′ ∈ {𝑡 + 1, ..., 𝑡 + Δ}, let ℰ𝑡𝑒𝑟𝑚(𝑡, 𝑡′,Δ) be the event that ℰ𝑡𝑒𝑟𝑚(𝑡,Δ)

occurs and term(𝛼, 𝑡,Δ) = 𝑡′. Define ℰ0(𝑡, 𝑡′) and ℰ1(𝑡, 𝑡′) analogously. Let ℰ2(𝑡, 𝑡′)
be the event that 𝑁 𝑡, ..., 𝑁 𝑡′−1 are all valid 𝑘-WTA configurations with ‖𝑌 𝑡‖1 ≥ ... ≥
‖𝑌 𝑡′−1‖1 ≥ 2. Let ℰ̄2(𝑡, 𝑡′) be its complement.

P[ℰ1(𝑡, 𝑡′)|ℰ̄2(𝑡, 𝑡′)] = P[ℰ0(𝑡, 𝑡′)|ℰ̄2(𝑡, 𝑡′)] = 0 (5.28)

since both ℰ1(𝑡, 𝑡′) and ℰ0(𝑡, 𝑡′) require ℰ𝑚𝑜𝑛𝑜(𝑡,Δ) to hold, which requires ℰ2(𝑡, 𝑡′) to
hold if term(𝛼, 𝑡,Δ) = 𝑡′. Further, by conclusion (3) of Lemma 5.3.23, since ℰ2(𝑡, 𝑡′)
requires that 𝑁 𝑡′−1 is a valid 𝑘-WTA configuration,

P[ℰ1(𝑡, 𝑡′)|ℰ2(𝑡, 𝑡′), 𝑁 𝑡 = 𝐶] ≥ P[ℰ0(𝑡, 𝑡′)|ℰ2(𝑡, 𝑡′), 𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2 (5.29)

By the law of total probability, (5.28) and (5.29) give

P[ℰ1(𝑡, 𝑡′)|𝑁 𝑡 = 𝐶] ≥ P[ℰ0(𝑡, 𝑡′)|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2.

Again by the law of total probability, this gives

P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] ≥ P[ℰ0(𝑡)|𝑁 𝑡 = 𝐶]− (𝑛+ 2)𝑒−𝛾/2,

yielding (5.26) and thus (5.27) and the lemma.

We next combine Lemma 5.3.30 with Lemma 5.3.21, which shows that any near-
valid WTA configuration transitions with probability ≈ 1/2 to a valid WTA config-
uration. This gives fast convergence to a valid WTA configuration starting from any
valid 𝑘-WTA configuration, with probability ≥ 1/8.

Corollary 5.3.31 (Constant Probability of Success, from 𝑘-WTA Configurations).
Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that 𝛾 ≥ 4 ln(𝑛 +

2)+10. Let ℰ(𝑡) be the event that there is some 𝑡′ ∈ {𝑡+1, ..., 𝑡+12 log2 𝑛+25}, such
that 𝑁 𝑡′ is a valid WTA configuration. For any 𝑡 and valid 𝑘-WTA configuration 𝐶

with 𝐶(𝑋) = 𝑋 𝑡,
P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1/8.

Proof. As in Lemma 5.3.30, let Δ = 12(log2 𝑛+ 2) and ℰ1(𝑡) be the event that there
is some 𝑡′ ∈ {𝑡 + 1, ..., 𝑡 +Δ}, such that 𝑁 𝑡′ is a near-valid WTA configuration. Let
ℰ𝑣𝑎𝑙(𝑡) be the event that 𝑁 𝑡′+1 is a valid WTA configuration. We have ℰ(𝑡) ⊆ ℰ𝑣𝑎𝑙(𝑡)

243



(since 𝑡′ + 1 ∈ {𝑡+ 2, ..., 𝑡+Δ+ 1} where 𝑡+Δ+ 1 = 𝑡+ (12 log2 𝑛+ 25)). Thus it
suffices to show that P[ℰ𝑣𝑎𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1/8.

By Lemmas 5.3.30 and 5.3.21, for any configuration 𝐶:

P[ℰ𝑣𝑎𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ P[ℰ1(𝑡)|𝑁 𝑡 = 𝐶] · P[ℰ𝑣𝑎𝑙(𝑡)|ℰ1(𝑡), 𝑁 𝑡 = 𝐶]

≥
(︂
1

2
− Δ+ 1

2
(𝑛+ 2)𝑒−𝛾/2 − 1

14𝑛

)︂
·
(︀
1/2− (𝑛+ 2)𝑒−𝛾/2

)︀
≥ 1

4
− Δ+ 3

4
(𝑛+ 2)𝑒−𝛾/2 − 1

28𝑛
.

We can loosely bound Δ+3
4

= 12(log2 𝑛+2)+3
4

≤ 12(𝑛+2𝑛)+3𝑛
4

≤ 10𝑛. Further, by our
assumption that 𝛾 ≥ 4 ln(𝑛+ 2) + 10 we have:

P[ℰ𝑣𝑎𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1

4
− 10𝑛(𝑛+ 2)

(𝑛+ 2)2 · 𝑒5
− 1

28
≥ 1

8

which gives the corollary.

Finally, we show that, starting from any configuration, with constant probability,
𝒯𝑛,𝛾 converges to a valid WTA configuration in 𝑂(log 𝑛) steps. Our proof combines
Theorem 5.3.20 and Lemma 5.3.22 which show that any configuration transitions to
an active configuration (Definition 5.3.18) in few steps with constant probability. We
then apply Corollary 5.3.31 to show convergence from such a configuration.

Theorem 5.3.32. Assume the input execution 𝛼𝑋 of 𝒯𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and
that 𝛾 ≥ 4 ln(𝑛+ 2) + 10. Let ℰ(𝑡) be the event that there is some 𝑡′ ∈ {𝑡+ 1, ..., 𝑡+

(12 log2 𝑛 + 30)} such that 𝑁 𝑡′ is a valid WTA configuration. For any time 𝑡 and
configuration 𝐶 with 𝐶(𝑋) = 𝑋 𝑡,

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1/18.

Proof. Let ℰ𝑎𝑐𝑡(𝑡) be the event that 𝑁 𝑡 = 𝐶 and that at least one of {𝑁 𝑡+1, ..., 𝑁 𝑡+5}
is an active configuration (Definition 5.3.18). Let 𝑁 𝑡 be the first active configuration
in this set, or 𝑁 𝑡 = 𝑁 𝑡+5 if there is no such configuration.

By Theorem 5.3.20, conditioned on 𝑁 𝑡 = 𝐶, with probability ≥ 1− 2(𝑛+1)𝑒−𝛾/2

one of {𝑁 𝑡+1, 𝑁 𝑡+2} is a good configuration. Let 𝑁 𝑡 be the first good configuration
in this set or 𝑁 𝑡 = 𝑁 𝑡+2 if neither are good. If 𝑁 𝑡 is also an active configuration then
ℰ𝑎𝑐𝑡(𝑡) holds.

If not, then 𝑁 𝑡 is a reset configuration. Let 𝐶 ′ be any reset configuration. By
Lemma 5.3.22, conditioned on 𝑁 𝑡 = 𝐶 ′, with probability ≥ 1/2 − 3(𝑛 + 2)𝑒−𝛾/2 at

244



least one of {𝑁 𝑡+1, 𝑁 𝑡+2, 𝑁 𝑡+3}, is an active configuration. Thus, overall we have:

P[ℰ𝑎𝑐𝑡|𝑁 𝑡 = 𝐶] ≥
(︀
1− 2(𝑛+ 1)𝑒−𝛾/2

)︀
·
(︀
1/2− 3(𝑛+ 2)𝑒−𝛾/2

)︀
≥ 1

2
− 5(𝑛+ 2)𝑒−𝛾/2. (5.30)

We can define three disjoint events:

ℰ𝑎𝑐𝑡,1(𝑡)
def
= (𝑁 𝑡 is a valid 𝑘-WTA configuration )

ℰ𝑎𝑐𝑡,2(𝑡)
def
= (𝑁 𝑡 is a near-valid WTA configuration )

ℰ𝑎𝑐𝑡,3(𝑡)
def
= (𝑁 𝑡 is a valid WTA configuration )

We have ℰ𝑎𝑐𝑡(𝑡) =
⋃︀3
𝑖=1 ℰ𝑎𝑐𝑡,𝑖(𝑡) and so by the law of total probability:

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡(𝑡)] =
3∑︁
𝑖=1

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,𝑖(𝑡)] · P[ℰ𝑎𝑐𝑡,𝑖(𝑡)|ℰ𝑎𝑐𝑡(𝑡)]

≥
3∑︁
𝑖=1

min
𝑖∈{1,2,3}

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,𝑖(𝑡)] · P[ℰ𝑎𝑐𝑡,𝑖(𝑡)|ℰ𝑎𝑐𝑡(𝑡)]

≥ min
𝑖∈{1,2,3}

·P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,𝑖(𝑡)] (5.31)

where the last bound follows since the ℰ𝑎𝑐𝑡,𝑖(𝑡) events are disjoint and
∑︀3

𝑖=1 P[ℰ𝑎𝑐𝑡,𝑖(𝑡)|ℰ𝑎𝑐𝑡(𝑡)] =
1. We now bound this minimum via a case analysis:

Case 1: P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,1(𝑡)]

In this case, 𝑁 𝑡 is a valid 𝑘-WTA configuration, so applying Corollary 5.3.31,
conditioned on ℰ𝑎𝑐𝑡,1(𝑡), with probability 1/8 there is some time 𝑡′ ∈ {𝑡 + 1, ..., 𝑡 +

(12 log2 𝑛 + 25)} such that 𝑁 𝑡′ is a valid WTA configuration. Note that 𝑡 ≤ 𝑡 + 5

giving 𝑡′ ≤ (12 log2 𝑛+ 30). We thus have:

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,1(𝑡)] ≥ 1/8. (5.32)

Case 2: P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,2(𝑡)]

In this case, 𝑁 𝑡 is a near-valid WTA configuration, so applying Lemma 5.3.21,
conditioned on ℰ𝑎𝑐𝑡,2(𝑡), 𝑁 𝑡+1 is a valid WTA configuration with probability ≥ 1/2−

245



(𝑛+ 2)𝑒−𝛾/2. By our assumption that 𝛾 ≥ 4 ln(𝑛+ 2) + 10:

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,2(𝑡)] ≥ 1/2− (𝑛+ 2)𝑒−𝛾/2 ≥ 1/3. (5.33)

Case 3: P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,3(𝑡)]

If ℰ𝑎𝑐𝑡,3(𝑡) holds then 𝑁 𝑡 is a valid WTA configuration by definition, so trivially

P[ℰ(𝑡)|ℰ𝑎𝑐𝑡,3(𝑡)] = 1. (5.34)

Completing the theorem:

Combining (5.32), (5.33), (5.34), and (5.31) we have P[ℰ(𝑡)|ℰ𝑎𝑐𝑡(𝑡)] ≥ 1/8. Using
(5.30) we then have:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] ≥ P[ℰ𝑎𝑐𝑡(𝑡)|𝑁 𝑡 = 𝐶] · P[ℰ(𝑡)|ℰ𝑎𝑐𝑡(𝑡), 𝑁 𝑡 = 𝐶]

= P[ℰ𝑎𝑐𝑡(𝑡)|𝑁 𝑡 = 𝐶] · P[ℰ(𝑡)|ℰ𝑎𝑐𝑡(𝑡)]
(Since ℰ𝑎𝑐𝑡(𝑡) ⊆ (𝑁 𝑡 = 𝐶) by definition.)

≥ 1

8
·
(︂
1

2
− 5(𝑛+ 2)𝑒−𝛾/2

)︂
≥ 1

18

where the last bound follows from our assumption that 𝛾 ≥ 4 ln(𝑛+ 2) + 10.

5.3.7 Completing the Bounds

Given Theorem 5.3.32, it is easy to show that, with 𝛾 set large enough, 𝒯𝑛,𝛾 solves the
WTA problem (Definitions 5.2.7 and 5.2.9), giving Theorem 5.3.2 and 5.3.3. We start
with the basic WTA problem of Definition 5.2.7. By Theorem 5.3.32, starting from
any configuration, the network converges to a valid WTA configuration in 𝑂(log 𝑛)

steps. By applying this analysis in sequence to 𝑂(log 1/𝛿) sets of 𝑂(log 𝑛) steps, we
show that the network converges to a valid WTA state with probability ≥ 1−𝛿 within
𝑂(log 𝑛 · log(1/𝛿)) steps. Further, if 𝛾 is large enough, by Lemma 5.3.13, it remains
in this state for 𝑡𝑠 steps with high probability.

Theorem 5.3.2 (Two-Inhibitor WTA). For 𝛾 ≥ 4 ln((𝑛 + 2)𝑡𝑠/𝛿) + 10, 𝒯𝑛,𝛾 solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any 𝑡𝑐 ≥ 72(log2 𝑛+ 1) · (log2(1/𝛿) + 1).

Proof. Consider 𝒯𝑛,𝛾 starting from any initial configuration 𝑁0 and given an infi-
nite input execution 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡. Let Δ = (12 log2 𝑛 + 30) and

246



𝑟 = 6(log2(1/𝛿) + 1). Let ℰ be the event that there is some time 𝑡 ≤ 𝑡𝑐 where
𝑁 𝑡 is a valid WTA configuration.

For any 𝑖 ≥ 0, let ℰ𝑖 be the event that there is some time 𝑡 ∈ {𝑖Δ+1, ..., (𝑖+1)Δ}
where 𝑁 𝑡 is a valid WTA configuration. By Theorem 5.3.32 and Lemma 5.2.2 we
have:

P[ℰ𝑖|𝑁 𝑖Δ] = P[ℰ𝑖|𝑁 𝑖Δ, 𝑁 𝑖Δ−1, ..., 𝑁1] ≥ 1/8.

Let 𝑍0, ..., 𝑍𝑟−1 ∈ {0, 1} be independent coin flips, with P[𝑍𝑖 = 1] = 1/8. Applying
Lemma 5.2.3:

P[ℰ ] = P

[︃
𝑟−1⋂︁
𝑖=0

ℰ𝑖

]︃
≥ P

[︃
𝑟−1∑︁
𝑖=0

𝑍𝑖 ≥ 1

]︃
= 1−

(︂
7

8

)︂𝑟
.

Using that 𝑟 = 6(log2(1/𝛿) + 1):

P[ℰ ] ≥ 1−
(︂
7

8

)︂6(log2(1/𝛿)+1)

≥ 1− 𝛿

2
.

Thus, with probability ≥ 1 − 𝛿
2

there is some time 𝑡 ≤ 𝑟 · Δ ≤ 72(log2 𝑛 + 1) ·
(log2(1/𝛿) + 1) ≤ 𝑡𝑐 in which 𝑁 𝑡 is a valid WTA configuration. By Corollary 5.3.13,
if 𝐶 is a valid WTA configuration then

P[𝑁 𝑡 = 𝑁 𝑡+1 = ... = 𝑁 𝑡+𝑡𝑠|𝑁 𝑡 = 𝐶] ≥ 1− 𝑡𝑠(𝑛+ 2)𝑒−𝛾/2 ≥ 1− 𝛿

𝑒5
,

where the bound holds by our assumption that 𝛾 ≥ 4 ln((𝑛 + 2)𝑡𝑠/𝛿) + 10. We thus
have that the network reaches a valid WTA configuration within time 𝑡𝑐 and remains
in it for time 𝑡𝑠 with probability ≥

(︀
1− 𝛿

2

)︀
·
(︀
1− 𝛿

𝑒5

)︀
≥ 1−𝛿, yielding the theorem.

We conclude by showing with what parameters 𝒯𝑛,𝛾 solves the expected-time WTA
problem of Definition 5.2.9.

Theorem 5.3.3 (Two-Inhibitor Expected-Time WTA). For 𝛾 ≥ 4 ln((𝑛+2)𝑡𝑠)+10,
𝒯𝑛,𝛾 solves WTA-EXP(𝑛, 𝑡𝑐, 𝑡𝑠) for any 𝑡𝑐 ≥ 108(log2 𝑛+ 3).

Proof. Recall that in Definition 5.2.9 we defined the convergence time for any infinite
input execution 𝛼𝑋 and output execution 𝛼𝑌 :

𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 ) = min
{︀
𝑡 : 𝑌 𝑡 is a valid WTA output configuration for 𝑋𝑡 and 𝑌 𝑡 = ... = 𝑌 𝑡+𝑡𝑠

}︀
.

247



Define the worst case expected convergence time of 𝒯𝑛,𝛾 on input 𝛼𝑋 by:

𝑡𝑚𝑎𝑥(𝛼𝑋) = max
𝑁0

(︂
E

𝛼𝑌 ∼𝒟𝑌 (𝒯𝑛,𝛾 ,𝑁0,𝛼𝑋)
𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )

)︂
.

To prove the lemma we must prove that for any 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡, 𝑡𝑚𝑎𝑥(𝛼𝑋) ≤
108(log2 𝑛 + 3). Fixing such an 𝛼𝑋 , for any starting configuration 𝑁0, let E

𝑁0

and P
𝑁0

denote the expectation and probability of an event taken over executions drawn from
𝒟(𝒯𝑛,𝛾, 𝑁0, 𝛼𝑋).

Let Δ = (12 log2 𝑛+ 30) and let ℰ1 be the event that there is some 𝑡 ∈ {1, ...,Δ}
where 𝑁 𝑡 is a valid WTA configuration. Let ℰ𝑠𝑡𝑎𝑏 be the event that there is some
𝑡 ∈ {1, ...,Δ} where 𝑁 𝑡 is a valid WTA configuration and additionally, where 𝑁 𝑡 =

... = 𝑁 𝑡+𝑡𝑠 . Let ℰ̄1 and ℰ̄𝑠𝑡𝑎𝑏 be the complements of these two events. By Theorem
5.3.32, for any initial configuration 𝑁0

P
𝑁0
[ℰ1] ≥ 1/8. (5.35)

Further, by Corollary 5.3.13, if 𝐶 is a valid WTA configuration then,

P
𝑁0
[𝑁 𝑡 = 𝑁 𝑡+1 = ... = 𝑁 𝑡+𝑡𝑠|𝑁 𝑡 = 𝐶] ≥ 1− 𝑡𝑠(𝑛+ 2)𝑒−𝛾/2 ≥ 1− 1

𝑡𝑠 · 𝑒5
(5.36)

where the bound holds since 𝛾 ≥ 4 ln((𝑛 + 2)𝑡𝑠) + 10 ≥ 2 ln((𝑛 + 2)𝑡2𝑠) + 10 and so
𝑒−𝛾/2 ≤ 1

(𝑛+2)𝑡2𝑠·𝑒5
. Together (5.35) and (5.36) give that:

P
𝑁0
[ℰ𝑠𝑡𝑎𝑏] ≥ P

𝑁0
[ℰ𝑠𝑡𝑎𝑏|ℰ1] · P

𝑁0
[ℰ1] ≥

1

8
·
(︂
1− 1

𝑡𝑠 · 𝑒5

)︂
≥ 1

8
− 1

𝑡𝑠 · 𝑒5
.

We can write:

E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )] = E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ𝑠𝑡𝑎𝑏] · P
𝑁0

[ℰ𝑠𝑡𝑎𝑏]

+ E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ1, ℰ̄𝑠𝑡𝑎𝑏] · P
𝑁0

[ℰ1, ℰ̄𝑠𝑡𝑎𝑏]

+ E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ̄1] · P
𝑁0

[ℰ̄1] (5.37)

Conditioned on ℰ𝑠𝑡𝑎𝑏 (which also requires that ℰ1 occurs), the network converges
within Δ steps and stabilizes for 𝑡𝑠 steps. Thus, we have:

E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ𝑠𝑡𝑎𝑏] ≤ Δ.

248



Conditioned on ℰ1, ℰ̄𝑠𝑡𝑎𝑏 the network converges, but does not stabilize. We can bound

E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ1, ℰ̄𝑠𝑡𝑎𝑏] ≤ (Δ + 𝑡𝑠) + E
𝑁Δ+𝑡𝑠

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )]

≤ Δ+ 𝑡𝑠 + 𝑡𝑚𝑎𝑥(𝛼𝑋).

Finally, conditioned on ℰ̄1, the network does not converge within Δ steps. We have:

E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ̄1] ≤ Δ+ E
𝑁Δ

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )]

≤ Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋).

We can plug these bounds along with the probability bounds of (5.35) and (5.36)
into (5.37) to obtain:

E
𝑁0

[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )] ≤ Δ ·
(︂
1

8
− 1

𝑡𝑠 · 𝑒5

)︂
+ (Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋) + 𝑡𝑠) ·

1

𝑡𝑠 · 𝑒5
+ (Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋)) ·

7

8

≤ Δ+ 𝑡𝑚𝑎𝑥

(︂
7

8
+

1

𝑡𝑠 · 𝑒5

)︂
+

𝑡𝑠
𝑡𝑠 · 𝑒5

≤ Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋) ·
8

9
+

1

𝑒5
.

Since this bound holds for all 𝑁0 we have:

𝑡𝑚𝑎𝑥(𝛼𝑋) ≤ Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋) ·
8

9
+

1

𝑒5

which gives 𝑡𝑚𝑎𝑥(𝛼𝑋) ≤ 9Δ+ 9
𝑒5

≤ 9Δ+ 1. This bound holds for all 𝛼𝑋 and so gives
the lemma, after recalling that Δ = (12 log2 𝑛+ 30) so 9Δ+ 1 ≤ 108(log2 𝑛+ 3).

5.4 WTA Lower Bounds

The simple family of two-inhibitor networks presented in Section 5.3 gives convergence
to a valid WTA output configuration in 𝑂(log 𝑛 · log(1/𝛿)) steps with probability
≥ 1−𝛿, as long as the weight scaling parameter 𝛾 is set large enough. Specifically, by
Theorem 5.3.2, these networks solve WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) with 𝑡𝑐 = 𝑂(log 𝑛 · log(1/𝛿)) and
𝑡𝑠 exponentially large in 𝛾. In this section we ask whether this is optimal, considering
two questions:

1. Are there networks that achieve comparable convergence speed with just a single
auxiliary neuron?

249



2. Are there networks using two auxiliary neurons that converge faster?

We answer these questions for somewhat restricted classes of simple SNNs and
symmetric SNNs, described in Definitions 5.4.1 and 5.4.2 below. These classes of
networks include, in particular, the construction studied in Section 5.3.

We show that a simple SNN with just a single auxiliary neuron cannot solve
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) with 𝑡𝑠 = Ω̃

(︁
𝑡𝑐

log𝑛

)︁
. That is, the network cannot effectively converge

to a valid WTA output state and remain in this state for a significant time compared
to its convergence time. Additionally, we show that no symmetric SNN with two
auxiliary neurons can improve on the convergence time of the two-inhibitor network
𝒯𝑛,𝛾 proven in Theorem 5.3.2 by more than a 𝑂(log log 𝑛) factor.

We define the restricted network classes we consider in our lower bounds below.

Definition 5.4.1 (Simple SNN). A spiking neural network 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a
simple SNN if it contains 𝑛 input neurons labeled 𝑥1, ..., 𝑥𝑛 and 𝑛 output neurons
labels 𝑦1, ...𝑦𝑛 and satisfies:

∙ 𝑤(𝑥𝑖, 𝑦𝑗) = 0 and 𝑤(𝑦𝑖, 𝑦𝑗) = 0 for all 𝑗 ̸= 𝑖. I.e., each input does not connect
to outputs, other than its corresponding output, and outputs do not connect to
each other.

Note that in a simple SNN, auxiliary neurons may connect to each other, may
have incoming edges from the input neurons, and may form unrestricted connections
with the output neurons. In our two-auxiliary neuron lower bound we consider a
further restricted class of networks:

Definition 5.4.2 (Symmetric SNN). A simple SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a symmetric
SNN if it contains 𝑛 input neurons labeled 𝑥1, ..., 𝑥𝑛 and 𝑛 output neurons labels
𝑦1, ...𝑦𝑛 and satisfies:

∙ For all 𝑢, 𝑣 ∈ 𝐴, 𝑤(𝑢, 𝑣) = 𝑤(𝑣, 𝑢) = 0. I.e., there are no connections between
auxiliary neurons.

∙ For all 𝑢 ∈ 𝐴, 𝑤(𝑦𝑖, 𝑢) = 𝑤(𝑦𝑗, 𝑢). I.e., each auxiliary neuron is affected in the
same way by each output.

∙ For all 𝑖, 𝑗, 𝑤(𝑥𝑖, 𝑦𝑖) = 𝑤(𝑥𝑗, 𝑦𝑗), 𝑤(𝑦𝑖, 𝑦𝑖) = 𝑤(𝑦𝑗, 𝑦𝑗), 𝑤(𝑢, 𝑦𝑖) = 𝑤(𝑢, 𝑦𝑗) for all
𝑢 ∈ 𝐴, and 𝑏(𝑦𝑖) = 𝑏(𝑦𝑗). I.e., all outputs have identical incoming connections
from their corresponding inputs, themselves, and the auxiliary neurons, and have
identical biases.

250



5.4.1 Single Auxiliary Neuron Lower Bound

We begin with our lower bound for simple SNNs with just a single auxiliary neuron.

Theorem 5.4.3 (One Neuron Lower Bound). For any 𝑛 ≥ 20, 𝛿 ≤ 1/2, and any
spike probability function 𝑓 : R → [0, 1] (satisfying the restrictions in Section 5.2.1),
there is no simple SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ with just a single auxiliary neuron that solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) with 𝑡𝑠 > 10𝑡𝑐 · ln(2𝑡𝑐)

ln𝑛
.

We note that Theorem 5.4.3 applies to simple SNNs (Definition 5.4.1). However,
we conjecture that the result holds for any SNN, without structural restrictions. We
leave proving a more general bound as an open question, for now.

Proof Outline. We will prove Theorem 5.4.3 assuming that the single auxiliary
neuron is an inhibitor. It will be easy to see that a nearly identical proof goes
through when the auxiliary neuron is excitatory. At a high level, our proof shows
that the convergence and stability inhibitors employed by the two-inhibitor networks
described Section 5.3 are necessary. A single auxiliary neuron is not able to both
drive fast convergence to a valid WTA output configuration and to maintain stability
once the network is in such a state. In more detail, our proof breaks into three steps:

1. We show in Lemma 5.4.4 that the network must be relatively ‘active’ if it solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿). Specifically, if the single inhibitor 𝑎 does not fire, then any
output corresponding to a firing input must fire with probability ≥ 1 − 𝛿1/𝑡𝑐 .
Otherwise, starting from a configuration in which no outputs fire, the network
would take longer than 𝑡𝑐 steps to reach a valid WTA output configuration with
probability 1− 𝛿.

2. Conversely, we show in Lemma 5.4.8 that if the inhibitor 𝑎 does fire, then any
output with a firing input must cease firing at the next time with probability
≥ 1 − 𝑛− 1

10𝑡𝑐 . Otherwise, starting from a configuration in which Ω(𝑛) outputs
fire, with probability ≥ 1/2, the network would take longer than 𝑡𝑐 steps to
converge to a valid WTA output configuration (with a single firing output).

3. We combine these results a network with just one inhibitor cannot maintain
a valid WTA output configuration for 𝑡𝑠 = Ω

(︀
𝑡𝑐 · ln 𝑡𝑐

ln𝑛

)︀
consecutive steps with

probability ≥ 1/2 (i.e., the network cannot achieve sufficient stability).

Consider any time 𝑡 in which 𝒩 is in a valid WTA output configuration. If
𝑎 does not fire at time 𝑡, then by (1), if there are Ω(𝑛) active inputs, at least

251



one output which did not fire at time 𝑡 fires with probability ≥ 1 − 𝛿Ω(𝑛/𝑡𝑐) at
time 𝑡 + 1. If 𝑎 does fire, then by (2) the winning output stops firing at time
𝑡 + 1 with probability ≥ 1 − 𝑛− 1

10𝑡𝑐 . In any case, if 𝛿 ≤ 1/2, with probability
≥ 1− 𝑛− 1

10𝑡𝑐 , the output configuration changes, and stability is broken.

Since this relatively high probability of breaking stability holds at any time in
which 𝒩 is in a valid WTA output configuration, it is enough to show that
stability cannot be maintained with probability ≥ 𝜖 for Ω

(︁
𝑡𝑐 · ln 1/𝜖

ln𝑛

)︁
steps.

By setting 𝜖 = 𝑂(𝑡𝑐) and applying a union bound, we can show that, with
probability ≥ 1/2, in the first 𝑡𝑐 time steps, 𝒩 never reaches a valid WTA
output configuration and remains in this configuration for 𝑡𝑠 consecutive steps.
Thus, 𝒩 does not solve WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝛿 ≤ 1/2.

We start by showing that if the inhibitor 𝑎 does not fire at time 𝑡, then any output
corresponding to a firing input must fire with reasonably high probability at time
𝑡+1. We in fact prove a more general lemma, for networks containing any number of
inhibitors, since this result will be useful in our lower bound for two-inhibitor networks
presented in Section 5.4.2. The proof is not complicated by adding more inhibitors.

Lemma 5.4.4 (Output Firing Probability When No Inhibitors Are Active). Let 𝒩 =

⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any simple SNN which solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) and whose auxiliary
neurons 𝑎1, ..., 𝑎𝑚 are all inhibitory. For any 𝑖, any configuration 𝐶 with 𝐶(𝑥𝑖) = 1

and 𝐶(𝑎𝑗) = 0 for all 𝑗, and any 𝑡,

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 𝛿1/𝑡𝑐 .

Proof. Consider any 𝑖 ∈ {1, ..., 𝑛}. Assume for the sake of contradiction that there is
some configuration 𝐶 with 𝐶(𝑥𝑖) = 1, 𝐶(𝑎𝑗) = 0 for all 𝑗, and

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 𝛿1/𝑡𝑐 .

This assumption additionally implies three claims. First we can see that, since 𝑦𝑖 is
excitatory,

Claim 5.4.5. There exists some configuration 𝐶 with 𝐶(𝑥𝑖) = 1, 𝐶(𝑎𝑗) = 0 for all 𝑗
and 𝐶(𝑦𝑖) = 0 with P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 𝛿1/𝑡𝑐 .

From Claim 5.4.5 we can additionally conclude that, since, by Definition 5.4.1, 𝑦𝑖
can only have connections from itself, 𝑥𝑖, and 𝑎1, ..., 𝑎𝑚:

252



Claim 5.4.6. For any configuration 𝐶 with 𝐶(𝑥𝑖) = 1, 𝐶(𝑎𝑗) = 0 for all 𝑗 and
𝐶(𝑦𝑖) = 0, P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 𝛿1/𝑡𝑐 .

Finally, Claim 5.4.6 implies that, since 𝑎1, ..., 𝑎𝑚 are all inhibitors,

Claim 5.4.7. For any configuration with 𝐶(𝑥𝑖) = 1 and 𝐶(𝑦𝑖) = 0, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 =

𝐶] < 1− 𝛿1/𝑡𝑐 .

Consider input execution 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡 (i.e., 𝑋 𝑡 = 𝑋 𝑡′ for any 𝑡, 𝑡′),
𝑥𝑡𝑖 = 1, and 𝑥𝑡𝑗 = 0 for all 𝑗 ̸= 𝑖. Let 𝑁0 be any initial configuration of 𝒩 consistent
with 𝛼𝑋 (i.e., 𝑁0(𝑋) = 𝑋0) and with 𝑦0𝑖 = 0.

Since 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), an infinite output execution drawn from 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋)

must, with probability ≥ 1− 𝛿, reach a valid WTA output configuration (Definition
5.2.6) for some 𝑡 ≤ 𝑡𝑐. In particular, with probability ≥ 1 − 𝛿, there must be some
𝑡 ≤ 𝑡𝑐 in which 𝑦𝑡𝑖 = 1. So, letting ℰ0(𝑡) be the event that 𝑦𝑡′𝑖 = 0 for all 𝑡′ ≤ 𝑡, we
have P[ℰ0(𝑡𝑐)] ≤ 𝛿.

Additionally, P[ℰ0(0)] = 1 and using Claim 5.4.7 above and inducting on 𝑡, for
any 𝑡 ≥ 1:

P[ℰ0(𝑡)] = P[ℰ0(𝑡)|ℰ0(𝑡− 1)] · P[ℰ0(𝑡− 1)] (Since ℰ0(𝑡) ⊆ ℰ0(𝑡− 1).)

> (1− (1− 𝛿1/𝑡𝑐))𝑡 = 𝛿𝑡/𝑡𝑐 .

We thus have

P[ℰ0(𝑡𝑐)] > 𝛿𝑡𝑐/𝑡𝑐 = 𝛿

which contradicts that fact that P[ℰ0(𝑡𝑐)] ≤ 𝛿, giving the lemma.

We next show that if the inhibitor 𝑎 does fire at time 𝑡, then any output must
cease firing at time 𝑡 + 1 with reasonably large probability. Formally, we show this
statement for roughly half of the 𝑛 outputs. It may be possible that some outputs
fire with large probability at time 𝑡 + 1 whenever their corresponding inputs fire at
time 𝑡. However, for convergence to occur rapidly give an input execution in which
all inputs, this cannot be the case for most outputs.

Again, since it will be useful in the two-inhibitor lower bound proven in Section
5.4.2, we show a more general result which pertains to networks with any number of
auxiliary inhibitors.

253



Lemma 5.4.8 (Output Firing Probability When All Inhibitors Are Active). Let
𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any simple SNN which solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 20 and
𝛿 ≤ 1/2 and whose auxiliary neurons 𝑎1, ..., 𝑎𝑚 are all inhibitory. There is some set
𝒮 ⊆ {1, ..., 𝑛} with |𝒮| ≥ ⌈𝑛/2⌉ such that, for any 𝑖 ∈ 𝒮, any configuration 𝐶 with
𝐶(𝑥𝑖) = 1 and 𝐶(𝑎𝑗) = 1 for all 𝑗, and any 𝑡,

P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛− 1

10𝑡𝑐 .

Proof. Assume for the sake of contradiction that there is some set ℛ ⊆ {1, ..., 𝑛} with
|ℛ| = ⌊𝑛/2⌋ + 1 such that, for each 𝑖 ∈ ℛ, there exists some configuration 𝐶 with
𝐶(𝑥𝑖) = 1, 𝐶(𝑎𝑗) = 1 for all 𝑗 and

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] > 𝑛− 1

10𝑡𝑐 .

From this assumption we can deduce three claims. First, since each 𝑦𝑖 is excitatory,

Claim 5.4.9. For each 𝑖 ∈ ℛ there exists some configuration 𝐶 with 𝐶(𝑥𝑖) = 1,
𝐶(𝑎𝑗) = 1 for all 𝑗 and 𝐶(𝑦𝑖) = 1 with P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶] > 𝑛− 1
10𝑡𝑐 .

Claim 5.4.9 further implies, since 𝑦𝑖 can only have connections from itself, 𝑥𝑖, and
𝑎1, ..., 𝑎𝑚 (see Definition 5.4.1):

Claim 5.4.10. For any configuration 𝐶 with 𝐶(𝑥𝑖) = 1, 𝐶(𝑎𝑗) = 1 for all 𝑗 and
𝐶(𝑦𝑖) = 1, P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶] > 𝑛− 1
10𝑡𝑐 .

Finally, from Claim 5.4.10 and the fact that 𝑎1, ..., 𝑎𝑚 are all inhibitors we can
conclude:

Claim 5.4.11. For any configuration with 𝐶(𝑥𝑖) = 1 and 𝐶(𝑦𝑖) = 1, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 =

𝐶] > 𝑛− 1
10𝑡𝑐 .

Let 𝛼𝑋 be any infinite input execution with 𝑋 𝑡 fixed for all 𝑡 and 𝑋 𝑡(𝑥𝑖) = 1 for
all 𝑖. Let 𝑁0 be any initial configuration of 𝒩 consistent with 𝛼𝑋 (i.e., 𝑁0(𝑋) = 𝑋0)
and with 𝑌 0(𝑦𝑖) = 1 for all 𝑖.

Since 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), an infinite output execution drawn from 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋)

must, with probability ≥ 1− 𝛿, reach a valid WTA output configuration (Definition
5.2.6) for some 𝑡 ≤ 𝑡𝑐. In particular, with probability ≥ 1 − 𝛿, there must be some
𝑡 ≤ 𝑡𝑐 in which 𝑦𝑡𝑖 = 0 for at most one 𝑖 ∈ ℛ.

Let ℐ𝑎𝑐𝑡(𝑡, 𝑖) ∈ {0, 1} be an indicator of the event that 𝑦𝑡′𝑖 = 1 for all 𝑡′ ≤ 𝑡. If
ℐ𝑎𝑐𝑡(𝑡𝑐, 𝑖) = 1 for more than one 𝑖 ∈ ℛ, then the network has not reached a valid

254



WTA output state within time 𝑡𝑐. Thus, since 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) we have:

P

[︃∑︁
𝑖∈ℛ

ℐ𝑎𝑐𝑡(𝑡𝑐, 𝑖) ≥ 2

]︃
≤ 𝛿. (5.38)

We can bound P
[︀∑︀

𝑖∈ℛ ℐ𝑎𝑐𝑡(𝑡𝑐, 𝑖) ≥ 2
]︀

from below using Claim 5.4.11 above and
Lemma 5.2.4. Define for all 𝑖 and 𝑡 a random variable 𝑍𝑖,𝑡 ∈ {0, 1} which is set to 1

independently with probability 𝑛− 1
10𝑡𝑐 . Let ℐ̄(𝑡𝑐, 𝑖) be an indicator of the event that

𝑍𝑖,1 = ... = 𝑍𝑖,𝑡𝑐 = 1. Clearly the ℐ̄(𝑡𝑐, 𝑖) variables are independent and P[ℐ̄(𝑡𝑐, 𝑖) =
1] =

(︁
𝑛− 1

10𝑡𝑐

)︁𝑡𝑐
= 𝑛− 1

10 .

By (5.38) and Lemma 5.2.4 we thus have:

𝛿 ≥ P

[︃∑︁
𝑖∈ℛ

ℐ𝑎𝑐𝑡(𝑡𝑐, 𝑖) ≥ 2

]︃
≥ P

[︃∑︁
𝑖∈ℛ

ℐ̄(𝑡𝑐, 𝑖) ≥ 2

]︃

= 1−
(︁
1− 𝑛− 1

10

)︁|ℛ|
− |ℛ|

(︁
1− 𝑛− 1

10

)︁|ℛ|−1

≥ 1− 𝑛
(︁
1− 𝑛− 1

10

)︁𝑛/4
where in the last step we bound |ℛ| − 1 ≥ ⌊𝑛/2⌋ ≥ 𝑛/4. Rearranging:

1− 𝛿

𝑛
≤
(︁
1− 𝑛− 1

10

)︁𝑛/4
≤ 𝑒−

𝑛9/10

4 . (5.39)

We can check that whenever 𝑛 ≥ 20, 𝑒−
𝑛9/10

4 < 1
2𝑛

< 1−𝛿
𝑛

, by our assumption that
𝛿 ≤ 1/2. This contradicts (5.39), thus giving the lemma.

We conclude by combining Lemmas 5.4.4 and 5.4.8 to prove Theorem 5.4.3. We
first show a simple auxiliary lemma which lower bounds the probability that a valid
WTA output configuration at time 𝑡 remains fixed at time 𝑡+1 in terms of the network
convergence time 𝑡𝑐 and stability time 𝑡𝑠. The smaller 𝑡𝑐 and the larger 𝑡𝑠, the larger
the lower bound on this probability is.

Note that the theorem only lower bounds the probability that the output 𝑌 𝑡 stays
fixed for some configuration 𝐶 where 𝐶(𝑌 ) is a valid WTA output. It does not bound
this probability for all such configurations, and in fact such a bound cannot be shown
for all such configurations. Recall, for example, that for our two-inhibitor networks in
Section 5.3, both near-valid WTA configurations (Definition 5.3.15) and valid WTA
configurations (Definition 5.3.11) have valid WTA output configurations. However,

255



the output of a near-valid configuration only remains fixed with constant probability
(Lemma 5.3.21).

Lemma 5.4.12 (Single Step Stability Probability). If 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a simple
SNN which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝛿 ≤ 1/2, then there must exist some configu-
ration 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration such that:

P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≥ 1

(2𝑡𝑐)1/𝑡𝑠
≥ 1− ln 2𝑡𝑐

𝑡𝑠
. (5.40)

Proof. The second inequality simply follows since 𝑒−𝑥 ≥ 1− 𝑥 for all 𝑥. So we focus
on proving the first inequality. Assume for the sake of contradiction that for every
configuration 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] <
1

(2𝑡𝑐)1/𝑡𝑠
.

For any 𝑡, 𝑖, let ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖) be the event that 𝑌 𝑡 = 𝑌 𝑡+1 = ... = 𝑌 𝑡+𝑖. Trivially
P[ℰ𝑠𝑡𝑎𝑏(𝑡, 0)] = 1 for all 𝑡. Using the assumption of (5.40) and induction we can
bound for any 𝑖 ≥ 1:

P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖)|𝑁 𝑡 = 𝐶] = P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖)|ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 1), 𝑁 𝑡 = 𝐶] · P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 1)|𝑁 𝑡 = 𝐶]

(Since ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 1) ⊆ ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖).)

<
1

(2𝑡𝑐)1/𝑡𝑠
· P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 1)|𝑁 𝑡 = 𝐶]

≤
(︂

1

(2𝑡𝑐)1/𝑡𝑠

)︂𝑖
.

Thus, for any 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑡𝑠)|𝑁 𝑡 = 𝐶] <

(︂
1

(2𝑡𝑐)1/𝑡𝑠

)︂𝑡𝑠
<

1

2𝑡𝑐
. (5.41)

Let ℰ be the event that 𝒩 reaches a valid WTA output configuration within 𝑡 ≤ 𝑡𝑐

steps and remains in this output configuration for 𝑡𝑠 consecutive steps. Let 𝑍1, ..., 𝑍𝑡𝑐

be i.i.d. random variables with 𝑍𝑡 = 1 with probability 1
2𝑡𝑐

and 𝑍𝑡 = 0 otherwise.

256



Invoking (5.41) and Lemma 5.2.3,

P[ℰ ] < P

[︃
𝑡𝑐∑︁
𝑡=1

𝑍𝑡 ≥ 1

]︃
= 1−

(︂
1− 1

2𝑡𝑐

)︂𝑡𝑐
< 1/2

< 1− 𝛿 (5.42)

for 𝛿 ≤ 1/2. This contradicts the fact that 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), giving the
lemma.

We can now combine Lemmas 5.4.4 and 5.4.8 to show that in a single-inhibitor
network, for any configuration 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration
P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] cannot be too large. This contradicts Lemma 5.4.12, giv-
ing our lower bound.

Proof of Theorem 5.4.3.

Consider any simple SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ with just a single auxiliary neuron 𝑎,
which solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 20, 𝛿 ≤ 1/2, 𝑡𝑠 > 10𝑡𝑐 · ln(2𝑡𝑐)

ln𝑛
. Let 𝒮 be the set

of indices shown to exist in Lemma 5.4.8, which do not fire with too high probability
when all inhibitors in the network fire.

Let 𝛼𝑋 be the infinite input execution with 𝑋 𝑡 fixed for all 𝑡, 𝑋 𝑡(𝑥𝑖) = 1 for all
𝑖 ∈ 𝒮 and 𝑋 𝑡(𝑥𝑖) = 0 for all 𝑖 /∈ 𝒮. Let 𝑁0 be any initial configuration of 𝒩 consistent
with 𝛼𝑋 .

Since 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), an infinite output execution drawn from 𝒟𝑌 (𝒩 , 𝑁0, 𝛼𝑋)

must, with probability ≥ 1− 𝛿, reach a valid WTA output state (Definition 5.2.6) for
some 𝑡 ≤ 𝑡𝑐 and remain in this state for 𝑡𝑠 consecutive steps. Let 𝐶 be any configu-
ration where 𝐶(𝑌 ) is a valid WTA output configuration for 𝛼𝑋 . We must have for
exactly one 𝑖 ∈ 𝒮, 𝐶(𝑦𝑖) = 1. Let ℰ𝑓𝑎𝑖𝑙(𝑡) be the event that 𝑌 𝑡+1 ̸= 𝑌 𝑡. We consider
two cases:

Case 1: 𝐶(𝑎) = 0.

In this case, by Lemma 5.4.4, for all 𝑗 ∈ 𝒮, 𝑦𝑗 fires with probability ≥ 1 − 𝛿1/𝑡𝑐

at time 𝑡 + 1. So, with probability ≥ 1− 𝛿
|𝒮|−1

𝑡𝑐 ≥ 1− 𝛿
𝑛
4𝑡𝑐 as least one output other

than the winner fires at time 𝑡+ 1. This gives:

P[ℰ𝑓𝑎𝑖𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1− 𝛿
𝑛
4𝑡𝑐 ≥ 1− 𝑛− 1

4𝑡𝑐 , (5.43)

257



where the second inequality follows from the assumption that 𝑛 ≥ 20 and 𝛿 ≤ 1/2.

Case 2: 𝐶(𝑎) = 1.

In this case, Lemma 5.4.8 gives that, conditioned on 𝑁 𝑡 = 𝐶, 𝑦𝑖 does not fire at
time 𝑡+ 1 with probability ≥ 1− 𝑛− 1

10𝑡𝑐 . This gives:

P[ℰ𝑓𝑎𝑖𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛− 1
10𝑡𝑐 . (5.44)

So overall, combining (5.43) and (5.44) we have for 𝐶 with 𝐶(𝑌 ) a valid WTA output
configuration,

P[ℰ𝑓𝑎𝑖𝑙(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛− 1
10𝑡𝑐

and so

P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≤ 𝑛− 1
10𝑡𝑐 .

For 𝑡𝑠 > 10𝑡𝑐 · ln(2𝑡𝑐)
ln𝑛

this gives

P[𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] < 𝑛− ln 2𝑡𝑐
𝑡𝑠·ln𝑛 <

1

(2𝑡𝑐)1/𝑡𝑠
. (5.45)

This contradicts Lemma 5.4.12, giving the theorem.

Remark on the Tightness of Theorem 5.4.3. We note that our proof of Theorem
5.4.3 is loose. In bounding P[ℰ ] in (5.42), we do not consider the time required to
converge to a valid WTA output state, or the time spent in this converged state before
convergence is broken. We conjecture that if this time were taken into account, it
would be possible improve the ln(2𝑡𝑐) term, as well as add a dependence on the failure
probability 𝛿, giving a lower bound of 𝑡𝑠 = 𝑂

(︁
𝑡𝑐

log𝑛·log(1/𝛿)

)︁
.

We note that by simply removing the stability inhibitor from our two-inhibitor
network family presented in Section 5.3, we obtain a family of single inhibitor WTA
networks with 𝑡𝑠 = 1 and 𝑡𝑐 = 𝑂 (log 𝑛 · log(1/𝛿)). This matches the conjectured
stronger lower bound above up to a constant factor since for 𝑡𝑐 = 𝑂 (log 𝑛 · log(1/𝛿))
we have 𝑂

(︁
𝑡𝑐

log𝑛·log(1/𝛿)

)︁
= 𝑂(1).

Theorem 5.4.13 (Single-Inhibitor WTA Network). There exists a simple SNN with
a single inhibitory auxiliary neuron which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑡𝑠 = 1 and
𝑡𝑐 = 𝑂(log 𝑛 · log(1/𝛿)).

258



Proof Sketch. Let 𝒯 ′
𝑛,𝛾 be identical to 𝒯𝑛,𝛾 as described in Section 5.3.1, but with 𝑎𝑠

removed from the network and with 𝑤(𝑎𝑐, 𝑦𝑖) = −2𝛾 for all 𝑖. In 𝒯𝑛,𝛾, 𝑤(𝑎𝑐, 𝑦𝑖) =

𝑤(𝑎𝑠, 𝑦𝑖) = −𝛾 so 𝑤(𝑎𝑐, 𝑦𝑖) + 𝑤(𝑎𝑠, 𝑦𝑖) = −2𝛾. Thus, in 𝒯 ′
𝑛,𝛾, when 𝑎𝑡𝑐 = 1, the firing

probabilities of all neurons at time 𝑡 + 1 are identical to what they would be in 𝒯𝑛,𝛾
assuming the same configuration at time 𝑡 but with 𝑎𝑡𝑐 = 𝑎𝑡𝑠 = 1.

Using this equivalence, it is tedious but easy to check that an analogous result
to Theorem 5.3.32 holds, where a valid WTA configuration is redefined to be any
configuration 𝐶 where 𝐶(𝑌 ) is a valid WTA output configuration and 𝐶(𝑎𝑐) = 1.
By a similar to result to Lemma 5.3.21, with probability 1/2 − 𝑛𝑒−𝛾/2, if 𝒯 ′

𝑛,𝛾 is in
such a configuration at time 𝑡, it is also in a valid WTA output configuration at time
𝑡+1. Thus, with Θ(1) probability, a valid WTA output configuration is reached and
maintained for 𝑡𝑠 = 1 steps within 𝑂(log 𝑛) steps. We can then use an argument
similar to that of Theorem 5.3.2 to argue that in 𝑂(log 𝑛 · log(1/𝛿)) steps a valid
WTA output configuration is reached and maintained for 1 step with probability
≥ 1− 𝛿.

5.4.2 Two Auxiliary Neuron Lower Bound

We next give a convergence time lower bound for SNNs with two auxiliary neurons,
showing that the rate given by the family of two-inhibitor networks 𝒯𝑛,𝛾 presented in
Section 5.3 is optimal up to a 𝑂(log log 𝑛) factor. To simplify our argument, we focus
the further restricted class of symmetric SNNs described in Definition 5.4.2, proving:

Theorem 5.4.14 (Two Neuron Lower Bound). For any 𝑛 ≥ 341, 𝛿 ≤ 1/2, and any
spike probability function 𝑓 : R → [0, 1] (satisfying the restrictions in Section 5.2.1),
there is no symmetric SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ using two auxiliary neurons that solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) with 𝑡𝑐 ≤ ln𝑛

30 ln ln𝑛
and 𝑡𝑠 ≥ 32 ln𝑛 · ln 2𝑡𝑐.

As with Theorem 5.4.3, we conjecture that this result holds more generally, for any
SNN with two auxiliary neurons (i.e., without making the assumptions of Definition
5.4.2). In the theorem we require 𝑡𝑠 ≥ 32 ln𝑛 · ln 2𝑡𝑐. However, we conjecture that
the result holds even for 𝑡𝑠 = 𝑂(1).

Proof Outline. Our proof of Theorem 5.4.14 is similar in spirit to that of Theorem
5.4.3. We consider the case when both auxiliary neurons are inhibitors and note that
a similar proof applies when one or both of the neurons are excitatory.

With two inhibitors we have to not only consider the cases when neither inhibitor
fires (analyzed in Lemma 5.4.4) and when both inhibitors fire (analyzed in Lemma

259



5.4.8), but also the cases in which one of the inhibitors fires. Our analysis breaks
down as follows:

1. By Lemma 5.4.4, if neither inhibitor fires at time 𝑡, then at time 𝑡+1 any output
corresponding to a firing input must fire with probability ≥ 1− 𝛿1/𝑡𝑐 = Ω( 1

ln𝑛
)

when 𝛿 ≤ 1/2 and 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

. By Lemma 5.4.8, if both inhibitors fire at time
𝑡, then at time 𝑡+ 1, any output with a firing input must not fire at time 𝑡+ 1

with probability ≥ 1 − 𝑛
1

10𝑡𝑐 ≥ 1 − 1
ln3 𝑛

when 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

and 𝑛 is sufficiently
large.

2. In Lemma 5.4.16 we show that, by the above bounds, if we consider an input
with Θ(ln2 𝑛) firing inputs, then if either both inhibitors fire or neither inhibitor
fires at time 𝑡, except with probability ≤ 1

ln𝑛
, at time 𝑡 + 1, either 0 or ≥ 2

outputs will fire, and so 𝒩 will not be in a valid WTA output configuration.

3. In Lemma 5.4.18 we show that, in order for 𝒩 to stabilize to a valid WTA output
configuration for 𝑡𝑠 steps, if 𝑌 𝑡 is a valid WTA output configuration, then exactly
one inhibitor must fire with good probability at time 𝑡+1. Otherwise, if neither
or both inhibitors fire at time 𝑡 + 1, by Lemma 5.4.16, 𝑌 𝑡+2 is unlikely to be
a valid WTA output configuration. So if 𝑡𝑠 is large, over 𝑡𝑠 steps, stability is
likely to be broken at some point.

4. In Lemma 5.4.20 we prove that, since the inhibitors fire independently at time 𝑡+
1 conditioned on𝑁 𝑡, Lemma 5.4.18 in fact requires that one of the inhibitors fires
with high probability at time 𝑡+1 when 𝑌 𝑡 is a valid WTA output configuration
and that the other inhibitor is silent with high probability.

By our symmetry assumption (Definition 5.4.2), given a fixed input firing pat-
tern, the probability that an inhibitor fires at time 𝑡 + 1 depends only on the
number of outputs that fire at time 𝑡. So we can in fact show a stronger result:
one inhibitor (assume without loss of generality 𝑎1) fires with high probability
at time 𝑡+1 when ‖𝑌 𝑡‖1 = 1 while the other (assume without loss of generality
𝑎2) remains silent with high probability at time 𝑡+1 when ‖𝑌 𝑡‖1 = 1. Since all
outputs are excitatory, this implies that 𝑎1 fires with high probability whenever
‖𝑌 𝑡‖1 ≥ 1, while 𝑎2 does not fire with high probability whenever ‖𝑌 𝑡‖1 ≤ 1.

This result shows that, in any two-inhibitor network with fast convergence and
a reasonably long stability period 𝑡𝑠, the inhibitors must exhibit separate be-
haviors. Neuron 𝑎1 fires with high probability at time 𝑡+1 whenever one output
fires at time 𝑡, maintaining stability of valid WTA configurations. Neuron 𝑎2 is

260



silent with high probability at time 𝑡+ 1, except possibly when ‖𝑌 𝑡‖1 ≥ 2. We
can see this separation, for example, in the behavior of 𝑎𝑠 and 𝑎𝑐 in the two-
inhibitor 𝒯𝑛,𝛾 networks analyzed in Section 5.3 (see Lemma 5.3.7). The stability
inhibitor, 𝑎𝑠, fires with high probability at time 𝑡+ 1 when at least one output
fires at time 𝑡 (e.g., when the network is in a valid WTA configuration). The
convergence inhibitor, 𝑎𝑐, only fires with high probability at time 𝑡+1 when at
least two outputs fire at time 𝑡.

5. In Corollary 5.4.25 we use Lemma 5.4.18 to show that it is unlikely that 𝑎2 ever
fires at a time in which 𝑎1 does not, which will be useful in our eventual case
analysis (see Step 7).

6. In Lemma 5.4.26 we show that, since when 𝑎1 fires alone it must maintain
stability of a valid WTA output configuration, when 𝑎1 fires at time 𝑡, any
output with an active input which fired at time 𝑡 is likely to continue firing at
time 𝑡 + 1. Any output that did not fire at time 𝑡 is unlikely to fire at time
𝑡 + 1. This result shows that 𝑎1 must act as a stability inhibitor, reflecting the
role of 𝑎𝑠 in the two-inhibitor network family presented in Section 5.3.

In Corollary 5.4.27 we show that Lemma 5.4.26 implies that, if 𝑌 𝑡 is not a valid
WTA output configuration and just 𝑎1 fires at time 𝑡, since the output firing
states are maintained with high probability at time 𝑡+1, 𝑌 𝑡+1 is unlikely to be
a valid WTA output configuration.

7. We finally prove Theorem 5.4.14 via a case analysis. By Lemma 5.4.16, if
0 or 2 inhibitors fire at time 𝑡, 𝑌 𝑡+1 is unlikely to be a valid WTA output
configuration (see Step 2 above). By Corollary 5.4.27, if 𝑎𝑡1 = 1, 𝑎𝑡2 = 0, and
𝑌 𝑡 is not a valid WTA output configuration, then 𝑌 𝑡+1 is unlikely to be a valid
WTA output configuration (see Step 6 above). Finally, it is unlikely that we
ever have 𝑎𝑡1 = 0, 𝑎𝑡2 = 1 (see Step 5 above). Thus, convergence to a valid WTA
output configuration is relatively unlikely at all times, letting us prove a lower
bound on convergence time.

We first define a hard input execution, based on Lemma 5.4.8, which shows that
at least half of the output neurons must not fire with too high probability when all
inhibitors in the network fire. Specifically, Lemma 5.4.8 guarantees the existence of
some set 𝒮 with |𝒮| ≥ ⌈𝑛/2⌉ such that for any 𝑖 ∈ 𝒮, any configuration 𝐶 of 𝒩 with

261



𝐶(𝑥𝑖) = 1 and 𝐶(𝑎1) = 𝐶(𝑎2) = 1, and any time 𝑡,

P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛− 1

10𝑡𝑐 .

Since in Theorem 5.4.14 we require 𝑛 ≥ 341 we easily have ⌈𝑛/2⌉ ≥ ⌈ln2 𝑛⌉ and so
can construct a hard input execution as follows:

Definition 5.4.15 (Hard Input Execution). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any simple SNN
with two auxiliary inhibitory neurons 𝑎1, 𝑎2 which solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341

and 𝛿 ≤ 1/2. Fix any set ℛ ⊆ {1, ..., 𝑛} with |ℛ| = ⌊ln2 𝑛⌋ such that for any 𝑖 ∈ ℛ,
any 𝐶 with 𝐶(𝑥𝑖) = 1 and 𝐶(𝑎1) = 𝐶(𝑎2) = 1, and any time 𝑡,

P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛− 1

10𝑡𝑐 .

Let 𝑋ℎ𝑎𝑟𝑑,𝒩 be the input configuration with 𝑋ℎ𝑎𝑟𝑑,𝒩 (𝑥𝑖) = 1 for all 𝑖 ∈ ℛ, and
𝑋ℎ𝑎𝑟𝑑,𝒩 (𝑥𝑖) = 0 for all 𝑖 /∈ ℛ. Let 𝛼ℎ𝑎𝑟𝑑,𝒩 be the infinite input execution with
𝑋 𝑡 = 𝑋ℎ𝑎𝑟𝑑,𝒩 for all 𝑡.

Lemma 5.4.16 (Valid WTA is Unlikely After Both or Neither Inhibitors Fire). Let
𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any simple SNN with two auxiliary inhibitory neurons 𝑎1, 𝑎2

which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341, 𝛿 ≤ 1/2, and 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

. For any
configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition 5.4.15) and with 𝐶(𝑎1) = 𝐶(𝑎2) = 1

or 𝐶(𝑎1) = 𝐶(𝑎2) = 0,

P[‖𝑌 𝑡+1‖ = 1|𝑁 𝑡 = 𝐶] ≤ 1

ln𝑛
.

Proof. We prove the lemma in two cases depending on the inhibitor behavior.

Case 1: 𝐶(𝑎1) = 𝐶(𝑎2) = 0.

In this case, by Lemma 5.4.4, since 𝑋 𝑡(𝑥𝑖) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (𝑥𝑖) = 1 for any 𝑖 ∈ ℛ by
Definition 5.4.15,

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 𝛿1/𝑡𝑐 ≥ 1− 1

2
ln ln𝑛
ln𝑛

where the second inequality follows from our assumption that 𝛿 ≤ 1/2 and 𝑡𝑐 ≤
ln𝑛

30 ln ln𝑛
≤ ln𝑛

ln ln𝑛
. For any 𝑥 ∈ [1, 2], (1− 1/𝑥) ≥ log2 𝑥

2
. Since 2

ln ln𝑛
ln𝑛 ∈ [1, 2] this gives:

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ ln ln𝑛

2 ln𝑛
. (5.46)

262



Using (5.46) we can bound the probability that ‖𝑌 𝑡+1‖1 ̸= 1 by:

P[‖𝑌 𝑡+1‖1 ̸= 1|𝑁 𝑡 = 𝐶] ≥ 1− |ℛ|
(︂
1− ln ln𝑛

2 ln𝑛

)︂|ℛ|−1

.

We can check numerically that since |ℛ| = ⌊ln2 𝑛⌋ and by assumption 𝑛 ≥ 341, the
above can be lower bounded to give:

P[‖𝑌 𝑡+1‖1 ̸= 1|𝑁 𝑡 = 𝐶] ≥ 1− 1

ln𝑛
.

This gives P[‖𝑌 𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] ≤ 1
ln𝑛

and thus the lemma in this case.

Case 2: 𝐶(𝑎1) = 𝐶(𝑎2) = 1.

In this case, by Lemma 5.4.8 and the assumption that 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

, for any 𝑖 ∈ ℛ:

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≤ 𝑛− 1

10𝑡𝑐 ≤ 𝑒−
30 ln ln𝑛

10 ≤ 1

ln3 𝑛
. (5.47)

Using (5.47) we can bound:

P[‖𝑌 𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] ≤ |ℛ|
ln3 𝑛

=
⌊ln2 𝑛⌋
ln3 𝑛

≤ 1

ln𝑛
,

which gives the lemma in this case.

By Lemma 5.4.16, if 𝑎𝑡1 = 𝑎𝑡2 = 0 or 𝑎𝑡1 = 𝑎𝑡2 = 1, then 𝑌 𝑡+1 is unlikely to have
‖𝑌 𝑡+1‖1 = 1 and thus is unlikely to be a valid WTA output configuration. Thus, to
stabilize to any valid WTA output configuration 𝐶, if 𝑁 𝑡 = 𝐶 exactly one of 𝑎1 or
𝑎2 must fire at time 𝑡+ 1. Otherwise convergence will likely be broken at time 𝑡+ 2.
To prove this, we first show an auxiliary lemma, very similar to Lemma 5.4.12, which
bounds the probability of maintaining stability over two time steps in terms of the
convergence and stability times 𝑡𝑐 and 𝑡𝑠.

Lemma 5.4.17 (Lower Bound on the Two-Step Stability Probability). If 𝒩 =

⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a simple SNN which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝛿 ≤ 1/2, then there

263



exists some configuration 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration such that:

P[𝑌 𝑡+2 = 𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≥ 1− 4 ln 2𝑡𝑐
𝑡𝑠

. (5.48)

Proof. Our proof mirrors that of Lemma 5.4.12. Assume for the sake of contradiction
that for any 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[𝑌 𝑡+2 = 𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] < 1− 4 ln 2𝑡𝑐
𝑡𝑠

.

For any 𝑡, 𝑖, let ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖) be the event that 𝑌 𝑡 = 𝑌 𝑡+1 = ... = 𝑌 𝑡+𝑖. Trivially,
P[ℰ𝑠𝑡𝑎𝑏(𝑡, 0)] = 1 for all 𝑡. Using the assumption if (5.48) and induction we can bound
for any 𝑖 ≥ 2:

P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖)|𝑁 𝑡 = 𝐶] = P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖)|ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑡− 2), 𝑁 𝑡 = 𝐶] · P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 2)|𝑁 𝑡 = 𝐶]

(Since ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 2) ⊆ ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖).)

<

(︂
1− 4 ln 2𝑡𝑐

𝑡𝑠

)︂
· P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑖− 2)|𝑁 𝑡 = 𝐶]

≤
(︂
1− 4 ln 2𝑡𝑐

𝑡𝑠

)︂⌊𝑖/2⌋

.

Thus, for any 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[ℰ𝑠𝑡𝑎𝑏(𝑡, 𝑡𝑠)|𝑁 𝑡 = 𝐶] <

(︂
1− 4 · ln 2𝑡𝑐

𝑡𝑠

)︂⌊𝑡𝑠/2⌋

<

(︂
1− 4 · ln 2𝑡𝑐

𝑡𝑠

)︂𝑡𝑠/4
<

1

2𝑡𝑐
. (5.49)

Let ℰ be the event that 𝒩 reaches a valid WTA output configuration within 𝑡 ≤ 𝑡𝑐

steps and remains in this output configuration for 𝑡𝑠 consecutive steps. Let 𝑍1, ..., 𝑍𝑡𝑐

be i.i.d. random variables with 𝑍𝑡 = 1 with probability 1
2𝑡𝑐

and 𝑍𝑡 = 0 otherwise.

264



Invoking (5.49) and Lemma 5.2.3,

P[ℰ ] < P

[︃
𝑡𝑐∑︁
𝑡=1

𝑍𝑡 ≥ 1

]︃
= 1−

(︂
1− 1

2𝑡𝑐

)︂𝑡𝑐
< 1/2

< 1− 𝛿 (5.50)

for 𝛿 ≤ 1/2. This contradicts the fact that 𝒩 solves WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿), giving the
lemma.

We can now use Lemmas 5.4.16 and 5.4.17 to show that, for 𝒩 to stabilize to a
valid WTA output configuration for 𝑡𝑠 steps with good probability, if 𝑌 𝑡 is a valid
WTA output configuration, then, with high probability, exactly one inhibitor must
fire at time 𝑡+ 1.

Lemma 5.4.18 (A Single Inhibitor is Likely to Fire After a Valid WTA Configura-
tion). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any simple SNN with two auxiliary inhibitory neurons
𝐴 = {𝑎1, 𝑎2} which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341, 𝛿 ≤ 1/2, and 𝑡𝑐 ≤ ln𝑛

30 ln ln𝑛
.

For any configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition 5.4.15) and with 𝐶(𝑌 ) a
valid WTA output configuration,

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 8 · ln 2𝑡𝑐
𝑡𝑠

.

Proof. Assume for the sake of contradiction that there exists 𝐶 with 𝐶(𝑌 ) a valid
WTA output configuration and

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] < 1− 8 · ln 2𝑡𝑐
𝑡𝑠

.

From this assumption, since in a symmetric SNN (Definition 5.4.2), 𝑤(𝑦𝑖, 𝑢) = 𝑤(𝑦𝑗, 𝑢)

for all 𝑖, 𝑗 and 𝑢 ∈ 𝐴, and since each auxiliary neuron may only have connections
from the inputs and outputs (not to the other auxiliary neurons), we can deduce the
stronger claim:

Claim 5.4.19. For every 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] < 1− 8 · ln 2𝑡𝑐
𝑡𝑠

.

Using Claim 5.4.19 we can bound the probability that 𝒩 remains in a valid WTA
output configuration at time 𝑡+2 if it is in a valid configuration at time 𝑡. Specifically,

265



for any 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration:

P[𝑌 𝑡+2 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] = P[𝑌 𝑡+2 = 𝑌 𝑡|‖𝐴𝑡+1‖1 = 1, 𝑁 𝑡 = 𝐶] · P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶]

+ P[𝑌 𝑡+2 = 𝑌 𝑡|‖𝐴𝑡+1‖1 ̸= 1, 𝑁 𝑡 = 𝐶] · P[‖𝐴𝑡+1‖1 ̸= 1|𝑁 𝑡 = 𝐶]

<

(︂
1− 8 · ln 2𝑡𝑐

𝑡𝑠

)︂
+

(︂
8 · ln 2𝑡𝑐

𝑡𝑠

)︂
· P[𝑌 𝑡+2 = 𝑌 𝑡|‖𝐴𝑡+1‖1 ̸= 1, 𝑁 𝑡 = 𝐶].

(5.51)

Since 𝐶(𝑌 ) is a valid WTA output configuration, having 𝑌 𝑡+2 = 𝑌 𝑡 requires that
‖𝑌 𝑡+2‖1 = 1. Thus by Lemma 5.4.16 we can bound:

P[𝑌 𝑡+2 = 𝑌 𝑡|‖𝐴𝑡+1‖1 ̸= 1, 𝑁 𝑡 = 𝐶] ≤ 1

ln𝑛
.

Plugging back into (5.51), for any 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration:

P[𝑌 𝑡+2 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] <

(︂
1− 8 · ln 2𝑡𝑐

𝑡𝑠

)︂
+

(︂
8 · ln 2𝑡𝑐

𝑡𝑠

)︂
·
(︂

1

ln𝑛

)︂
< 1− 4 · ln 2𝑡𝑐

𝑡𝑠
(5.52)

where the last inequality holds easily since we require 𝑛 ≥ 341 and so ln𝑛 ≥ 2. Using
(5.52) we can bound:

P[𝑌 𝑡+2 = 𝑌 𝑡+1 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] ≤ P[𝑌 𝑡+2 = 𝑌 𝑡|𝑁 𝑡 = 𝐶] < 1− 4 · ln 2𝑡𝑐
𝑡𝑠

.

This contradicts Lemma 5.4.17, giving the lemma.

Since at time 𝑡 + 1, conditioned on the configuration at time 𝑡, 𝑎1 and 𝑎2 fire
independently, we can in fact strengthen Lemma 5.4.18 to show that one of 𝑎1, 𝑎2
fires with high probability at time 𝑡+ 1 when ‖𝑌 𝑡‖1 ≥ 1 and that the other remains
silent with high probability when ‖𝑌 𝑡‖1 ≤ 1.

Lemma 5.4.20 (Separation of Inhibitor Behaviors). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any
symmetric SNN with two auxiliary inhibitory neurons 𝐴 = {𝑎1, 𝑎2} which solves
𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341, 𝛿 ≤ 1/2, 𝑡𝑐 ≤ ln𝑛

30 ln ln𝑛
, and 8 ln 2𝑡𝑐

𝑡𝑠
≤ 1

4
. There exists

some 𝑖 ∈ {1, 2} such that, for any configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition
5.4.15),

266



1. If ‖𝐶(𝑌 )‖1 ≥ 1, then

P[𝑎𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 8 · ln 2𝑡𝑐

𝑡𝑠
.

2. If ‖𝐶(𝑌 )‖1 ≤ 1, then for 𝑗 ̸= 𝑖,

P[𝑎𝑡+1
𝑗 = 1|𝑁 𝑡 = 𝐶] ≤ 12 · ln 2𝑡𝑐

𝑡𝑠
.

We can assume without loss of generality that 𝑖 = 1.

Proof. We prove the two conclusions in sequence. We first show that there exists some
𝑖 such that conclusion (1) holds. Fixing 𝑖, we then show that for 𝑗 ̸= 𝑖, conclusion
(2) holds.

Conclusion 1:

Assume for the sake of contradiction that for both 𝑖 ∈ {1, 2} there exists some
configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 , with ‖𝐶(𝑌 )‖1 ≥ 1, and with

P[𝑎𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 8 · ln 2𝑡𝑐

𝑡𝑠
.

From this assumption we can deduce two claims. First, since all 𝑦𝑖 are excitatory:

Claim 5.4.21. For both 𝑖 ∈ {1, 2}, there exists some configuration 𝐶 with 𝐶(𝑋) =

𝑋ℎ𝑎𝑟𝑑,𝒩 , with ‖𝐶(𝑌 )‖1 = 1, and with P[𝑎𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 8·ln 2𝑡𝑐

𝑡𝑠
.

Further, since by Definition 5.4.2, a symmetric SNN has 𝑤(𝑦𝑖, 𝑢) = 𝑤(𝑦𝑗, 𝑢) for
all 𝑖, 𝑗 and 𝑢 ∈ 𝐴, and since each inhibitor can only have incoming connections from
the inputs and outputs,

Claim 5.4.22. For both 𝑖 ∈ {1, 2}, for every 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with 𝐶(𝑌 )

a valid WTA output configuration,

P[𝑎𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 8 · ln 2𝑡𝑐

𝑡𝑠
.

Since conditioned on 𝑁 𝑡, 𝑎𝑡+1
1 and 𝑎𝑡+2

2 are independent, we can compute, for any

267



𝐶 with 𝐶(𝑌 ) a valid WTA output configuration,

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] = P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] · P[𝑎𝑡+1

2 = 0|𝑁 𝑡 = 𝐶]

+ P[𝑎𝑡+1
1 = 0|𝑁 𝑡 = 𝐶] · P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]

= P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ·

(︀
1− P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]
)︀

+
(︀
1− P[𝑎𝑡+1

1 = 1|𝑁 𝑡 = 𝐶]
)︀
· P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]. (5.53)

If P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ≥ 1

2
, then (5.53) is maximized by setting P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] =

0, giving via Claim 5.4.22:

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] = P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] < 1− 8 ln 2𝑡𝑐

𝑡𝑠
.

If P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ≤ 1

2
, (5.53) is maximized by setting 𝑃𝑟[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] =

1− 8 ln 2𝑡𝑐
𝑡𝑠

, giving:

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] < P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] · 8 ln 2𝑡𝑐

𝑡𝑠

+
(︀
1− P[𝑎𝑡+1

1 = 1|𝑁 𝑡 = 𝐶]
)︀
·
(︂
1− 8 ln 2𝑡𝑐

𝑡𝑠

)︂
. (5.54)

Using our requirement that 8 ln 2𝑡𝑐
𝑡𝑠

≤ 1
4
, (5.54) is maximized by setting P[𝑎𝑡+1

1 = 1|𝑁 𝑡 =

𝐶] = 0, again giving:

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] = P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] < 1− 8 ln 2𝑡𝑐

𝑡𝑠
.

In either case, we have a contradiction of Lemma 5.4.18, giving the result.

Conclusion 2:

From conclusion (1) proven above, we can assume without loss of generality that,
for any configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with ‖𝐶(𝑌 )‖1 ≥ 1,

P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 8 · ln 2𝑡𝑐

𝑡𝑠
. (5.55)

I.e., we assume that the index 𝑖 in the lemma statement satisfies 𝑖 = 1. To prove con-
clusion (2) Assume for the sake of contradiction that there exists some configuration 𝐶
with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with ‖𝐶(𝑌 )‖ ≤ 1 such that P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] > 12·ln 2𝑡𝑐
𝑡𝑠

.
Since all outputs are excitatory, from this assumption we can conclude:

268



Claim 5.4.23. There exists some configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with
‖𝐶(𝑌 )‖1 = 1 such that P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] > 12·ln 2𝑡𝑐
𝑡𝑠

.

Further, since, by Definition 5.4.2, a symmetric SNN has 𝑤(𝑦𝑖, 𝑢) = 𝑤(𝑦𝑗, 𝑢) for
all 𝑖, 𝑗 and 𝑢 ∈ 𝐴, and since each inhibitor can only have incoming connections from
the inputs and outputs,

Claim 5.4.24. For every 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with 𝐶(𝑌 ) a valid WTA
output configuration,

P[𝑎𝑡+1
2 = 1|𝑁 𝑡 = 𝐶] >

12 · ln 2𝑡𝑐
𝑡𝑠

.

Using Claim 5.4.24 we can prove conclusion (2) by considering two cases.

Case 1: P[𝑎𝑡+1
2 = 1|𝑁 𝑡 = 𝐶] > 1/2.

In this case, by (5.53) and (5.55), we have for 𝐶 with 𝐶(𝑌 ) a valid WTA output
configuration:

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] = P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ·

(︀
1− P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]
)︀

+
(︀
1− P[𝑎𝑡+1

1 = 1|𝑁 𝑡 = 𝐶]
)︀
· P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]

<
1

2
+

8 · ln 2𝑡𝑐
𝑡𝑠

< 1− 8 · ln 2𝑡𝑐
𝑡𝑠

(5.56)

where the last inequality follows from our requirement that 8·ln 2𝑡𝑐
𝑡𝑠

≤ 1
4
. (5.56) con-

tradicts Lemma 5.4.18, giving the result in this case.

Case 2: P[𝑎𝑡+1
2 = 1|𝑁 𝑡 = 𝐶] ≤ 1/2.

In this case, by (5.55), Claim 5.4.24, and (5.53) we have for any 𝐶 with 𝐶(𝑌 ) a
valid WTA output configuration:

P[‖𝐴𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶] = P[𝑎𝑡+1
1 = 1|𝑁 𝑡 = 𝐶] ·

(︀
1− P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]
)︀

+
(︀
1− P[𝑎𝑡+1

1 = 1|𝑁 𝑡 = 𝐶]
)︀
· P[𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]

<

(︂
1− 12 ln 2𝑡𝑐

𝑡𝑠

)︂
+

4 · ln 2𝑡𝑐
𝑡𝑠

< 1− 8 · ln 2𝑡𝑐
𝑡𝑠

. (5.57)

Again, (5.57) contradicts Lemma 5.4.18, giving the result in this case.

269



From Lemma 5.4.20 we can easily show that it is unlikely that 𝑎2 ever fires when
𝑎1 does not.

Corollary 5.4.25 (Neuron 𝑎2 Rarely Fires Alone). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any sym-
metric SNN with two auxiliary inhibitory neurons 𝑎1, 𝑎2 which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿)

for 𝑛 ≥ 341, 𝛿 ≤ 1/2, 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

, and 8 ln 2𝑡𝑐
𝑡𝑠

≤ 1
4
. For any configuration 𝐶 with

𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition 5.4.15):

P[𝑎𝑡+1
1 = 0 and 𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] ≤ 12 · ln 2𝑡𝑐
𝑡𝑠

.

Proof. We prove this result in two cases.

Case 1: ‖𝐶(𝑌 )‖1 ≤ 1.

In this case, using Lemma 5.4.20 conclusion (2):

P[𝑎𝑡+1
1 = 0 and 𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] ≤ P[𝑎𝑡+1
2 = 1|𝑁 𝑡 = 𝐶] ≤ 12 · ln 2𝑡𝑐

𝑡𝑠
.

Case 2: ‖𝐶(𝑌 )‖1 > 1.

In this case, applying Lemma 5.4.20 conclusion (1):

P[𝑎𝑡+1
1 = 0 and 𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶] ≤ P[𝑎𝑡+1
1 = 0|𝑁 𝑡 = 𝐶]

= 1− P[𝑎𝑡+1
1 = 0|𝑁 𝑡 = 𝐶]

≤ 8 · ln 2𝑡𝑐
𝑡𝑠

.

In combination, Lemma 5.4.16 and Corollary 5.4.25 show that, in order for a valid
WTA output state to be maintained with high probability, some inhibitor, (which
we assume without loss of generality is 𝑎1) must fire alone. Using this fact, we can
characterize the firing behavior of the outputs when 𝑎1 fires alone. Since 𝑎1 maintains
stability, if it fires alone at time 𝑡, all outputs maintain the same firing state at time
𝑡+ 1 as at time 𝑡 with high probability.

Lemma 5.4.26 (Neuron 𝑎1 Enforces Stability). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ be any sym-
metric SNN with two auxiliary inhibitory neurons 𝑎1, 𝑎2 which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿)

for 𝑛 ≥ 341, 𝛿 ≤ 1/2, 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

, and 8 ln 2𝑡𝑐
𝑡𝑠

≤ 1
4
. For any configuration 𝐶 with

𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition 5.4.15) and with 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0:

270



1. For all 𝑖 ∈ ℛ, if 𝐶(𝑦𝑖) = 1 then P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 16 ln 2𝑡𝑐

𝑡𝑠
.

2. For all 𝑖 ∈ ℛ, if 𝐶(𝑦𝑖) = 0 then P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥

(︁
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︁1/(|ℛ|−1)

Proof. In a symmetric SNN (Definition 5.4.2) all outputs have identical incoming
connections and biases. Thus, to prove the lemma it suffices to show that there exists
a configuration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 and with 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0, such
that:

1. There exists 𝑖 ∈ ℛ with 𝐶(𝑦𝑖) = 1 and P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 16 ln 2𝑡𝑐

𝑡𝑠
.

2. There exists 𝑖 ∈ ℛ with 𝐶(𝑦𝑖) = 0 and P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] ≥

(︁
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︁1/(|ℛ|−1)

.

We will show that these bounds must hold for at least one configuration in order
for the network to reach a valid WTA output configuration in 𝑡𝑐 steps and remain
in this configuration for 𝑡𝑠 consecutive steps. Let ℰ(𝑡) denote the event that 𝑌 𝑡 =

𝑌 𝑡+1 = 𝑌 𝑡+2. For any 𝐶 we have:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] = P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 𝑎𝑡+1

2 ] · P[𝑎𝑡+1
1 = 𝑎𝑡+1

2 |𝑁 𝑡 = 𝐶]

+ P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 0, 𝑎𝑡+1

2 = 1] · P[𝑎𝑡+1
1 = 0, 𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]

+ P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0] · P[𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0|𝑁 𝑡 = 𝐶]

≤ P[𝑎𝑡+1
1 = 0, 𝑎𝑡+1

2 = 1|𝑁 𝑡 = 𝐶]

+ max
(︀
P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1

1 = 𝑎𝑡+1
2 ],P[ℰ(𝑡)|𝑌 𝑡 = 𝐶, 𝑎𝑡+1

1 = 1, 𝑎𝑡+1
2 = 0]

)︀
.

(5.58)

We can upper bound the first term of (5.58) by 12 ln 2𝑡𝑐
𝑡𝑠

using Corollary 5.4.25. Addi-
tionally, using Lemma 5.4.16, we can bound P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1

1 = 𝑎𝑡+1
2 ] ≤ 1

ln𝑛
. This

gives:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] ≤ 12 ln 2𝑡𝑐
𝑡𝑠

+max

(︂
1

ln𝑛
,P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1

1 = 1, 𝑎𝑡+1
2 = 0]

)︂
.

(5.59)

Applying Lemma 5.4.17 gives that there must exist some 𝐶 with 𝐶(𝑌 ) a valid WTA
output configuration such that P[ℰ(𝑡)|𝑁 𝑡 = 𝐶] ≥ 1− 4 ln 2𝑡𝑐

𝑡𝑠
. So combining with (5.59):

max

(︂
1

ln𝑛
,P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1

1 = 1, 𝑎𝑡+1
2 = 0]

)︂
≥ 1− 16 ln 2𝑡𝑐

𝑡𝑠

271



By our assumption that 8 ln 2𝑡𝑐
𝑡𝑠

≤ 1
4

and the fact that 𝑛 ≥ 341 we easily have that
1

ln𝑛
≤ 1

2
≤ 1 − 16 ln 2𝑡𝑐

𝑡𝑠
, meaning that in fact, there must exist some 𝐶 with 𝐶(𝑌 ) a

valid WTA output configuration such that:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0] ≥ 1− 16 ln 2𝑡𝑐
𝑡𝑠

. (5.60)

We can now easily prove the two conclusions of the lemma using similar arguments.

Conclusion 1:

Assume for the sake of contradiction that for every configuration 𝐶 with 𝐶(𝑋) =

𝑋ℎ𝑎𝑟𝑑,𝒩 and with 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0, for all 𝑖 ∈ ℛ with 𝐶(𝑦𝑖) = 1,

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶] < 1− 16 ln 2𝑡𝑐

𝑡𝑠
.

Then, for every 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration we have:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0] ≤ P[𝑌 𝑡+2 = 𝑌 𝑡+1|𝑁 𝑡+1 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0]

< 1− 16 ln 2𝑡𝑐
𝑡𝑠

.

contradicting (5.60) and giving the lemma.

Conclusion 2:

Assume for the sake of contradiction that for every configuration 𝐶 with 𝐶(𝑋) =

𝑋ℎ𝑎𝑟𝑑,𝒩 and with 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0, for all 𝑖 ∈ ℛ with 𝐶(𝑦𝑖) = 0,

P[𝑦𝑡+1
𝑖 = 0|𝑁 𝑡 = 𝐶] <

(︂
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︂1/(|ℛ|−1)

.

Then, again for every 𝐶 with 𝐶(𝑌 ) a valid WTA output configuration we have:

P[ℰ(𝑡)|𝑁 𝑡 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0] ≤ P[𝑌 𝑡+2 = 𝑌 𝑡+1|𝑁 𝑡+1 = 𝐶, 𝑎𝑡+1
1 = 1, 𝑎𝑡+1

2 = 0]

<

(︃(︂
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︂1/(|ℛ|−1)
)︃|ℛ|−1

< 1− 16 ln 2𝑡𝑐
𝑡𝑠

contradicting (5.60) and giving the lemma.

272



Lemma 5.4.26 implies that when just 𝑎1 fires, since this leads to stability, it is
unlikely to lead to a valid WTA output configuration when starting from an invalid
output configuration. That is, 𝑎1 does not drive convergence to a valid WTA output
configuration.

Corollary 5.4.27 (Neuron 𝑎1 Does Not Drive Convergence). Let 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩
be any symmetric SNN with two auxiliary inhibitory neurons 𝑎1, 𝑎2 which solves
𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341, 𝛿 ≤ 1/2, 𝑡𝑐 ≤ ln𝑛

30 ln ln𝑛
, and 8 ln 2𝑡𝑐

𝑡𝑠
≤ 1

4
. For any config-

uration 𝐶 with 𝐶(𝑋) = 𝑋ℎ𝑎𝑟𝑑,𝒩 (Definition 5.4.15), with 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0,
and in which 𝐶(𝑌 ) is not a valid WTA output configuration:

P[𝑌 𝑡+1 is a valid WTA output configuration |𝑁 𝑡 = 𝐶] ≤ 32 ln 2𝑡𝑐
𝑡𝑠

.

Proof. The proof can be split into two cases, depending on if 𝐶(𝑌 ) is not a valid
WTA output configuration because too many valid outputs are firing or because no
outputs are firing. Let ℛ ⊆ {1, ..., } be the set of indices with 𝑋ℎ𝑎𝑟𝑑,𝒩 (𝑥𝑖) = 1.

Case 1: |{𝑖 ∈ ℛ|𝐶(𝑦𝑖) = 1}| ≥ 2.

Let 𝑌 (ℛ) denote the set of outputs restricted to the indices in ℛ. In order for 𝑌 𝑡+1

to be a valid WTA output configuration for 𝑋ℎ𝑎𝑟𝑑,𝒩 , we must have ‖𝑌 (ℛ)𝑡‖1 = 1.
We can apply Lemma 5.4.26 conclusion (1) to bound:

P[‖𝑌 (ℛ)𝑡+1‖1 ≥ 2|𝑁 𝑡 = 𝐶] ≥
(︂
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︂2

≥ 1− 32 ln 2𝑡𝑐
𝑡𝑠

and thus P[𝑌 𝑡+1 is a valid WTA output configuration |𝑁 𝑡 = 𝐶] ≤ 32 ln 2𝑡𝑐
𝑡𝑠

.

Case 2: |{𝑖 ∈ ℛ|𝐶(𝑦𝑖) = 1}| = 0.

In this case, we can apply Lemma 5.4.26 conclusion (2) to bound:

P[‖𝑌 (ℛ)𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶] ≥

(︃(︂
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︂1/(|ℛ|−1)
)︃|ℛ|

By our assumption that 𝑛 ≥ 341, |ℛ|
|ℛ|−1

= ⌊ln2 𝑛⌋
⌊ln2 𝑛⌋−1

≤ 34
33
< 2. So we have:

P[‖𝑌 (ℛ)𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶] ≥
(︂
1− 16 ln 2𝑡𝑐

𝑡𝑠

)︂2

≥ 1− 32 ln 2𝑡𝑐
𝑡𝑠

.

273



Thus, P[𝑌 𝑡+1 is a valid WTA output configuration |𝑁 𝑡 = 𝐶] ≤ 32 ln 2𝑡𝑐
𝑡𝑠

, giving the
lemma.

We can now prove the main two-inhibitor lower bound Theorem 5.4.14 via a case
analysis which combines Lemma 5.4.16, Corollary 5.4.25, and Corollary 5.4.27.

Proof of Theorem 5.4.14.

Assume that 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓⟩ is a symmetric SNN with two auxiliary inhibitory
neurons 𝑎1, 𝑎2 which solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝑛 ≥ 341, 𝛿 ≤ 1/2, 𝑡𝑐 ≤ ln𝑛

30 ln ln𝑛
, and

ln 2𝑡𝑐
𝑡𝑠

≤ 1
32 ln𝑛

. Assume that the network is given the hard input execution 𝛼ℎ𝑎𝑟𝑑,𝒩

(Definition 5.4.15) and starts with initial state 𝑁0 in which 𝑌 0 is not a valid WTA
output configuration and 𝑎01 = 𝑎02 = 0.

Let ℰ𝑓𝑎𝑖𝑙(𝑡) be the event that for every 𝑡′ ≤ 𝑡, 𝑌 𝑡′ is not a valid WTA output
configuration. Let ℰ01(𝑡) be the event that for every 𝑡′ ≤ 𝑡, we do not have 𝑎𝑡

′
1 = 0

and 𝑎𝑡′2 = 1.
We can bound P[ℰ𝑓𝑎𝑖𝑙(𝑡)] ≥ P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)] and write, using that ℰ𝑓𝑎𝑖𝑙(𝑡 − 1) ⊆

ℰ𝑓𝑎𝑖𝑙(𝑡) and ℰ01(𝑡− 1) ⊆ ℰ01(𝑡),

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)] = P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)] · P[ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)].

(5.61)

Conditioned on ℰ𝑓𝑎𝑖𝑙(𝑡−1) and ℰ01(𝑡−1), 𝑌 𝑡−1 is not a valid WTA output configuration
and (𝑎𝑡−1

1 , 𝑎𝑡−1
2 ) ̸= (0, 1). Let 𝒞 be the set of all configurations which are not valid

WTA output configurations and which have (𝐶(𝑎1), 𝐶(𝑎2)) ̸= (0, 1). We can expand
(5.61) as:

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)] = P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)] · P[ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)]

=
∑︁
𝐶∈𝒞

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] · P[𝑁 𝑡−1 = 𝐶, ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)].

(5.62)

Note that by the law of total probability since ℰ𝑓𝑎𝑖𝑙(𝑡−1) and ℰ01(𝑡−1) requires that
𝐶 ∈ 𝒞:∑︁

𝐶∈𝒞

P[𝑁 𝑡−1 = 𝐶, ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)] = P[ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)]. (5.63)

We now bound P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] in (5.62) in two cases:

274



Case 1: 𝐶(𝑎1) = 𝐶(𝑎2) = 1 or 𝐶(𝑎1) = 𝐶(𝑎2) = 0.

In this case, for any 𝐶 ∈ 𝒞 with 𝐶(𝑎1) = 𝐶(𝑎2), by Lemma 5.4.16,

P[ℰ𝑓𝑎𝑖𝑙(𝑡)|𝑁 𝑡−1 = 𝐶] ≥ 1− 1

ln𝑛
.

By Corollary 5.4.25,

P[ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] ≥ 1− 12 · ln 2𝑡𝑐
𝑡𝑠

≥ 1− 1

ln𝑛
,

where the second inequality follows from our requirement that ln 2𝑡𝑐
𝑡𝑠

≤ 1
32 ln𝑛

. Addi-
tionally, conditioned on 𝑁 𝑡−1, ℰ𝑓𝑎𝑖𝑙(𝑡) and ℰ01(𝑡) are independent since they involve
disjoint sets of neurons. Thus we can bound:

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] ≥
(︂
1− 1

ln𝑛

)︂2

. (5.64)

Case 2: 𝐶(𝑎1) = 1 and 𝐶(𝑎2) = 0.

In this case, for any 𝐶 ∈ 𝒞, since 𝐶(𝑌 ) is not a valid WTA output configuration,
by Corollary 5.4.27,

P[ℰ𝑓𝑎𝑖𝑙(𝑡)|𝑁 𝑡−1 = 𝐶] ≥ 1− 32 · ln 2𝑡𝑐
𝑡𝑠

≥ 1− 1

ln𝑛

where the second inequality follows from our requirement that ln 2𝑡𝑐
𝑡𝑠

≤ 1
32 ln𝑛

. As
above we also have P[ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] ≥ 1 − 1

ln𝑛
and since ℰ𝑓𝑎𝑖𝑙(𝑡) and ℰ01(𝑡) are

independent conditioned on 𝑁 𝑡−1:

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] ≥
(︂
1− 1

ln𝑛

)︂2

. (5.65)

Together (5.64) and (5.65) and the definition of 𝒞 give us:

Claim 5.4.28. For any 𝐶 which is not a valid WTA configuration and with (𝐶(𝑎1), 𝐶(𝑎2)) ̸=
(0, 1),

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)|𝑁 𝑡−1 = 𝐶] ≥
(︂
1− 1

ln𝑛

)︂2

.

Completing the Theorem.

275



We conclude by using Claim 5.4.28 to lower bound the probability of converging
to a valid WTA configuration within 𝑡𝑐 steps. Substituting the bound of Claim 5.4.28
into (5.62) and (5.63) we have:

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)] ≥
∑︁
𝐶∈𝒞

(︂
1− 1

ln𝑛

)︂2

· P[𝑁 𝑡−1 = 𝐶, ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)]

≥
(︂
1− 1

ln𝑛

)︂2

· P[ℰ𝑓𝑎𝑖𝑙(𝑡− 1), ℰ01(𝑡− 1)]

Since we choose 𝑁0 with 𝑌 0 not a valid WTA output configuration and 𝑎01 = 𝑎02 = 0,
P[ℰ𝑓𝑎𝑖𝑙(0), ℰ01(0)] = 1. Thus, via induction, we have for any 𝑡 ≥ 0,

P[ℰ𝑓𝑎𝑖𝑙(𝑡), ℰ01(𝑡)] ≥
(︂
1− 1

ln𝑛

)︂2𝑡

.

Plugging in 𝑡𝑐 ≤ ln𝑛
30 ln ln𝑛

we have:

P[ℰ𝑓𝑎𝑖𝑙(𝑡𝑐)] ≥ P[ℰ𝑓𝑎𝑖𝑙(𝑡𝑐), ℰ01(𝑡𝑐)] ≥
(︂
1− 1

ln𝑛

)︂ ln𝑛
15 ln ln𝑛

≥ 1

𝑒1/15
> 1/2.

This contradicts the fact that 𝒩 solves 𝑊𝑇𝐴(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for 𝛿 ≥ 1/2, giving the lower
bound.

5.5 Faster Convergence With More Inhibitors

In this section we show how to speed up the two-inhibitor construction of Section
5.3 by using 𝛼 > 2 inhibitors. We give a formal convergence proof for a construction
which uses ⌈log2 𝑛⌉+1 inhibitors and converges with constant probability in 𝑂(1) time
(and with probability ≥ 1 − 𝛿 in 𝑂(log 1/𝛿) time). We then describe the high level
idea behind two constructions that give a tradeoff between the number of inhibitors
used and the convergence time.

5.5.1 Use of History Period

Our ⌈log2 𝑛⌉ + 1-inhibitor construction (as well as the sketched constructions which
give an inhibitor-convergence time tradeoff) requires using a history period of ℎ = 2,
as suggested in Section 5.2.5. At a high level, to achieve fast convergence, our networks

276



use the larger number of inhibitors available to create higher levels of inhibition at
time 𝑡 corresponding to higher number of firing outputs at time 𝑡− 1. This strategy
however, leads to ‘race conditions’. If many outputs fire at time 𝑡 and exactly one
output fires at time 𝑡 + 1, there will still be a high level of inhibition at time 𝑡 + 1.
Thus, at time 𝑡 + 2 it is likely that the single firing output at time 𝑡 + 1 will stop
firing and so the network will not stabilize to a valid WTA output state.

To avoid this race condition, we use history so that an output’s self-loop excites
the output for two time steps. The stability inhibitor 𝑎𝑠 will also be excited for two
time steps by the outputs. In this way, if a single output 𝑦𝑖 fires at time 𝑡, while at
time 𝑡+1 no outputs may fire due to high levels of inhibition, at time 𝑡+2 the history
will cause both 𝑎𝑠 and 𝑦𝑖 to fire, and the network to stabilize to a valid WTA state.

Generalized Model with History Period

Following the basic SNN model of Section 5.2 we define an SNN model with history
period ℎ for any ℎ ≥ 1. The changes to the definition are highlighted in gray.

An SNN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓, ℎ⟩ with history period ℎ consists of:

∙ 𝑁 , a set of neurons, partitioned into a set of input neurons 𝑋, a set of output
neurons 𝑌 , and a set of auxiliary neurons 𝐴. 𝑁 is also partitioned into a set of
excitatory and inhibitory neurons 𝐸 and 𝐼. All input and output neurons are
excitatory.

∙ ℎ ∈ Z≥1, a positive integer indicating the neural response history period.

∙ 𝑤 : 𝑁 × 𝑁 × {1, ..., ℎ} → R, a weight function describing the weighted synaptic
connections between the neurons in the network. 𝑤 is restricted in a few notable
ways:

– 𝑤(𝑢, 𝑥, 𝑙) = 0 for all 𝑢 ∈ 𝑁 , 𝑥 ∈ 𝑋, and 𝑙 ∈ {1, ..., ℎ}.

– Each excitatory neuron 𝑣 ∈ 𝐸 has 𝑤(𝑣, 𝑢, 𝑙) ≥ 0 for every 𝑢 and 𝑙 ∈ {1, ..., ℎ}.
Each inhibitory neuron 𝑣 ∈ 𝐼 has 𝑤(𝑣, 𝑢, 𝑙) ≤ 0 for every 𝑢 and 𝑙 ∈ {1, ..., ℎ}.

∙ 𝑏 : 𝑁 → R, a bias function, assigning an activation bias to each neuron.

∙ 𝑓 : R → [0, 1], a spike probability function, satisfying a few restrictions:

– 𝑓 is continuous and monotonically increasing.

– lim𝑥→∞ 𝑓(𝑥) = 1 and lim𝑥→−∞ 𝑓(𝑥) = 0.

277



Remark on the Time Dependent Weight Function: The only difference be-
tween the above model and our basic SNN model of Section 5.2.1 is in the spec-
ification of the weight function 𝑤. In the model with history period ℎ, 𝑤 de-
scribes the strength of the synaptic connections between neurons in 𝑁 , as a func-
tion of the time difference between a spike and the current time (from 1 up to ℎ).
𝑤(𝑢, 𝑣, 1) is the weight corresponding to the most recent time and 𝑤(𝑢, 𝑣, ℎ) corre-
sponds to the most distant time within the history period. The weight function, for
example, can be used to model the decaying effect of a spike over time, if we set
|𝑤(𝑢, 𝑣, 1)| ≥ |𝑤(𝑢, 𝑣, 2)| ≥ ... ≥ |𝑤(𝑢, 𝑣, ℎ)|.

Network Dynamics With History Period

In our SNN with history period model, configurations and executions are defined as
in our basic model (see Section 5.2.2). The behavior of the SNN is determined as
follows:

∙ Input Neurons: As in our basic model, we specify how the infinite input
execution 𝑋0𝑋1.... is determined. In this chapter, we will fix the input so that
for each 𝑢 ∈ 𝑋, 𝑢𝑡 is constant for all 𝑡 ≥ 0.

∙ Initial Firing States: For each non-input 𝑢 ∈ 𝑁 ∖𝑋, the firing states in the
first ℎ time slots 𝑢0, 𝑢1, ..., 𝑢ℎ−1 are arbitrary, where ℎ is this history length.

∙ Firing Dynamics: For each non-input neuron 𝑢 ∈ 𝑁 ∖ 𝑋 and every time
𝑡 ≥ ℎ, let pot(𝑢, 𝑡) denote the membrane potential at time 𝑡 and 𝑝(𝑢, 𝑡) denote
the corresponding firing probability. These values are calculated as:

pot(𝑢, 𝑡) =

(︃
ℎ∑︁
𝑖=1

∑︁
𝑣∈𝑁

𝑤(𝑣, 𝑢, 𝑖) · 𝑣𝑡−𝑖
)︃

− 𝑏(𝑢) and 𝑝(𝑢, 𝑡) = 𝑓(pot(𝑢, 𝑡)) (5.66)

where 𝑓 is the spike probability function. At time 𝑡, each non-input neuron 𝑢

fires independently with probability 𝑝(𝑢, 𝑡). Note that equation (5.66) is defined
only for 𝑡 ≥ ℎ, in which case 𝑡− 𝑖 ≥ 0 for all 𝑖 ∈ {1, ..., ℎ}. It is analogous to the
potential calculation (5.1), used for our basic model, except that the summation
of spikes is over ℎ time steps.

An SSN 𝒩 = ⟨𝑁,𝑤, 𝑏, 𝑓, ℎ⟩ with history period ℎ, length ℎ execution 𝛼ℎ =

𝑁0𝑁1...𝑁ℎ−1, and infinite input execution 𝛼𝑋 define a probability distribution over
infinite executions, 𝒟(𝒩 , 𝛼ℎ, 𝛼𝑋). This distribution is the natural distribution that

278



follows from applying the stochastic firing dynamics of (5.66). As with our basic model
(see Section 5.2.2), we can also define a corresponding distribution 𝒟𝑌 (𝒩 , 𝛼ℎ, 𝛼𝑋) on
infinite output executions.

Solving Problems in Networks with History

As in our basic model, a problem 𝑃 is a mapping from an infinite input execution
𝛼𝑋 to a set of output distributions. A network 𝒩 is said to solve problem 𝑃 on input
𝛼𝑋 if, for any length ℎ initial execution 𝛼ℎ, the output distribution 𝒟𝑌 (𝒩 , 𝛼ℎ, 𝛼𝑋) is
an element of 𝑃 (𝛼𝑋). A network 𝒩 is said to solve problem P if it solves 𝑃 on every
infinite input execution 𝛼𝑋 .

5.5.2 𝑂(1) Convergence Time with 𝑂(log 𝑛) Inhibitors

In this section we describe and analyze a family of networks that converge to a valid
WTA state with constant probability in constant time and uses 𝑂(log 𝑛) inhibitors.

We have one stability inhibitor 𝑎𝑠 that functions similarly to the stability inhibitor
in our two-inhibitor construction (Definition 5.3.1), ensuring that, once the network
reaches a valid WTA output configuration, it remains in this configuration for 𝑡𝑠
consecutive time steps with high probability (see Corollary 5.5.19). This stability
inhibitor employs a history period of length 2. We prove in Lemma 5.5.7 that it fires
with high probability at time 𝑡 + 1 whenever at least one output fires at time 𝑡 or
𝑡− 1.

We additionally have ⌈log2 𝑛⌉ convergence inhibitors, labeled 𝑎1, ..., 𝑎⌈log2 𝑛⌉. For
each 𝑖, 𝑎𝑖 fires with high probability at time 𝑡+1 whenever 𝑘 ≥ 2𝑖 outputs fire at time
𝑡. In this way, with high probability, 𝑎1, ..., 𝑎𝑖 fire and all other inhibitors do not fires
at time 𝑡 + 1 whenever the number of firing outputs 𝑘 is in the range [2𝑖, 2𝑖+1) (see
Lemma 5.5.8). Note that we define our network so 𝑎1, ..., 𝑎⌈log2 𝑛⌉ have no incoming
connections that use the length 2 history period (i.e., 𝑤(𝑢, 𝑎𝑖, 2) = 0 for all 𝑢 and all
𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}). Thus, the firing probabilities of these inhibitors at time 𝑡 + 1

depend only on the firing pattern at time 𝑡.
We set the inhibitory weights such that when 𝑎𝑖 fires at time 𝑡 (along with 𝑎𝑗 for

all 𝑗 ≤ 𝑖), each firing output fires at time 𝑡 + 1 with probability 𝑝𝑖 ≈ 1
2𝑖

(see Lemma
5.5.12). For 𝑘 ∈ [2𝑖, 2𝑖+1) we thus have 𝑝𝑖 · 𝑘 ∈ [1, 2). We will show that this ensures
that, with constant probability, exactly one output fires at time 𝑡 + 1 (see Corollary
5.5.13). Once a single output fires, using the length-two history mechanism described
in Section 5.5.1, the network stabilizes to a valid WTA state with high probability.

279



We begin with a formal definition of the network below:

Definition 5.5.1 (Constant Time WTA Network). For any 𝑛 ∈ Z≥2 and 𝛾 ∈ R+,
let ℒ𝑛,𝛾 = ⟨𝑁,𝑤, 𝑏, 𝑓, 2⟩ where the spike probability, weight, and bias functions are
defined as follows:

∙ The spike probability function 𝑓 is defined to be the basic sigmoid function:

𝑓(𝑥)
def
=

1

1 + 𝑒−𝑥
.

∙ The set of neurons 𝑁 consists of a set of 𝑛 input neurons 𝑋, labeled 𝑥1, ..., 𝑥𝑛,
a set of 𝑛 corresponding outputs 𝑌 , labeled 𝑦1, ..., 𝑦𝑛, and ⌈log2 𝑛⌉+ 1 auxiliary
inhibitory neurons labeled 𝑎𝑠 and 𝑎1, ..., 𝑎⌈log2 𝑛⌉.

∙ The weight function 𝑤 is given by:

– 𝑤(𝑥𝑖, 𝑦𝑖, 1) = 6𝛾, for all 𝑖.

– 𝑤(𝑦𝑖, 𝑦𝑖, 1) = 𝑤(𝑦𝑖, 𝑦𝑖, 2) = 2𝛾, for all 𝑖.

– 𝑤(𝑎𝑠, 𝑦𝑖, 1) = −𝛾, for all 𝑖

– 𝑤(𝑎1, 𝑦𝑖, 1) = −7𝛾/2− ln(2), for all 𝑖

– 𝑤(𝑎𝑗, 𝑦𝑖, 1) = − ln(2), for all 𝑖 and 𝑗 ∈ {2, ..., ⌈log2 𝑛⌉}.

– 𝑤(𝑦𝑖, 𝑎𝑠, 1) = 𝑤(𝑦𝑖, 𝑎𝑠, 2) = 𝛾, for all 𝑖.

– 𝑤(𝑦𝑖, 𝑎𝑗, 1) = 𝛾, for all 𝑖 and 𝑗 ∈ {1, ..., ⌈log2 𝑛⌉}.

– 𝑤(𝑢, 𝑣, 𝑖) = 0 for any 𝑢, 𝑣 and 𝑖 ∈ {1, 2} whose connection is not specified
above.

∙ The bias function 𝑏 is given by:

– 𝑏(𝑦𝑖) = 11𝛾/2 for all 𝑖.

– 𝑏(𝑎𝑠) = 𝛾/2.

– 𝑏(𝑎𝑖) = 2𝑖 · 𝛾 − 𝛾/2 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}.

Use of History. Note that in our network definition above, we use the history
mechanism only in two places. We set 𝑤(𝑦𝑖, 𝑦𝑖, 1) = 𝑤(𝑦𝑖, 𝑦𝑖, 2) = 2𝛾, for all 𝑖,
meaning that each output’s self-loop affects its potential for two time steps. We also
set 𝑤(𝑦𝑖, 𝑎𝑠, 1) = 𝑤(𝑦𝑖, 𝑎𝑠, 2) = 𝛾 for all 𝑖, meaning that the stability inhibitor is
affected by the outputs for two steps.

280



Due to the high level of inhibition inducted by the convergence inhibitors 𝑎1, ..., 𝑎⌈log2 𝑛⌉,
after the network reaches a configuration with just a single firing output, it will likely
transition to a state with no firing outputs, since the number of firing inhibitors will
still reflect the number of firing outputs in the previous time step. The length-two
output self-loop and output to inhibitor connections allow the network to recover
from this state. Specifically, in Lemma 5.5.18 and Corollary 5.5.19, we show that if
the network reaches a valid WTA output state at time 𝑡, with good probability it will
return to this state at time 𝑡+ 2 and remain in this state for 𝑡𝑠 consecutive steps.

In our two-inhibitor construction, no history was necessary. The inhibition in
the network was always low enough such that, after reaching a near-valid WTA con-
figuration with a single firing output, with constant probability the network would
transition to a valid-WTA configuration and stabilize in this configuration (see Lemma
5.3.21).

We prove the following theorems on the performance of ℒ𝑛,𝛾:

Theorem 5.5.2 (𝑂(log 𝑛)-Inhibitor WTA). For 𝛾 ≥ ln((𝑛 + 2)𝑡𝑠/𝛿), ℒ𝑛,𝛾 solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any 𝑡𝑐 ≥ log2(1/𝛿) + 1. ℒ𝑛,𝛾 contains ⌈log2 𝑛⌉ + 1 auxiliary
inhibitors.

Theorem 5.5.3 (𝑂(log 𝑛)-Inhibitor Expected-Time WTA). For 𝛾 ≥ ln((𝑛+2)𝑡𝑠/𝛿),
ℒ𝑛,𝛾 solves WTA-EXP(𝑛, 𝑡𝑐, 𝑡𝑠) for any 𝑡𝑐 ≥ 4. ℒ𝑛,𝛾 contains ⌈log2 𝑛⌉ + 1 auxiliary
inhibitors.

Proof Roadmap. We prove Theorems 5.5.2 and 5.5.3 in Section 5.5.5. The analysis
is broken down as follows:

Section 5.5.3: Prove basic two-step lemmas which characterize single time step
transitions of ℒ𝑛,𝛾, showing that the neurons behave as described in the above
high-level description.

Section 5.5.4: Prove that, once in a valid WTA output configuration, as long as
certain other stability conditions are satisfied, ℒ𝑛,𝛾 stays in this configuration
with high probability.

Section 5.5.5: Show that all configurations of ℒ𝑛,𝛾 transition with constant
probability to a stable and valid WTA configuration within 𝑂(1) time steps.

Section 5.5.6: Complete the analysis, demonstrating with what parameter val-
ues ℒ𝑛,𝛾 solves the winner-take-all problem (Definitions 5.2.7 and 5.2.9).

281



5.5.3 Two-Step Lemmas

As in our analysis of our two-inhibitor network family in Section 5.3.2, we begin with
a series of lemmas which characterize the basic transition probabilities of ℒ𝑛,𝛾. Since
we employ history period ℎ = 2, these lemmas consider the behavior of the network
at time 𝑡+ 1 conditioned on its configuration at times 𝑡 and 𝑡− 1.

We first note that an analog to Lemma 5.3.4 still holds for all inhibitory neurons.

Lemma 5.5.4 (Characterization of Firing Probabilities). For any time 𝑡 ≥ 1 and
any 𝑎 ∈ 𝐴:

If pot(𝑢, 𝑡) = 0, then 𝑝(𝑢, 𝑡) = 1/2.

If pot(𝑢, 𝑡) < 0, then 𝑝(𝑢, 𝑡) ≤ 𝑒−𝛾/2.

If pot(𝑢, 𝑡) > 0, then 𝑝(𝑢, 𝑡) ≥ 1− 𝑒−𝛾/2.

Proof. The proof is essentially identical to that of Lemma 5.3.4. We just use that for
each inhibitor 𝑎 ∈ 𝐴 and each 𝑖 and ℎ ∈ {1, 2}, 𝑤(𝑦𝑖, 𝑎, ℎ) and 𝑏(𝑎) are all multiples
of 𝛾/2.

Analogs to Lemma 5.3.5 and Corollary 5.3.6 also still hold, ensuring that, with
high probability, outputs that do not correspond to firing inputs do not fire.

Lemma 5.5.5 (Correct Output Behavior). For any time 𝑡 ≥ 1, any configurations
𝐶,𝐶 ′ of ℒ𝑛,𝛾, and any 𝑖 with 𝐶(𝑥𝑖) = 0,

P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≤ 𝑒−3𝛾/2.

Proof. If 𝑁 𝑡 = 𝐶 then 𝑥𝑡𝑖 = 𝐶(𝑥𝑖). We can compute 𝑦𝑖’s potential at time 𝑡 + 1,
assuming 𝑥𝑡𝑖 = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠

+

⌈log2 𝑛⌉∑︁
𝑗=1

𝑤(𝑎𝑐, 𝑦𝑖, 1)𝑎
𝑡
𝑐 − 𝑏(𝑦𝑖)

≤ 0 + 2𝛾 + 2𝛾 + 0 + 0− 11𝛾/2 = −3𝛾/2.

We thus have 𝑝(𝑦𝑖, 𝑡+ 1) ≤ 1
1+𝑒3𝛾/2

≤ 𝑒−3𝛾/2.

282



Corollary 5.5.6 (Correct Output Behavior, All Neurons). For any time 𝑡 ≥ 1 and
configurations 𝐶,𝐶 ′ of ℒ𝑛,𝛾,

P[𝑦𝑡+1
𝑖 ≤ 𝑥𝑡𝑖 for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−3𝛾/2.

Proof. The proof is essentially identical to that of Corollary 5.3.6. If 𝐶(𝑥𝑖) = 1 then
conditioned on 𝑁 𝑡 = 𝐶, 𝑥𝑡𝑖 = 1 and so 𝑦𝑡+1

𝑖 ≤ 𝑥𝑡𝑖 always. Otherwise, by Lemma 5.5.5,
if 𝐶(𝑥𝑖) = 0, then P[𝑦𝑡+1

𝑖 = 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−3𝛾/2. Union bounding over
all such inputs (of which there are at most 𝑛) gives the corollary.

We next show that the inhibitors 𝑎𝑠, 𝑎1, ..., 𝑎⌈log2 𝑛⌉ behave as expected. The
following lemmas can be viewed as a generalization of Lemma 5.3.7. We first show
that, due to our use of history, 𝑎𝑠 fires with high probability at time 𝑡 + 1 whenever
at least one output fires at time 𝑡 or 𝑡− 1.

Lemma 5.5.7 (Correct Stability Inhibitor Behavior). For any time 𝑡 ≥ 1 and
configurations 𝐶,𝐶 ′ of ℒ𝑛,𝛾,

1. If ‖𝐶(𝑌 )‖1 = ‖𝐶 ′(𝑌 )‖1 = 0, then P[𝑎𝑡+1
𝑠 = 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2.

2. If ‖𝐶(𝑌 )‖1 ≥ 1 or ‖𝐶 ′(𝑌 )‖1 ≥ 1, then P[𝑎𝑡+1
𝑠 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡=1 = 𝐶 ′] ≥

1− 𝑒−𝛾/2.

Proof. We prove the two conclusions separately.

Conclusion 1: ‖𝐶(𝑌 )‖1 = ‖𝐶 ′(𝑌 )‖1 = 0.

In this case, 𝑎𝑠 receives no excitatory signal from the outputs so,

pot(𝑎𝑠, 𝑡+ 1) = −𝑏(𝑎𝑠) < 0.

Thus by Lemma 5.5.4,

P[𝑎𝑡+1
𝑠 = 0|𝑁 𝑡 = 𝐶] ≥ 1− 𝑒−𝛾/2.

Conclusion 2: ‖𝐶(𝑌 )‖1 ≥ 1 or ‖𝐶 ′(𝑌 )‖1 ≥ 1.

283



In this case we have:

pot(𝑎𝑠, 𝑡+ 1) =
𝑛∑︁
𝑗=1

[𝑤(𝑦𝑗, 𝑎𝑠, 1)𝑦
𝑡
𝑗 + 𝑤(𝑦𝑗, 𝑎𝑠, 2)𝑦

𝑡−1
𝑗 ]− 𝑏(𝑎𝑠)

≥ 𝛾 − 𝛾/2 = 𝛾/2.

We thus have by Lemma 5.5.4:

P[𝑎𝑡+1
𝑠 = 1|𝑁 𝑡 = 𝐶] ≥ 1− 𝑒−𝛾/2,

which gives the lemma.

As described in Section 5.5.2, the convergence inhibitors 𝑎1, ..., 𝑎⌈log2 𝑛⌉ fire at time
𝑡 + 1 depending on the number of firing outputs at time 𝑡. They have no incoming
connections which affect them for two rounds, and thus their firing probabilities at
time 𝑡+1 do not depend on the firing pattern at time 𝑡− 1. We prove that 𝑎𝑗 for all
𝑗 ≤ 𝑖 fire with high probability at time 𝑡 + 1 whenever the number of firing outputs
at time 𝑡 falls in the range [2𝑖, 2𝑖+1). Further, all 𝑎𝑗 for 𝑗 > 𝑖 do not fire with high
probability.

Lemma 5.5.8 (Correct Convergence Inhibitor Behaviors). For any time 𝑡 ≥ 1 and
configurations 𝐶,𝐶 ′ of ℒ𝑛,𝛾,

1. If ‖𝐶(𝑌 )‖1 ≤ 1, then

P
[︀
𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}

⃒⃒
𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]︀ ≥ 1−⌈log2 𝑛⌉·𝑒−𝛾/2.

2. For any 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}, if ‖𝐶(𝑌 )‖1 = 𝑘 for 𝑘 ∈ [2𝑖, 2𝑖+1), then:

P[𝑎𝑡+1
1 = ... = 𝑎𝑡+1

𝑖 = 1 and 𝑎𝑡+1
𝑖+1 = ... = 𝑎𝑡+1

⌈log2 𝑛⌉
= 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.

Proof. We prove the two conclusions of the lemma separately.

Conclusion 1: ‖𝐶(𝑌 )‖1 ≤ 1.

284



In this case we have for all 𝑖:

pot(𝑎𝑖, 𝑡+ 1) =
𝑛∑︁
𝑗=1

𝑤(𝑦𝑗, 𝑎𝑖, 1)𝑦
𝑡
𝑗 − 𝑏(𝑎𝑖)

≤ 𝛾 − 3𝛾/2 = −𝛾/2.

Again by Lemma 5.5.4 and a union bound,

P

⎡⎣⌈log2 𝑛⌉∑︁
𝑖=1

𝑎𝑡+1
𝑖 = 0

⃒⃒
𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′

⎤⎦ ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.

Conclusion 2: ‖𝐶(𝑌 )‖1 = 𝑘 for 𝑘 ∈ [2𝑖, 2𝑖+1).

In this case, for any 𝑗 ≤ 𝑖 we have:

pot(𝑎𝑗, 𝑡+ 1) =
𝑛∑︁
𝑙=1

𝑤(𝑦𝑙, 𝑎𝑠, 1)𝑦
𝑡
𝑙 − 𝑏(𝑎𝑗)

= 𝑘 · 𝛾 − 2𝑗𝛾 + 𝛾/2 ≥ 𝛾/2

where the last inequality follows since 𝑘 ≥ 2𝑗 ≥ 2𝑗. In contrast for 𝑗 > 𝑖:

pot(𝑎𝑗, 𝑡+ 1) =
𝑛∑︁
𝑙=1

𝑤(𝑦𝑙, 𝑎𝑠, 1)𝑦
𝑡
𝑙 − 𝑏(𝑎𝑗)

= 𝑘 · 𝛾 − 2𝑗𝛾 + 𝛾/2 ≤ −𝛾/2

where the last inequality follows from the fact that 𝑘 < 2𝑖+1 ≤ 2𝑗. Overall, by Lemma
5.5.4 and a union bound,

P[𝑎𝑡+1
1 = ... = 𝑎𝑡+1

𝑖 = 1 and 𝑎𝑡+1
𝑖+1 = ... = 𝑎𝑡+1

⌈log2 𝑛⌉
= 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2,

which gives the lemma

It will be useful in our future bounds to consider the class of configurations in which
all outputs and inhibitors behave as expected. Such a configuration is analogous to
the good configurations of our two-inhibitor networks (Definition 5.3.17), from which
we were able to show convergence.

285



Definition 5.5.9 (Typical Configuration). A typical configuration is any configura-
tion 𝐶 with 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖 and 𝐶(𝑎𝑠) ≥ 𝐶(𝑎1) ≥ ... ≥ 𝐶(𝑎⌈log2 𝑛⌉).

In combination, Corollary 5.5.6, Lemma 5.5.7 and Lemma 5.5.8 give:

Corollary 5.5.10 (Correct Behavior, All Neurons). Assume the input execution 𝛼𝑋
of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and consider configurations 𝐶,𝐶 ′ with 𝐶(𝑋) = 𝐶 ′(𝑋) =

𝑋 𝑡. For any time 𝑡 ≥ 1:

P[𝑁 𝑡+1 is a typical configuration |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1−(𝑛+⌈log2 𝑛⌉+1) ·𝑒−𝛾/2.

Proof. Since the input is fixed, by Corollary 5.5.6,

P[𝑦𝑡+1
𝑖 ≤ 𝑥𝑡+1

𝑖 |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛 · 𝑒−3𝛾/2. (5.67)

If ‖𝐶(𝑌 )‖1 ≤ 1 then by Lemma 5.5.8 conclusion (2),

P[𝑎𝑡+1
1 = .... = 𝑎𝑡+1

⌈log2 𝑛⌉
= 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.

If ‖𝐶(𝑌 )‖1 > 1 then by Lemma 5.5.7 conclusion (2), Lemma 5.5.8 conclusion (2),
and a union bound,

P[𝑎𝑡+1
𝑠 = 𝑎𝑡+1

1 = ... = 𝑎𝑡+1
𝑖 = 1 and 𝑎𝑡+1

𝑖+1 = ... = 𝑎𝑡+1
⌈log2 𝑛⌉

= 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1− (⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2.

Combining these two cases, we have

P[𝑎𝑡+1
𝑠 ≥ 𝑎𝑡+1

1 ≥ ... ≥ 𝑎𝑡+1
⌈log2 𝑛⌉

|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2,

which gives the lemma after a union bound with (5.67)

We next show that the stability inhibitor firing alone, with high probability, in-
duces exactly the outputs that fired at one of the previous two time steps to fire in the
next step. This Lemma is analogous to Lemma 5.3.9 for our two-inhibitor networks.

286



Lemma 5.5.11 (Stability Inhibitor Effect). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾
has 𝑋 𝑡 fixed for all 𝑡 and consider configurations 𝐶,𝐶 ′ with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡,
𝐶(𝑎𝑠) = 1, 𝐶(𝑎𝑖) = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖), 𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖)

for all 𝑖. For any time 𝑡 ≥ 1,

P[𝑦𝑡+1
𝑖 = max(𝑦𝑡𝑖 , 𝑦

𝑡−1
𝑖 ) for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2

Proof. Conditioned on 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′, 𝑦𝑡𝑖 ≤ 𝑥𝑡𝑖 and 𝑦𝑡−1
𝑖 ≤ 𝑥𝑡−1

𝑖 by assumption.
So for any output with max(𝑦𝑡𝑖 , 𝑦

𝑡−1
𝑖 ) = 1 we must have 𝑥𝑡𝑖 = 1. This gives:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠

+

⌈log2 𝑛⌉∑︁
𝑗=1

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

≥ 6𝛾 + 2𝛾 ·max(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 )− 𝛾 + 0− 11𝛾/2𝑠

≥ 3𝛾/2.

In contrast, for any output with max(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 ) = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠

+

⌈log2 𝑛⌉∑︁
𝑗=1

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

≤ 6𝛾 + 0 + 0− 𝛾 + 0− 11𝛾/2

= −𝛾/2.

So, if max(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 ) = 1, then 𝑦𝑡+1

𝑖 = 1 with probability ≥ 1−𝑒−3𝛾/2. If max(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 ) =

0, then 𝑦𝑡+1
𝑖 = 0 with probability ≥ 1−𝑒−𝛾/2. The lemma follows after union bounding

over all 𝑛 outputs.

We next characterize the effect of the convergence inhibitors. We show that when
𝑙 inhibitors fire, any firing output that also fired in the previous time step, fires with
probability Θ(1/𝑙). We will show in Corollary 5.5.13 that this implies that in the next
step, with constant probability, exactly one output fires, and in fact the configuration
is a valid WTA output configuration.

Lemma 5.5.12 below is analogous to Lemma 5.3.10 for our two-inhibitor networks,
except that the firing probability is Θ(1/𝑙) rather than 1/2. Since this firing prob-
ability is smaller when a larger number of outputs fire at time 𝑡, convergence to a

287



single firing output with constant probability occurs in 1 step, rather than 𝑂(log 𝑛)

steps.

Lemma 5.5.12 (Convergence Inhibitor Effect). Assume the input execution 𝛼𝑋 of
ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and consider configurations 𝐶,𝐶 ′ with 𝐶(𝑋) = 𝐶 ′(𝑋) =

𝑋 𝑡, 𝐶(𝑎𝑠) = 𝐶(𝑎1) = ...𝐶(𝑎𝑙) = 1, 𝐶(𝑎𝑙+1) = ... = 𝐶(𝑎⌈log2 𝑛⌉) = 0 for some 𝑙 ≥ 1,
and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖), 𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

1. P[𝑦𝑡+1
𝑖 ≤ min(𝑦𝑡𝑖 , 𝑦

𝑡−1
𝑖 ) for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−2𝛾.

2. If min(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 ) = 1, P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] = 1
1+2ℓ

.

3. For 𝑖 ̸= 𝑗, 𝑦𝑡+1
𝑖 and 𝑦𝑡+1

𝑗 are independent conditioned on 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′.

Proof. Conditioned on 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′, if min(𝑦𝑡𝑖 , 𝑦
𝑡−1
𝑖 ) = 1, then 𝑦𝑡𝑖 = 𝑦𝑡−1

𝑖 = 1

and by assumption 𝑥𝑡𝑖 = 1. We can thus compute:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠 + 𝑤(𝑎1, 𝑦𝑖, 1)𝑎

𝑡
1

+

⌈log2 𝑛⌉∑︁
𝑗=2

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

= 6𝛾 + 4𝛾 − 𝛾 − 7𝛾/2− ln 2− (𝑙 − 1) · ln 2− 11𝛾/2

= −𝑙 · ln 2.

We thus have
P[𝑦𝑡+1

𝑖 = 1|𝑁 𝑡 = 𝐶] = 𝑓(−𝑙 · ln 2) = 1

1 + 2𝑙
.

This gives conclusion (2). Conclusion (3) holds since, with 𝑁 𝑡 and 𝑁 𝑡−1 fixed with
history length 2, 𝑢𝑡+1 is independent of 𝑣𝑡+1 for all 𝑢 ̸= 𝑣. We can also bound if
min(𝑦𝑡𝑖 , 𝑦

𝑡−1
𝑖 ) = 0:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠 + 𝑤(𝑎1, 𝑦𝑖, 1)𝑎

𝑡
1

+

⌈log2 𝑛⌉∑︁
𝑗=2

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

≤ 6𝛾 + 2𝛾 − 𝛾 − 7𝛾/2− ln 2− (𝑙 − 1) · ln 2− 11𝛾/2

≤ −2𝛾.

Thus, P[𝑦𝑡+1
𝑖 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≤ 𝑒−2𝛾. By a union bound over at most 𝑛 such

outputs, we have, with probability ≥ 1− 𝑛𝑒−2𝛾, 𝑦𝑡+1
𝑖 ≤ min(𝑦𝑡𝑖 , 𝑦

𝑡−1
𝑖 ) for all 𝑖, giving

288



conclusion (1) and completing the lemma.

We now formalize the fact that the network converges to a valid WTA output
configuration in just a single step with constant probability, as long as the number of
inhibitors matches the minimum number of firing outputs in the preceding two steps.
Corollary 5.5.13 can be viewed as an analog to Lemma 5.3.23 for our two inhibitor
networks, except that the number of outputs is reduced to 1, rather than just cut in
half, with constant probability.

Corollary 5.5.13 (Constant Probability of a Valid WTA Configuration). Assume
the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and consider configurations
𝐶,𝐶 ′ with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, 𝐶(𝑎𝑠) = 𝐶(𝑎1) = ...𝐶(𝑎𝑙) = 1, 𝐶(𝑎𝑙+1) = ... =

𝐶(𝑎⌈log2 𝑛⌉) = 0 for some 𝑙 ≥ 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖), 𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For
any time 𝑡 ≥ 1, if ‖min(𝐶 ′, 𝐶)‖1 ∈

[︀
2𝑙, 2𝑙+1

)︀
, then

P[𝑌 𝑡+1 is a valid WTA output configuration |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 𝑛𝑒−2𝛾.

Proof. Let 𝑌 be the set of outputs who fire in both in 𝐶,𝐶 ′. So ‖𝑌 ‖1 = ‖min(𝐶 ′, 𝐶)‖1.
By conclusions (2) and (3) of Lemma 5.5.12, and the assumption that ‖min(𝐶 ′, 𝐶)‖1 ∈[︀
2𝑙, 2𝑙+1

)︀
:

P[‖𝑌 𝑡+1‖1 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] =
1

1 + 2𝑙
·
(︂
1− 1

1 + 2𝑙

)︂‖𝑌 𝑡‖1
· ‖𝑌 𝑡‖1

≥ 1

1 + 2𝑙

(︂
1− 1

1 + 2𝑙

)︂2𝑙+1

· 2𝑙

≥ 2𝑙

1 + 2𝑙
· 1
8
≥ 1

16
.

Further, by conclusion (1) of Lemma 5.5.12, no output outside if 𝑌 fires at time 𝑡+1

with probability ≥ 1 − 𝑛𝑒−2𝛾. Additionally, by assumption, for all 𝑦𝑖 ∈ 𝑌 , 𝑥𝑡𝑖 = 1.
So since if exactly one output in 𝑌 fires, 𝑁 𝑡+1 is a valid WTA output configuration.
This gives the corollary by a union bound.

We also show a related corollary – if the number of firing inhibitors exceeds the
appropriate amount for the number of firing outputs, then with good probability, no
outputs fire in the next time step.

289



Corollary 5.5.14 (Constant Probability of Zero Firing Outputs). Assume the input
execution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and consider configurations 𝐶,𝐶 ′ with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, 𝐶(𝑎𝑠) = 𝐶(𝑎1) = ...𝐶(𝑎𝑙) = 1, 𝐶(𝑎𝑙+1) = ... = 𝐶(𝑎⌈log2 𝑛⌉) = 0

for some 𝑙 ≥ 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖), 𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1, if
‖min(𝐶 ′, 𝐶)‖1 ∈

[︀
0, 2𝑙+1

)︀
, then

P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

8
− 𝑛𝑒−2𝛾

Proof. Let 𝑌 be the set of outputs who fire in both in 𝐶,𝐶 ′. So ‖𝑌 ‖1 = ‖min(𝐶 ′, 𝐶)‖1 ∈[︀
0, 2𝑙+1

)︀
. By conclusions (2) and (3) of Lemma 5.5.12:

P[‖𝑌 𝑡+1‖1 = 0|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] =

(︂
1− 1

1 + 2𝑙

)︂‖𝑌 𝑡‖1

≥
(︂
1− 1

1 + 2𝑙

)︂2𝑙+1

≥ 1

8
.

Further, by conclusion (1) of Lemma 5.5.12, no output outside if 𝑌 fires at time 𝑡+1

with probability ≥ 1− 𝑛𝑒−2𝛾. This gives the corollary by a union bound.

Finally, we show that if there is no inhibition in the network, all outputs corre-
sponding to firing inputs are likely to fire at the next time step.

Lemma 5.5.15 (No Inhibitor Effect). For any time 𝑡 ≥ 1 and configurations 𝐶,𝐶 ′

of ℒ𝑛,𝛾, if ‖𝐶(𝐴)‖1 = 0, then

P[𝑦𝑡+1
𝑖 = 𝑥𝑡𝑖 for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

Proof. We consider two cases:

Case 1: 𝑥𝑡𝑖 = 0.

290



In this case:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠+

+

⌈log2 𝑛⌉∑︁
𝑗=1

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

≤ 0 + 4𝛾 + 0 + 0− 11𝛾/2

≤ −3𝛾/2.

This gives
P[𝑦𝑡+1

𝑖 = 0 = 𝑥𝑡𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−2𝛾.

Case 2: 𝑥𝑡𝑖 = 1.

In this case:

pot(𝑦𝑖, 𝑡+ 1) = 𝑤(𝑥𝑖, 𝑦𝑖, 1)𝑥
𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 1)𝑦

𝑡
𝑖 + 𝑤(𝑦𝑖, 𝑦𝑖, 2)𝑦

𝑡−1
𝑖 + 𝑤(𝑎𝑠, 𝑦𝑖, 1)𝑎

𝑡
𝑠+

+

⌈log2 𝑛⌉∑︁
𝑗=1

𝑤(𝑎𝑗, 𝑦𝑖, 1)𝑎
𝑡
𝑗 − 𝑏(𝑦𝑖)

≥ 6𝛾 + 0 + 0 + 0− 11𝛾/2

≥ 𝛾/2.

This gives
P[𝑦𝑡+1

𝑖 = 1 = 𝑥𝑡𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2.

The lemma then follows after union bounding over all 𝑛 outputs.

5.5.4 Stability

In this section we show that once in a valid WTA output configuration (Definition
5.2.6), the network remains in this configuration with high probability. Due to our
use of a length-two history period, our stability proof requires certain conditions on
the firing states at both times 𝑡 and times 𝑡−1. We will focus on the case when there
is at least one firing input (i.e., when ‖𝑋 𝑡‖ ≥ 1.) In the case ‖𝑋 𝑡‖ = 0, convergence
to a valid WTA output configuration and stability of this configuration follow easily
from Lemma 5.5.5.

Definition 5.5.16 below can be viewed as a two-step generalization of a near-valid
WTA configuration of our two-inhibitor networks (Definition 5.3.15).

291



Definition 5.5.16 (Near-Stable Pair of Configurations). Assume the input execution
𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and ‖𝑋 𝑡‖1 ≥ 1. Consider configurations 𝐶,𝐶 ′ with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡. The ordered pair (𝐶 ′, 𝐶) is near-stable if:

1. ‖max(𝐶 ′(𝑌 ), 𝐶(𝑌 ))‖1 = 1, where max(𝐶 ′(𝑌 ), 𝐶(𝑌 )) is the entrywise maxi-
mum of 𝐶 ′(𝑌 ), 𝐶(𝑌 ). This condition requires that exactly one output fires in
configurations 𝐶 ′, 𝐶. It may fire in one or both configurations.

2. 𝐶(𝑎𝑠) = 𝐶 ′(𝑎𝑠) = 1.

3. 𝐶(𝑎𝑖) = 0 for all 𝑖 ∈ {1, ⌈log2 𝑛⌉}.

4. 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖), 𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖.

Note that by conditions (1) and (4), at least one of 𝐶(𝑌 ), 𝐶 ′(𝑌 ) is a valid WTA
output configuration (Definition 5.2.6). In our proofs, it will be useful to refer to the
output whose existence is guaranteed by condition (1). Thus we define:

Definition 5.5.17. Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and
‖𝑋 𝑡‖1 ≥ 1. For any near-stable pair of configurations (𝐶 ′, 𝐶) with 𝐶(𝑋) = 𝐶 ′(𝑋) =

𝑋 𝑡, let 𝑜𝑢𝑡(𝐶 ′, 𝐶) ∈ {1, ..., 𝑛} be equal to the index of the unique output that fires in
𝐶 ′, 𝐶 (whose existence is guaranteed by condition (1) of Definition 5.5.16).

We next show that if the configurations (𝑁 𝑡−1, 𝑁 𝑡) are near-stable, then with high
probability, 𝑁 𝑡+1 will be a valid WTA output configuration. Further, the network will
stabilize for 𝑡𝑠 steps. That is, with high probability, we will have 𝑁 𝑡+1 = ... = 𝑁 𝑡+𝑡𝑠+1.
Lemma 5.5.16 is analogous to Lemma 5.3.21 for our two-inhibitor networks.

Lemma 5.5.18 (Reaching Stability From Near-Stable Configurations). Assume the
input execution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any
near-stable pair of configurations (𝐶 ′, 𝐶) with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡. For any time
𝑡 ≥ 1, conditioned on 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′, with probability ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) ·
𝑒−𝛾/2,

1. 𝑁 𝑡+1 is a valid WTA output configuration (Definition 5.2.6).

2. 𝑦𝑡+1
𝑜𝑢𝑡(𝑁𝑡−1,𝑁𝑡) = 1. That is, the winner at time 𝑡+1 is the output firing in 𝑁 𝑡−1,

and/or 𝑁 𝑡.

3. (𝑁 𝑡, 𝑁 𝑡+1) is also a near-stable pair of configurations.

292



Proof. By condition (1) of Definition 5.5.16, for all 𝑗 ̸= 𝑜𝑢𝑡(𝑁 𝑡−1, 𝑁 𝑡), 𝑦𝑡𝑗 = 𝑦𝑡−1
𝑗 = 0.

Additionally, by conditions (2) and (3), 𝑎𝑠 is the only inhibitor that fires at time 𝑡.
So by Lemma 5.5.11,

P[𝑌 𝑡+1 = max(𝑌 𝑡, 𝑌 𝑡−1)|𝑁 𝑡 = 𝐶] ≥ 1− 𝑛𝑒−𝛾/2. (5.68)

This gives that 𝑦𝑡+1
𝑜𝑢𝑡(𝑁𝑡−1,𝑁𝑡) = 1 while 𝑦𝑡+1

𝑗 = 0 for all 𝑗 ̸= 𝑜𝑢𝑡(𝑁 𝑡−1, 𝑁 𝑡). By condi-
tion (4) of Definition 5.5.16 we must have also have 𝑥𝑡+1

𝑜𝑢𝑡(𝑁𝑡−1,𝑁𝑡) = 1. This implies
conclusions (1) and (2) of the lemma. It remains to show conclusion (3).

Condition (1) of Definition 5.5.16 holds if 𝑌 𝑡+1 = max(𝑌 𝑡, 𝑌 𝑡−1) (see (5.68)) since
𝑦𝑡+1
𝑜𝑢𝑡(𝑁𝑡−1,𝑁𝑡) = 1 and further, 𝑦𝑜𝑢𝑡(𝑁𝑡−1,𝑁𝑡) is the only output that may fire at time 𝑡.

Conditions (2) and (3) with probability ≥ 1 − (⌈log2 𝑛⌉ + 1) · 𝑒−𝛾/2 conditioned on
𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′ by Lemmas 5.5.7 and 5.5.8 and a union bound. Finally, condition
(4) holds if 𝑌 𝑡+1 = max(𝑌 𝑡, 𝑌 𝑡−1) (see (5.68)). Overall, by a union bound, all three
conclusions hold with probability ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2, giving the lemma.

We can use Lemma 5.5.18 to show that ℒ𝑛,𝛾 remains in a valid WTA configuration
for 𝑡𝑠 consecutive time steps with good probability.

Corollary 5.5.19 (Stability of Valid WTA Configurations). Assume the input exe-
cution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any near-stable
pair of configurations (𝐶 ′, 𝐶) with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡. For any time 𝑡 ≥ 1, . For
any time 𝑡 conditioned on 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′, with probability ≥ 1 − 3𝑡𝑠𝑛 · 𝑒−𝛾/2,
𝑌 𝑡+1 is a valid WTA output configuration and further,

𝑌 𝑡+1 = 𝑌 𝑡+2 = ... = 𝑌 𝑡+𝑡𝑠+1.

Proof. We apply Lemma 5.5.18 for each time 𝑡 + 1, ..., 𝑡 + 𝑡𝑠 + 1 in succession. This
is possible since by conclusion (3), if (𝑁 𝑡−1, 𝑁 𝑡−1) is a near-stable pair of config-
urations, then with high probability (𝑁 𝑡, 𝑁 𝑡+1) is as well. Conclusion (1) gives
that 𝑁 𝑡+1, ..., 𝑁 𝑡+𝑡𝑠+1 are all valid WTA configurations and conclusion (2) gives that
𝑌 𝑡+1 = 𝑌 𝑡+2 = ... = 𝑌 𝑡+𝑡𝑠+1. By a union bound over these 𝑡𝑠 steps, the conclusion
holds with probability ≥ 1− 𝑡𝑠(𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2 ≥ 1− 3𝑡𝑠𝑛 · 𝑒−𝛾/2.

293



5.5.5 Convergence in 𝑂(1) Steps

We now use the transition lemmas of Section 5.5.3 to show that, starting from any
configuration, the network converges to a near-stable pair of configurations (Defini-
tion 5.5.16) with constant probability in 𝑂(1) time steps. Combined with Corollary
5.5.19 this shows convergence to a valid WTA configuration (and stability within this
configuration for 𝑡𝑠 steps) in 𝑂(1) steps with constant probability.

Our analysis is tedious by straightforward. It breaks down into nine cases, based
on the initial output and inhibitor behavior. These cases are summarized in Table
5.2. Since some cases depend on our bounds for others, we do not prove them in the
order listed.

Output Count ‖𝑌 𝑡‖1 Inhibitor Count ‖𝐴𝑡‖1 Lemma

0 0 Lemma 5.5.20
0 1 Lemma 5.5.27
0 any 𝑎 > 1 Lemma 5.5.28
1 0 Lemma 5.5.24
1 1 Lemma 5.5.25
1 any 𝑎 > 1 Lemma 5.5.26

any 𝑘 > 1 0 Lemma 5.5.23
any 𝑘 > 1 1 Lemma 5.5.22
any 𝑘 > 1 any 𝑎 > 1 Lemma 5.5.21

Table 5.2: Summary of cases from which we show convergence in 𝑂(1) steps to a
near-stable pair of configurations (Definition 5.5.16) with constant probability.

Lemma 5.5.20 (‖𝑌 𝑡‖1 = ‖𝐴𝑡‖1 = 0). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶

with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡 and ‖𝐶(𝑌 )‖1 = ‖𝐶(𝐴)‖1 = 0. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+3, 𝑁 𝑡+4) is near-stable |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

Proof. The proof follows from a series of four steps, arguing about the state of ℒ𝑛,𝛾
at times 𝑡+ 1, 𝑡+ 2, 𝑡+ 3, 𝑡+ 4.

Step 1:

294



Let ℰ1 be the event that 𝑦𝑡+1
𝑖 = 𝑥𝑡+1

𝑖 for all 𝑖 and that 𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈

{1, ..., ⌈log2 𝑛⌉}. By Lemma 5.5.15, since ‖𝐶(𝐴)‖1 = 0,

P[𝑦𝑡+1
𝑖 = 𝑥𝑡+1

𝑖 for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

Additionally, since ‖𝐶(𝑌 )‖1 = 0, by Lemma 5.5.8 conclusion (1),

P[𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.

Thus, by a union bound we have:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉) · 𝑒−𝛾/2. (5.69)

Step 2:

Let ℰ2 be the event that 𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖 and that for 𝑙 = ⌊log2 (‖𝑋 𝑡‖1)⌋,
𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 = ... = 𝑎𝑙+2
⌈log2 𝑛⌉

= 0 (if 𝑙 = 0, just 𝑎𝑡+2
𝑠 = 1).

Conditioned on ℰ1, the only inhibitor that possibly fires at time 𝑡 + 1 is 𝑎𝑠. We can
separately consider the cases when 𝑎𝑡+1

𝑠 = 0 and when 𝑎𝑡+1
𝑠 = 1. By Lemma 5.5.11,

P
[︀
𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖|ℰ1, 𝑎𝑡+1
𝑠 = 1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]︀ ≥ 1− 𝑛𝑒−𝛾/2.

By Lemma 5.5.15 we also have

P
[︀
𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖|ℰ1, 𝑎𝑡+1
𝑠 = 0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]︀ ≥ 1− 𝑛𝑒−𝛾/2.

By the law of total probability this gives:

P
[︀
𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]︀ ≥ 1− 𝑛𝑒−𝛾/2. (5.70)

We also apply Lemma 5.5.8. Conditioned on ℰ1, for 𝑙 = ⌊log2 (‖𝑋 𝑡‖1)⌋, we have
‖𝑌 𝑡+1‖1 = ‖𝑋 𝑡‖1 ∈ [2𝑙, 2𝑙+1), which gives that,

P[𝑎𝑡+2
1 = ... = 𝑎𝑡+2

𝑖 = 1 and 𝑎𝑡+2
𝑖+1 = ... = 𝑎𝑡+2

⌈log2 𝑛⌉
= 0|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2. (5.71)

295



Similarly, applying Lemma 5.5.7, since conditioned on ℰ1, ‖𝑌 𝑡+1‖1 = ‖𝑋 𝑡+1‖1 ≥ 1:

P[𝑎𝑡+2
𝑠 = 1|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2. (5.72)

Combining (5.70), (5.71), and (5.72) we have:

P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.73)

Step 3:

Let ℰ3 be the event that 𝑌 𝑡+3 is a valid WTA configuration, and that for 𝑙 =
⌊log2 (‖𝑋 𝑡‖1)⌋, 𝑎𝑡+3

𝑠 = 𝑎𝑡+3
1 = ... = 𝑎𝑡+3

𝑙 = 1 and 𝑎𝑡+3
𝑙+1 = ... = 𝑎𝑙+3

⌈log2 𝑛⌉
= 0.

If 𝑙 = 0, conditioned on ℰ1, ℰ2, we have 𝑌 𝑡+1 = 𝑌 𝑡+2 = 𝑋 𝑡 and so ‖𝑌 𝑡+1‖1 =

‖𝑌 𝑡+2‖1 = ‖𝑋 𝑡‖1 = 1. By the stability property of Lemma 5.5.11 we thus have:

P[𝑌 𝑡+3 is a valid WTA output configuration |ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

Oftherwise, for 𝑙 ≥ 1, by Corollary 5.5.13, since conditioned on ℰ1 and ℰ2,

‖min(𝑌 𝑡+1, 𝑌 𝑡+2)‖1 = ‖𝑋 𝑡‖1 ∈ [2𝑙, 2𝑙+1)

and 𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 = ... = 𝑎𝑡+2
⌈log2 𝑛⌉

= 0,

P[𝑌 𝑡+3 is a valid WTA output configuration |ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 𝑛𝑒−2𝛾.

We can easily bound the probability of 𝑎𝑡+3
𝑠 = 𝑎𝑡+3

1 = ... = 𝑎𝑡+3
𝑙 = 1 and 𝑎𝑡+3

𝑙+1 = ... =

𝑎𝑙+3
⌈log2 𝑛⌉

= 0 using the same arguments as in (5.71) and (5.72), giving, via a union
bound:

P[ℰ3|ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.74)

Step 4:

Finally, let ℰ4 be the event that max(𝑌 𝑡+3, 𝑌 𝑡+4) = 1, 𝑎𝑡+4
𝑠 = 1,

∑︀⌈log2 𝑛⌉
𝑗=1 𝑎𝑡+4

𝑗 = 0

and 𝑦𝑡+4
𝑖 ≤ 𝑥𝑡+4

𝑖 for all 𝑖. We can check via Definition 5.5.16 that if ℰ3 and ℰ4 occur,
then (𝑁 𝑡+3, 𝑁 𝑡+4) is a near-stable pair.

Since conditioned on ℰ3, 𝑎𝑡+3
𝑠 = 𝑎𝑡+3

1 = ... = 𝑎𝑡+3
𝑙 = 1 and 𝑎𝑡+3

𝑙+1 = ... = 𝑎𝑙+3
⌈log2 𝑛⌉

= 0,

296



if 𝑙 ≥ 1, by Lemma 5.5.12 conclusion (1),

P[‖𝑌 𝑡+4‖1 ≤ ‖𝑌 𝑡+3‖1|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2. (5.75)

Since conditioned on ℰ3, ‖𝑌 𝑡+3‖1 = 1, this gives max(𝑌 𝑡+3, 𝑌 𝑡+4) = 1. If 𝑙 = 0, then
we have an identical bound via the stability property of Lemma 5.5.11.

Again, since conditioned on ℰ3, ‖𝑌 𝑡+3‖1 = 1, by Lemma 5.5.7,

P[𝑎𝑡+4
𝑠 = 1|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2. (5.76)

By Lemma 5.5.8, this also gives

P

⎡⎣⌈log2 𝑛⌉∑︁
𝑗=1

𝑎𝑡+4
𝑗 = 0

⃒⃒
ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′

⎤⎦ ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2. (5.77)

By a union bound using (5.75),(5.76), and (5.77),

P[ℰ4|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.78)

Completing the proof:

Let ℰ be the event that (𝑁 𝑡+3, 𝑁 𝑡+4) is near-stable . We can complete the proof
by bounding:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ P[ℰ3, ℰ4|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ P[ℰ4|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ3|ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′].

We can bound the above terms using (5.69), (5.73),(5.74), and (5.78) giving:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥
(︀
1− (𝑛+ ⌈log2 𝑛⌉) · 𝑒−𝛾/2

)︀
·
(︀
1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︀
·
(︂

1

16
− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︂
·
(︀
1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︀
≥ 1

16
− 4(𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

297



Lemma 5.5.21 (‖𝑌 𝑡‖1 > 1, ‖𝐴𝑡‖1 > 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 > 1, ‖𝐶(𝐴)‖1 > 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 7|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−24𝑛·𝑒−𝛾/2.

Proof. Again the proof follows from a series of steps, arguing about the state of ℒ𝑛,𝛾
at times 𝑡+1, 𝑡+2, .... Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some
𝑖 ≤ 7.

Step 1:

Let ℰ1 be the event that 𝑦𝑡+1
𝑖 ≤ 𝑦𝑡𝑖 for all 𝑖 and that for 𝑙 = ⌊log2 (‖𝑌 𝑡‖1)⌋,

𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 = ... = 𝑎𝑙+2
⌈log2 𝑛⌉

= 0 (note that 𝑙 ≥ 1 since
‖𝑌 𝑡‖1 > 1). Let ℰ1,0 be the event that ℰ1 holds and ‖𝑌 𝑡+1‖1 = 0. Let ℰ1,1 be the
event that ℰ1 holds and ‖𝑌 𝑡+1‖1 = 1. Finally, let ℰ1,>1 be the event that ℰ1 holds and
‖𝑌 𝑡+1‖1 > 1. Applying Lemmas 5.5.7, 5.5.8, and 5.5.12 and a union bound:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.79)

Step 2:

Let ℰ2 be the event that ‖𝑌 𝑡+2‖1 = 0, that 𝑎𝑡+2
𝑠 = 1 if ‖𝑌 𝑡+1‖1 > 0, and that

for 𝑙′ = ⌊log2 (‖𝑌 𝑡+1‖1)⌋, 𝑎𝑡+2
1 = ... = 𝑎𝑡+2

𝑙′ = 1 and 𝑎𝑡+2
𝑙′+1 = ... = 𝑎𝑙+2

⌈log2 𝑛⌉
= 0. Since,

conditioned on ℰ1, ‖𝑌 𝑡+1‖1 ≤ ‖𝑌 𝑡‖1 ≤ 2𝑙+1, 𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 =

... = 𝑎𝑙+2
⌈log2 𝑛⌉

= 0, by Corollary 5.5.14 combined with Lemmas 5.5.7, 5.5.8:

P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

8
− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.80)

We now write:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ min
(︀
P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

)︀
· P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] · P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

298



Using (5.79) and (5.80) we can bound the above by:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ min
(︀
P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

)︀
·
(︂
1

8
− 6𝑛 · 𝑒−𝛾/2

)︂
.

(5.81)

We bound the minimum above by considering each of the three cases separately.

Case 1: P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′].

Conditioned on ℰ2, ‖𝑌 𝑡+2‖1 = 0. So by Lemma 5.5.20,

P[(𝑁 𝑡+5, 𝑁 𝑡+6) is near-stable |ℰ2, ℰ1,0, ‖𝐴𝑡+2‖1 = 0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

(5.82)

If ‖𝐴𝑡+2‖ ≥ 1 then, conditioned on ℰ2, we must have 𝑎𝑡+2
𝑠 = 1. Let ℰ3 be the event

that ‖𝑌 𝑡+3‖1 = ‖𝐴𝑡+3‖1 = 0. By Lemmas 5.5.7, 5.5.8, and 5.5.11 and the fact that
conditioned on ℰ1,0, ‖𝑌 𝑡+1‖1 = 0,

P[ℰ3|ℰ2, ℰ1,0, ‖𝐴𝑡+2‖1 ≥ 1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

(5.83)

Again by Lemma 5.5.20,

P[(𝑁 𝑡+6, 𝑁 𝑡+7) is near-stable |ℰ3, ℰ2, ℰ1,0, ‖𝐴𝑡+2‖1 = 0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
−12𝑛·𝑒−𝛾/2.

Combined with (5.83) this gives

P[(𝑁 𝑡+6, 𝑁 𝑡+7) is near-stable |ℰ2, ℰ1,0, ‖𝐴𝑡+2‖1 ≥ 1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 15𝑛 · 𝑒−𝛾/2.

By the law of total probability, combined with (5.82) we have

P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 15𝑛 · 𝑒−𝛾/2 (5.84)

which completes this case.

Case 2: P[ℰ|ℰ2, ℰ1,1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′].

299



In this case, conditioned on ℰ1,1 and ℰ2, 𝑎𝑡+1
𝑠 = 𝑎𝑡+2

𝑠 = 1, 𝑎𝑠 is the only inhibitor
that fires at time 𝑡 + 2, ‖𝑌 𝑡+1‖1 = 1, and ‖𝑌 𝑡+2‖1 = 0. Thus, (𝑁 𝑡+1, 𝑁 𝑡+2) is a
near-stable pair of configurations, and so vacuously,

P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] = 1 (5.85)

which completes this case.

Case 3: P[ℰ|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′].

In this case, conditioned on ℰ1,>1 and ℰ2, ‖𝐴𝑡+2‖1 > 1 and 𝑎𝑡+2
𝑠 = 1. Let ℰ3 be the

event that ‖𝑌 𝑡+3‖1 = 0 and that if ‖𝐴𝑡+3‖1 ≥ 1, 𝑎𝑡+3
𝑠 = 1. By Lemmas 5.5.7, 5.5.8,

and 5.5.12,

P[ℰ3|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1)𝑒−𝛾/2. (5.86)

In the case that ‖𝐴𝑡+3‖1 = 0, we can again apply Lemma 5.5.20 to give:

P[(𝑁 𝑡+6, 𝑁 𝑡+7) is near-stable |ℰ3, ‖𝐴𝑡+3‖1 = 0, ℰ2, ℰ1,>1,𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1

16
− 12𝑛 · 𝑒−𝛾/2. (5.87)

In the case that ‖𝐴𝑡+3‖1 ≥ 1, let ℰ4 be the event that ‖𝑌 𝑡+4‖1 = ‖𝐴𝑡+4‖ = 0. We
have by Lemmas 5.5.7, 5.5.8 and 5.5.11,

P[ℰ4|ℰ3, ‖𝐴𝑡+3‖1 ≥ 1, ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1)𝑒−𝛾/2.

(5.88)

Further, again by Lemma 5.5.20 we have:

P[(𝑁 𝑡+7, 𝑁 𝑡+8) is near-stable |ℰ4, ℰ3, ‖𝐴𝑡+3‖1 = 0, ℰ2, ℰ1,>1,𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

Combined with (5.88) this gives:

P[(𝑁 𝑡+7, 𝑁 𝑡+8) is near-stable |ℰ3, ‖𝐴𝑡+3‖1 = 0, ℰ2, ℰ1,>1,𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1

16
− 15𝑛 · 𝑒−𝛾/2.

300



Further, combined with (5.87), by the law of total probability,

P[ℰ|ℰ3, ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 15𝑛 · 𝑒−𝛾/2. (5.89)

Finally, combining (5.89) with (5.86) we have:

P[ℰ|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 18𝑛 · 𝑒−𝛾/2 (5.90)

completing this case.

Completing the proof.

Using equations (5.84), (5.85), and (5.90) in the three cases above along (5.81):

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ min
(︀
P[ℰ|ℰ2, ℰ1,0, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′],

P[ℰ|ℰ2, ℰ1,>1, 𝑁
𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

)︀
·
(︂
1

8
− 6𝑛 · 𝑒−𝛾/2

)︂
≥
(︂

1

16
− 18𝑛 · 𝑒−𝛾/2

)︂
·
(︂
1

8
− 6𝑛 · 𝑒−𝛾/2

)︂
≥ 1

128
− 24𝑛 · 𝑒−𝛾/2,

completing the lemma.

Using Lemma 5.5.21 it is not hard to complete the cases when ‖𝑌 𝑡‖1 > 1 and
‖𝐴𝑡‖1 ≤ 1.

Lemma 5.5.22 (‖𝑌 𝑡‖1 > 1, ‖𝐴𝑡‖1 = 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 > 1, ‖𝐶(𝐴)‖1 = 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 8|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−28𝑛·𝑒−𝛾/2.

Proof. Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 8. Let ℰ1 be
the event that 𝑦𝑡+1

𝑖 ≥ 𝑦𝑡𝑖 and 𝑦𝑡+1
𝑖 ≤ 𝑥𝑡+1

𝑖 for all 𝑖, that 𝑎𝑡+1
𝑠 = 1, and that ‖𝐴𝑡+1‖1 > 1.

By Corollary 5.5.6 and Lemmas 5.5.7, 5.5.8, and 5.5.11, we have:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (2𝑛+ ⌈log2 𝑛⌉+ 1)𝑒−𝛾/2.

301



Further, by Lemma 5.5.22 since conditioned on ℰ1, ‖𝑌 𝑡+1‖1 > 1 and ‖𝐴𝑡+1‖1 > 1

with 𝑎𝑡+1
𝑠 = 1:

P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 24𝑛 · 𝑒−𝛾/2.

This gives the lemma since:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] · P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1

128
− 28𝑛 · 𝑒−𝛾/2.

Lemma 5.5.23 (‖𝑌 𝑡‖1 > 1, ‖𝐴𝑡‖1 = 0). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾
has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations
𝐶 ′, 𝐶 with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 > 1, ‖𝐶(𝐴)‖1 = 0, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 8|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−27𝑛·𝑒−𝛾/2.

Proof. Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 8. Let ℰ1
be the event that 𝑦𝑡+1

𝑖 = 𝑥𝑡+1
𝑖 for all 𝑖, that 𝑎𝑡+1

𝑠 = 1, and that ‖𝐴𝑡+1‖1 > 1. Note that
since ‖𝐶(𝑌 )‖1 > 1 and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖) for all 𝑖, ℰ1 implies that ‖𝑌 𝑡+1‖1 = ‖𝑋 𝑡+1‖1 >
1. By Lemmas 5.5.7, 5.5.8, and 5.5.15:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1)𝑒−𝛾/2.

Further, by Lemma 5.5.22 since conditioned on ℰ1, ‖𝑌 𝑡+1‖1 > 1 and ‖𝐴𝑡+1‖1 > 1

with 𝑎𝑡+1
𝑠 = 1:

P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 24𝑛 · 𝑒−𝛾/2.

This gives the lemma since:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] · P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1

128
− 27𝑛 · 𝑒−𝛾/2.

302



We next complete the remaining cases when ‖𝑌 𝑡‖1 ≤ 1.

Lemma 5.5.24 (‖𝑌 𝑡‖1 = 1, ‖𝐴𝑡‖1 = 0). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾
has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations
𝐶 ′, 𝐶 with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 = 1, ‖𝐶(𝐴)‖1 = 0, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+3, 𝑁 𝑡+4) is near-stable |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

Proof. The proof follows from a series of four steps, arguing about the state of ℒ𝑛,𝛾
at times 𝑡 + 1, 𝑡 + 2, 𝑡 + 3, 𝑡 + 4. The analysis closely mirrors that of Lemma 5.5.20,
for the case when ‖𝑌 𝑡‖1 = 0 and ‖𝐴𝑡‖1 = 0.

Step 1:

Let ℰ1 be the event that 𝑦𝑡+1
𝑖 = 𝑥𝑡+1

𝑖 for all 𝑖, that 𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉},

and that 𝑎𝑡+1
𝑠 = 1. By Lemma 5.5.15, since ‖𝐶(𝐴)‖1 = 0,

P[𝑦𝑡+1
𝑖 = 𝑥𝑡+1

𝑖 for all 𝑖|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

Additionally, since ‖𝐶(𝑌 )‖1 = 1, by Lemma 5.5.8 conclusion (1),

P[𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.

Finally, by Lemma 5.5.7,

P[𝑎𝑡+1
𝑠 = 1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2.

Thus, by a union bound we have:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.91)

Step 2:

Let ℰ2 be the event that 𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖 and that for 𝑙 = ⌊log2 (‖𝑋 𝑡‖1)⌋,
𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 = ... = 𝑎𝑙+2
⌈log2 𝑛⌉

= 0 (if 𝑙 = 0, just 𝑎𝑡+2
𝑠 = 1).

Conditioned on ℰ1, the only inhibitor that fires at time 𝑡+1 is 𝑎𝑠. We can separately
consider the cases when 𝑎𝑡+1

𝑠 = 0 and when 𝑎𝑡+1
𝑠 = 1. By Lemma 5.5.11 and the fact

303



that 𝑦𝑡+1
𝑖 = 𝑥𝑡+1

𝑖 for all 𝑖,

P
[︀
𝑦𝑡+2
𝑖 = 𝑥𝑡+2

𝑖 for all 𝑖|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]︀ ≥ 1− 𝑛𝑒−𝛾/2. (5.92)

We also apply Lemma 5.5.8. Conditioned on ℰ1, for 𝑙 = ⌊log2 (‖𝑋 𝑡‖1)⌋, we have
‖𝑌 𝑡+1‖1 = ‖𝑋 𝑡‖1 ∈ [2𝑙, 2𝑙+1), which gives that,

P[𝑎𝑡+2
1 = ... = 𝑎𝑡+2

𝑖 = 1 and 𝑎𝑡+2
𝑖+1 = ... = 𝑎𝑡+2

⌈log2 𝑛⌉
= 0|ℰ1,𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2.
(5.93)

Similarly, applying Lemma 5.5.7, since conditioned on ℰ1, ‖𝑌 𝑡+1‖1 = ‖𝑋 𝑡+1‖1 ≥ 1:

P[𝑎𝑡+2
𝑠 = 1|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2. (5.94)

Combining (5.92), (5.93), and (5.94) we have:

P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.95)

Step 3:

Let ℰ3 be the event that 𝑌 𝑡+3 is a valid WTA configuration, and that for 𝑙 =
⌊log2 (‖𝑋 𝑡‖1)⌋, 𝑎𝑡+3

𝑠 = 𝑎𝑡+3
1 = ... = 𝑎𝑡+3

𝑙 = 1 and 𝑎𝑡+3
𝑙+1 = ... = 𝑎𝑙+3

⌈log2 𝑛⌉
= 0.

If 𝑙 = 0, conditioned on ℰ1, ℰ2, we have ‖𝑌 𝑡+1‖1 = ‖𝑌 𝑡+2‖1 = 1 and 𝑌 𝑡+1 =

𝑌 𝑡+2 = 𝑋 𝑡. By the stability property of Lemma 5.5.11 we thus have:

P[𝑌 𝑡+3 is a valid WTA output configuration |ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

Oftherwise, for 𝑙 ≥ 1, by Corollary 5.5.13, since conditioned on ℰ1 and ℰ2,

‖min(𝑌 𝑡+1, 𝑌 𝑡+2)‖1 = ‖𝑋 𝑡‖1 ∈ [2𝑙, 2𝑙+1)

and 𝑎𝑡+2
𝑠 = 𝑎𝑡+2

1 = ... = 𝑎𝑡+2
𝑙 = 1 and 𝑎𝑡+2

𝑙+1 = ... = 𝑎𝑡+2
⌈log2 𝑛⌉

= 0,

P[𝑌 𝑡+3 is a valid WTA output configuration |ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 𝑛𝑒−2𝛾.

We can easily bound the probability of 𝑎𝑡+3
𝑠 = 𝑎𝑡+3

1 = ... = 𝑎𝑡+3
𝑙 = 1 and 𝑎𝑡+3

𝑙+1 = ... =

𝑎𝑙+3
⌈log2 𝑛⌉

= 0 using the same arguments as in (5.93) and (5.94), giving, via a union

304



bound:

P[ℰ3|ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.96)

Step 4:

Finally, let ℰ4 be the event that max(𝑌 𝑡+3, 𝑌 𝑡+4) = 1, 𝑎𝑡+4
𝑠 = 1,

∑︀⌈log2 𝑛⌉
𝑗=1 𝑎𝑡+4

𝑗 = 0

and 𝑦𝑡+4
𝑖 ≤ 𝑥𝑡+4

𝑖 for all 𝑖. We can check via Definition 5.5.16 that if ℰ3 and ℰ4 occur,
then (𝑁 𝑡+3, 𝑁 𝑡+4) is a near-stable pair.

Since conditioned on ℰ3, 𝑎𝑡+3
𝑠 = 𝑎𝑡+3

1 = ... = 𝑎𝑡+3
𝑙 = 1 and 𝑎𝑡+3

𝑙+1 = ... = 𝑎𝑙+3
⌈log2 𝑛⌉

= 0,
if 𝑙 ≥ 1, by Lemma 5.5.12 conclusion (1),

P[‖𝑌 𝑡+4‖1 ≤ ‖𝑌 𝑡+3‖1|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2. (5.97)

Since conditioned on ℰ3, ‖𝑌 𝑡+3‖1 = 1, this gives max(𝑌 𝑡+3, 𝑌 𝑡+4) = 1. If 𝑙 = 0, then
we have an identical bound via the stability property of Lemma 5.5.11.

Again, since conditioned on ℰ3, ‖𝑌 𝑡+3‖1 = 1, by Lemma 5.5.7,

P[𝑎𝑡+4
𝑠 = 1|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑒−𝛾/2. (5.98)

By Lemma 5.5.8, this also gives

P

⎡⎣⌈log2 𝑛⌉∑︁
𝑗=1

𝑎𝑡+4
𝑗 = 0

⃒⃒
ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′

⎤⎦ ≥ 1− ⌈log2 𝑛⌉ · 𝑒−𝛾/2. (5.99)

By a union bound using (5.97),(5.98), and (5.99),

P[ℰ4|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2. (5.100)

Completing the proof:

Let ℰ be the event that (𝑁 𝑡+3, 𝑁 𝑡+4) is near-stable . We can complete the proof

305



by bounding:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ P[ℰ3, ℰ4|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

≥ P[ℰ4|ℰ1, ℰ2, ℰ3, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ3|ℰ1, ℰ2, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ2|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

· P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′]

We can bound the above terms using (5.91), (5.95),(5.96), and (5.100) giving:

P[ℰ|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥
(︀
1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︀
·
(︀
1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︀
·
(︂

1

16
− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︂
·
(︀
1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

)︀
≥ 1

16
− 4(𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

≥ 1

16
− 12𝑛 · 𝑒−𝛾/2.

The remaining cases follow relatively straightforwardly from the previous lemmas.

Lemma 5.5.25 (‖𝑌 𝑡‖1 = 1, ‖𝐴𝑡‖1 = 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 = 1, ‖𝐶(𝐴)‖1 = 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 9|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−28𝑛·𝑒−𝛾/2.

Proof. Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 9. Let ℰ1 be
the event that 𝑦𝑡+1

𝑖 ≥ 𝑦𝑡𝑖 and 𝑦𝑡+1
𝑖 ≤ 𝑥𝑡+1

𝑖 for all 𝑖, that 𝑎𝑡+1
𝑠 = 1, and that ‖𝐴𝑡+1‖1 > 1.

By Corollary 5.5.6 and Lemmas 5.5.7, 5.5.8, and 5.5.11, we have:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (2𝑛+ ⌈log2 𝑛⌉+ 1)𝑒−𝛾/2. (5.101)

We consider two cases, dependent on the number of firing outputs at time 𝑡 + 1.
Conditioned on ℰ1, ‖𝑌 𝑡+1‖1 ≥ ‖𝑌 𝑡‖1 = 1. By Lemma 5.5.22 since conditioned on ℰ1,

306



‖𝐴𝑡+1‖1 > 1 with 𝑎𝑡+1
𝑠 = 1:

P[ℰ|ℰ1, ‖𝑌 𝑡+1‖ > 1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 24𝑛 · 𝑒−𝛾/2.

Alternatively, if ‖𝑌 𝑡+1‖ = 1, then (𝑁 𝑡, 𝑁 𝑡+1) is already a near-stable pair of configu-
rations (Definition 5.5.16) so we vacuously have

P[ℰ|ℰ1, ‖𝑌 𝑡+1‖ = 1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] = 1.

By the law of total probability this gives:

P[ℰ|ℰ1𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 24𝑛 · 𝑒−𝛾/2.

Finally, we obtain the lemma by combining this bound with (5.101).

Lemma 5.5.26 (‖𝑌 𝑡‖1 = 1, ‖𝐴𝑡‖1 > 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 = 1, ‖𝐶(𝐴)‖1 > 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡, 𝑁 𝑡+1) is near-stable |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 3𝑛 · 𝑒−𝛾/2.

Proof. Let ℰ1 be the event that ‖𝐴𝑡+1‖1 = 1 and 𝑎𝑡+1
𝑠 = 1. Again Lemmas 5.5.7 and

5.5.8 we have:

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2.

Let ℰ2 be the event that ‖𝑌 𝑡+1‖ ≤ 1 and that 𝑦𝑡+1
𝑖 ≤ 𝑥𝑡+1

𝑖 for all 𝑖. By Lemma 5.5.12,

P[ℰ2|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 𝑛𝑒−𝛾/2.

If ℰ1 and ℰ2 both occur, (𝑁 𝑡, 𝑁 𝑡 + 1) is a near-stable pair of configurations, giving
the lemma by a union bound and the fact that (𝑛+ ⌈log2 𝑛⌉+ 1) ≤ 3𝑛.

307



Lemma 5.5.27 (‖𝑌 𝑡‖1 = 0, ‖𝐴𝑡‖1 = 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 = 0, ‖𝐶(𝐴)‖1 = 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 10|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−31𝑛𝑒−𝛾/2.

Proof. Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 10. Let ℰ1
be the event that 𝑎𝑡+1

𝑠 = 1 if ‖𝑌 𝑡−1‖1 ≥ 1 and 0 otherwise, that 𝑎𝑡+1
𝑖 = 0 for all 𝑖 ∈

{1, ..., ⌈log2 𝑛⌉}, and that 𝑦𝑡+1
𝑖 = max(𝑦𝑡−1

𝑖 , 𝑦𝑡𝑖) for all 𝑖. By Lemmas 5.5.7, 5.5.8, and
5.5.11

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2 (5.102)

We next consider two cases, based off the number of firing outputs at time 𝑡− 1.

Case 1: ‖𝐶 ′(𝑌 )‖1 = 0.

In this case, conditioned on ℰ1, ‖𝑌 𝑡+1‖1 = ‖𝐴𝑡+1‖1 = 0. Thus, by Lemma 5.5.20,

P[(𝑁 𝑡+4, 𝑁 𝑡+5) is near-stable |ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

16
− 12𝑛 · 𝑒−𝛾/2 (5.103)

Case 2: ‖𝐶 ′(𝑌 )‖1 ≥ 1.

In this case, conditioned on ℰ1, 𝑎𝑡+1
𝑠 = 1, ‖𝐴𝑡+1‖1 = 1 and ‖𝑌 𝑡+1‖1 ≥ 1. Thus by

Lemmas 5.5.22 and 5.5.25,

P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 28𝑛 · 𝑒−𝛾/2 (5.104)

Overall by (5.103) and (5.104) we have

P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 28𝑛 · 𝑒−𝛾/2,

which gives the lemma when combined with (5.102).

308



Lemma 5.5.28 (‖𝑌 𝑡‖1 = 0, ‖𝐴𝑡‖1 > 1). Assume the input execution 𝛼𝑋 of ℒ𝑛,𝛾 has
𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations 𝐶 ′, 𝐶 with
𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡, ‖𝐶(𝑌 )‖1 = 0, ‖𝐶(𝐴)‖1 > 1, 𝐶(𝑎𝑠) = 1, and 𝐶(𝑦𝑖) ≤ 𝐶(𝑥𝑖),
𝐶 ′(𝑦𝑖) ≤ 𝐶 ′(𝑥𝑖) for all 𝑖. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 11|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−33𝑛𝑒−𝛾/2.

Proof. Let ℰ be the event that (𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 11. Let ℰ1
be the event that 𝑎𝑡+1

𝑖 = 0 for all 𝑖 ∈ {1, ..., ⌈log2 𝑛⌉}, and that ‖𝑌 𝑡+1‖1 = 0. By
Lemmas 5.5.8 and 5.5.12,

P[ℰ1|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− (𝑛+ ⌈log2 𝑛⌉) · 𝑒−𝛾/2. (5.105)

Further, by Lemmas 5.5.20 and 5.5.27,

P[ℰ|ℰ1, 𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
− 31𝑛 · 𝑒−𝛾/2.

This gives the lemma when combined with (5.105).

5.5.6 Completing the Analysis

By combining the nine cases of Lemmas 5.5.20, 5.5.21, 5.5.22, 5.5.23, 5.5.24, 5.5.25,
5.5.26, 5.5.27, and 5.5.28 we can conclude the following general statement:

Lemma 5.5.29 (𝑂(1) Step Convergence From Typical Configurations). Assume the
input execution 𝛼𝑋 of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any
pair of typical configurations (Definition 5.5.9) 𝐶 ′, 𝐶 with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡.
For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 11|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−33𝑛𝑒−𝛾/2.

Proof. The nine cases of the above listed lemmas cover all possible pairs of typical
configurations 𝐶,𝐶 ′. So the lemma follows immediately.

From Lemma 5.5.29 we can conclude an even more general result:

309



Lemma 5.5.30 (General 𝑂(1) Step Convergence). Assume the input execution 𝛼𝑋

of ℒ𝑛,𝛾 has 𝑋 𝑡 fixed for all 𝑡 and that ‖𝑋 𝑡‖1 ≥ 1. Consider any pair of configurations
𝐶 ′, 𝐶 with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡. For any time 𝑡 ≥ 1,

P[(𝑁 𝑡+𝑖, 𝑁 𝑡+𝑖+1) is near-stable for some 𝑖 ≤ 13|𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1

128
−39𝑛𝑒−𝛾/2.

Proof. By Corollary 5.5.10, for any 𝐶 ′, 𝐶,

P[𝑁 𝑡+1, 𝑁 𝑡+2 are typical |𝑁 𝑡 = 𝐶,𝑁 𝑡−1 = 𝐶 ′] ≥ 1− 2(𝑛+ ⌈log2 𝑛⌉+ 1) · 𝑒−𝛾/2

≥ 1− 6𝑛 · 𝑒−𝛾/2.

The lemma then follows by combining this bound with Lemma 5.5.29.

Finally, using Lemma 5.5.30, we can prove the two main theorems of this section.
The proofs are similar to those of the main theorems for the two-inhibitor network in
Section 5.3.7.
Theorem 5.5.2 (𝑂(log 𝑛)-Inhibitor WTA). For 𝛾 ≥ 12 ln(39𝑡𝑠𝑛/𝛿), ℒ𝑛,𝛾 solves
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any 𝑡𝑐 ≥ 2086(log2(1/𝛿)+1). ℒ𝑛,𝛾 contains ⌈log2 𝑛⌉+1 auxiliary
inhibitors.

Proof. Consider ℒ𝑛,𝛾 starting with any initial configurations 𝑁0, 𝑁1 and given an
infinite input execution 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡. We consider two cases:

Case 1: ‖𝑋 𝑡‖1 ≥ 1.

Let Δ = 15 and 𝑟 = 139(log2(1/𝛿) + 1). Let ℰ be the event that there is some
time 𝑡 ≤ 𝑡𝑐 where (𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair of configurations.

For any 𝑖 ≥ 0, let ℰ𝑖 be the event that there is some time 𝑡 ∈ {𝑖Δ+1, ..., (𝑖+1)Δ−1}
where (𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair of configurations. By Lemma 5.5.30 we have:

P[ℰ𝑖|𝑁 𝑖Δ] ≥ 1

128
− 39𝑛 · 𝑒−𝛾/2 ≥ 1

200

by the requirement that 𝛾 > 12 ln(39𝑡𝑠𝑛/𝛿). Let 𝑍0, ..., 𝑍𝑟−1 ∈ {0, 1} be independent
coin flips, with P[𝑍𝑖 = 1] = 1/200. Applying Lemma 5.2.3:

P[ℰ ] = P

[︃
𝑟−1⋂︁
𝑖=0

ℰ𝑖

]︃
≥ P

[︃
𝑟−1∑︁
𝑖=0

𝑍𝑖 ≥ 1

]︃
= 1−

(︂
199

200

)︂𝑟
.

310



Using that 𝑟 = 139(log2(1/𝛿) + 1) and that
(︀
199
200

)︀139 ≤ 1
2
:

P[ℰ ] ≥ 1−
(︂
199

200

)︂139(log2(1/𝛿)+1)

≥ 1− 𝛿

2
. (5.106)

Thus, with probability ≥ 1− 𝛿
2

there is some time 𝑡 ≤ 𝑟 ·Δ− 1 ≤ 2085 · (log2(1/𝛿) +
1)−1 ≤ 𝑡𝑐−2 in which (𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair of configurations. By Corollary
5.5.19, if (𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair, with probability ≥ 1− 3𝑡𝑠𝑛 · 𝑒−𝛾/2, 𝑁 𝑡+2 is
a valid WTA configuration and:

𝑌 𝑡+2 = 𝑌 𝑡+3 = ... = 𝑌 𝑡+2+𝑡𝑠 .

By the requirement that 𝛾 ≥ 12 ln(39𝑡𝑠𝑛/𝛿) and (5.106) we thus have that the network
reaches a valid WTA configuration within time 𝑡𝑐 and remains in it for time 𝑡𝑠 with
probability at least: (︂

1− 𝛿

2

)︂
·
(︂
1− 𝛿

𝑒6

)︂
≥ 1− 𝛿,

yielding the theorem in this case.

Case 0: ‖𝑋 𝑡‖1 = 0

In this case, by Corollary 5.5.6 and a union bound, for any configurations 𝐶,𝐶 ′

with 𝐶(𝑋) = 𝐶 ′(𝑋) = 𝑋 𝑡:

P[‖𝑌 2‖1 = ... = ‖𝑌 2+𝑡𝑠‖1 = 0|𝑁1 = 𝐶,𝑁0 = 𝐶 ′] ≥ 1− 3𝑡𝑠𝑛 · 𝑒−𝛾/2

≥ 1− 𝛿

by the requirement that 𝛾 ≥ 12 ln(39𝑡𝑠𝑛/𝛿). This easily gives the theorem in this
case since when ‖𝑋 𝑡‖1 = 0, ‖𝑌 𝑡‖1 = 0 is a valid WTA output configuration.

We now use a similar argument to show with what parameters ℒ𝑛,𝛾 solves the
expected-time WTA problem of Definition 5.2.9.

Theorem 5.5.3 (𝑂(log 𝑛)-Inhibitor Expected-Time WTA). For 𝛾 ≥ 12 ln(39𝑡𝑠𝑛),
ℒ𝑛,𝛾 solves WTA-EXP(𝑛, 𝑡𝑐, 𝑡𝑠) for any 𝑡𝑐 ≥ 4001. ℒ𝑛,𝛾 contains ⌈log2 𝑛⌉+1 auxiliary
inhibitors.

Proof. Our proof closely follows that of Theorem 5.3.3. Recall that in Definition
5.2.9 we defined the convergence time for any infinite input execution 𝛼𝑋 and output

311



execution 𝛼𝑌 :

𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 ) = min
{︀
𝑡 : 𝑌 𝑡 is a valid WTA output configuration for 𝑋𝑡 and 𝑌 𝑡 = ... = 𝑌 𝑡+𝑡𝑠

}︀
.

Define the worst case expected convergence time of ℒ𝑛,𝛾 on input 𝛼𝑋 by:

𝑡𝑚𝑎𝑥(𝛼𝑋) = max
𝛼1=𝑁0𝑁1

(︂
E

𝛼𝑌 ∼𝒟𝑌 (ℒ𝑛,𝛾 ,𝛼1,𝛼𝑋)
𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )

)︂
.

To prove the lemma we must prove that for any 𝛼𝑋 with 𝑋 𝑡 fixed for all 𝑡, 𝑡𝑚𝑎𝑥(𝛼𝑋) ≤
16. Fixing such an 𝛼𝑋 , for any initial configuration 𝛼1 = 𝑁0𝑁1, let E

𝛼1
and P

𝛼1

denote the expectation and probability of an event taken over executions drawn from
𝒟(ℒ𝑛,𝛾, 𝛼1, 𝛼𝑋).

We consider the case when 𝛼𝑋 has ‖𝑋 𝑡‖1 ≥ 1. The case when ‖𝑋 𝑡‖1 = 0 follows
easily from a similar proof using Corollary 5.5.6.

Let Δ = 15 and let ℰ1 be the event that there is some 𝑡 ∈ {1, ...,Δ − 1} where
(𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair of configurations. Let ℰ𝑠𝑡𝑎𝑏 be the event that there
is some 𝑡 ∈ {1, ...,Δ − 1} where (𝑁 𝑡, 𝑁 𝑡+1) is a near-stable pair of configurations
and additionally, where 𝑁 𝑡+2 is a valid WTA output configuration with 𝑁 𝑡+2 = ... =

𝑁 𝑡+2+𝑡𝑠 . Let ℰ̄1 and ℰ̄𝑠𝑡𝑎𝑏 be the complements of these two events. By Lemma 5.5.30,
for any initial 𝛼1 = 𝑁0𝑁1:

P
𝛼1
[ℰ1] ≥

1

128
− 39𝑛𝑒−𝛾/2 ≥ 1

200
. (5.107)

by the requirement that 𝛾 ≥ 12 ln(39𝑡𝑠𝑛). Further, by Corollary 5.5.19, if (𝐶 ′, 𝐶) is
a near-stable pair of configurations, then

P
𝛼1
[𝑁 𝑡+1 is a valid WTA output config. and 𝑁 𝑡+2 = ... = 𝑁 𝑡+2+𝑡𝑠|𝑁 𝑡 = 𝐶 ′, 𝑁 𝑡+1 = 𝐶]

≥ 1− 3𝑡𝑠𝑛𝑒
−𝛾/2

≥ 1− 1

1000𝑡𝑠
(5.108)

where the bound holds since 𝛾 ≥ 12 ln(39𝑡𝑠𝑛) ≥ 6 ln(39𝑡2𝑠𝑛) and so 𝑒−𝛾/2 ≤ 1
(39𝑛𝑡2𝑠)

6 ≤
1

1000𝑛𝑡2𝑠
. Together (5.107) and (5.108) give that:

P
𝛼1
[ℰ𝑠𝑡𝑎𝑏] ≥ P

𝛼1
[ℰ𝑠𝑡𝑎𝑏|ℰ1] · P

𝛼1
[ℰ1] ≥

1

200
·
(︂
1− 1

1000𝑡𝑠

)︂
≥ 1

200
− 1

1000𝑡𝑠
.

312



We can write:

E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )] = E

𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ𝑠𝑡𝑎𝑏] · P

𝛼1
[ℰ𝑠𝑡𝑎𝑏]

+ E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ1, ℰ̄𝑠𝑡𝑎𝑏] · P

𝛼1
[ℰ1, ℰ̄𝑠𝑡𝑎𝑏]

+ E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ̄1] · P

𝛼1
[ℰ̄1] (5.109)

Conditioned on ℰ𝑠𝑡𝑎𝑏 (which also requires that ℰ1 occurs), the network reaches a near-
stable pair of configuration within Δ steps, reaches a valid WTA output configuration
within Δ+ 1 steps, and stabilizes for 𝑡𝑠 steps. Thus, we have:

E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ𝑠𝑡𝑎𝑏] ≤ Δ+ 1.

Conditioned on ℰ1, ℰ̄𝑠𝑡𝑎𝑏 the network reaches a near-stable pair of configurations, but
does not stabilize. We can bound

E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ1, ℰ̄𝑠𝑡𝑎𝑏] ≤ (Δ + 1 + 𝑡𝑠) + E

𝑁Δ+𝑡𝑠𝑁Δ+1+𝑡𝑠
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )]

≤ Δ+ 1 + 𝑡𝑠 + 𝑡𝑚𝑎𝑥(𝛼𝑋).

Finally, conditioned on ℰ̄1, the network does not reach a pair of near-stable configu-
rations within Δ steps. We have:

E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )|ℰ̄1] ≤ Δ+ E

𝑁Δ−1𝑁Δ
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )]

≤ Δ+ 𝑡𝑚𝑎𝑥(𝛼𝑋).

We can plug these bounds along with the probability bounds of (5.107) and (5.108)
into (5.109) to obtain:

E
𝛼1
[𝑡(𝛼𝑋 , 𝑡𝑠, 𝛼𝑌 )] ≤ (Δ + 1) ·

(︂
1

200
− 1

1000𝑡𝑠

)︂
+ (Δ + 1 + 𝑡𝑚𝑎𝑥(𝛼𝑋) + 𝑡𝑠) ·

1

1000𝑡𝑠

+ (Δ + 𝑡𝑚𝑎𝑥(𝛼𝑋)) ·
199

200

≤ Δ+ 1 + 𝑡𝑚𝑎𝑥

(︂
199

200
+

1

1000𝑡𝑠

)︂
+

𝑡𝑠
1000𝑡𝑠

≤ Δ+ 1 + 𝑡𝑚𝑎𝑥(𝛼𝑋) ·
249

250
+

1

1000
.

313



Since this bound holds for all 𝛼1 we have:

𝑡𝑚𝑎𝑥(𝛼𝑋) ≤ Δ+ 1 + 𝑡𝑚𝑎𝑥(𝛼𝑋) ·
249

250
+

1

100

which gives 𝑡𝑚𝑎𝑥(𝛼𝑋) ≤ 250(Δ + 1) + 250
1000

≤ 250Δ + 251. This bound holds for all
𝛼𝑋 and so gives the lemma, after recalling that Δ = 15.

5.5.7 Constructions With Runtime Tradeoffs

The family of two-inhibitor networks of Section 5.3 and the family of 𝑂(log 𝑛)-
inhibitor networks of Section 5.5.2 represent two extremes of a tradeoff between
number of inhibitors and runtime. As shown in Theorem 5.4.3, the two-inhibitor
network uses the minimum number of neurons required to solve WTA with a reason-
ably long stability period. At least when considering a constant probability of success,
the 𝑂(log 𝑛)-inhibitor networks gives optimal convergence time of 𝑂(1) steps. In this
section we outline, at a high level, two families of networks that allow a tradeoff
between these two extremes.

Fixed Convergence Time Construction

The first construction lets us to achieve any desired convergence time 𝜃 if sufficiently
many inhibitors are used. Specifically, we describe a family of networks which con-
verge to a valid WTA output configuration with constant probability in 𝑂(𝜃) steps
(and with probability ≥ 1 − 𝛿 in 𝑂(𝜃 · log 1/𝛿) steps), using 𝑂(𝜃 log1/𝜃 𝑛) inhibitors.
Note that setting 𝜃 = 1 recovers the runtime-inhibitor tradeoff of our 𝑂(log 𝑛)-
inhibitor networks.

We have one stability inhibitor 𝑎𝑠 that functions in the same way as the stability
inhibitor in our 𝑂(log 𝑛)-inhibitor construction (Definition 5.5.1), ensuring that, once
the network reaches a valid WTA output configuration, it remains in this configuration
for 𝑡𝑠 consecutive time steps with high probability (as long as some other stability
conditions, similar to the near-stable condition of Definition 5.5.16 are satisfied).

The remaining inhibitors are split into 𝜃 groups each containing 𝑂(log1/𝜃 𝑛) in-
hibitors. The 𝑖𝑡ℎ group for 𝑖 ∈ {2, ..., 𝜃} is responsible for reducing the number of
competing outputs from any number

𝑘 ∈
(︁
2log

(𝑖−1)/𝜃 𝑛, 2log
𝑖/𝜃 𝑛
]︁

314



to some 𝑘′ ≤ 2log
(𝑖−1)/𝜃 𝑛. With 𝑂(log1/𝜃 𝑛)) inhibitors this can be done with high

probability in 𝑂(1) time steps via a method described below. Thus, in 𝑂(𝜃) time
steps, the number of firing outputs (corresponding to firing inputs will reduce from
at most 2log

𝜃/𝜃 𝑛 = 𝑛 down to 2log
1/𝜃 𝑛. Once the number of computing outputs is

this low, the final group of 𝑂(log1/𝜃 𝑛) inhibitors can drive convergence to WTA with
constant probability in 𝑂(1) steps using an identical strategy to that employed in our
𝑂(log 𝑛)-inhibitor network. 𝑛 is just replaced by 2log

1/𝜃 𝑛.
It remains to explain how the number of competing outputs is reduced from 𝑘 ∈

[2log
(𝑖−1)/𝜃 𝑛, 2log

𝑖/𝜃 𝑛] to 𝑘′ ≤ 2log
(𝑖−1)/𝜃 𝑛 in a single time step using 𝑂(log1/𝜃 𝑛) inhibitors.

Again, we use a strategy similar to our 𝑂(log 𝑛)-inhibitor construction. depending
on the number of firing outputs at time 𝑡, the 𝑂(log1/𝜃 𝑛) inhibitors in group 𝑖 induce
𝑂(log1/𝜃 𝑛) different firing probabilities. Letting Δ(𝑗) = 𝑗 · log(𝑖−1)/𝜃 𝑛, these firing
probabilities are:

1

2Δ(1)
,

1

2Δ(2)
, ...,

1

2Δ((log1/𝜃 𝑛−1))
,

1

2Δ(log1/𝜃 𝑛)
.

Note that Δ(1) = log(𝑖−1)/𝜃 𝑛 and Δ(log1/𝜃 𝑛) = log𝑖/𝜃 𝑛. Additionally, the ratio be-
tween adjacent probabilities is 2log(𝑖−1)/𝜃 𝑛. Thus, for any number 𝑘 ∈

(︁
2log

(𝑖−1)/𝜃 𝑛, 2log
𝑖/𝜃 𝑛
]︁

of firing outputs at time 𝑡, the inhibitors can induce a firing probability between 1
𝑘

and 2log
(𝑖−1)/𝜃 𝑛

𝑘
. Thus, with good probability, the number of firing outputs will reduce

to some value 𝑘′ ≤ 2log
(𝑖−1)/𝜃 𝑛.

While we do not analyze this construction in detail, using similar proof techniques
to those used for our 𝑂(log 𝑛)-inhibitor construction, it is possible to show:

Theorem 5.5.31 (𝜃-Step WTA). For any 𝑛 ∈ Z≥2 and 𝜃 ∈ Z≥1 there is an a
family of SNNs containing 𝑂(𝜃 · log1/𝜃 𝑛) auxiliary inhibitory neurons which solve
WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any 𝑡𝑠, 𝛿 and any 𝑡𝑐 ≥ 𝑐1 · 𝜃(log2(1/𝛿) + 1), where 𝑐1 is some
fixed constant.

Fixed Inhibitor Budget Construction

Our second construction is a family of networks using 𝛼 inhibitors for any 𝛼 ≥ 2,
which converges to a valid WTA state with constant probability in 𝑂(𝛼·(log 𝑛)1/(𝛼−1))

steps (and with probability ≥ 1− 𝛿 in 𝑂(𝛼 · (log 𝑛)1/(𝛼−1) · log 1/𝛿) steps. Note that
for 𝛼 = 2, this gives convergence in 𝑂(log 𝑛) steps, matching the performance of the
two-inhibitor network construction of Section 5.3.

As in our two-inhibitor construction (Definition 5.3.1) and 𝑂(log 𝑛)-inhibitor con-
struction (Definition 5.5.1) we employ one stability inhibitor, which ensures that,

315



once the network reaches a valid WTA output configuration, it remains in such a
configuration with good probability for 𝑡𝑠 consecutive steps (again, as long as some
other stability conditions, similar to the near-stable condition of Definition 5.5.16 are
satisfied).

We label the remaining 𝛼− 1 inhibitors 𝑎1, ..., 𝑎𝛼−1. For each 𝑖, 𝑎𝑖 fires with high
probability at time 𝑡 + 1 whenever 𝑘 ≥ 2(log𝑛)

(𝑖−1)/(𝛼−1) outputs fire at time 𝑡. In this
way, with high probability, 𝑎1, ..., 𝑎𝑖 fire (and all other inhibitors do not fire) at time
𝑡+ 1 whenever the number of firing outputs 𝑘 is in the range:

𝑅𝑖
def
=
[︁
2(log𝑛)

(𝑖−1)/(𝛼−1)

, 2(log𝑛)
𝑖/(𝛼−1)

)︁
.

We set the inhibitory weights such that when 𝑎𝑖 fires (along with 𝑎𝑗 for all 𝑗 ≤ 𝑖),
each firing output fires in the next step with probability 𝑝𝑖 =

1

2(log𝑛)(𝑖−1)/(𝛼−1) . For
𝑘 ∈ 𝑅𝑖 we have:

𝑝𝑖 · 𝑘 ∈
[︁
1, 2(log𝑛)

𝑖/(𝛼−1)·(1−1/(log𝑛)1/(𝛼−1))
)︁
.

With each output continuing to fire with probability 1

2(log𝑛)(𝑖−1)/(𝛼−1) in each step,

starting from at most 2(log𝑛)
𝑖/(𝛼−1) competing outputs, we thus reach a configuration

with 𝑘 ≤ 2(log𝑛)
(𝑖−1)/(𝛼−1) firing outputs with good probability within 𝑂((log 𝑛)1/(𝛼−1))

steps. Overall, over 𝛼 such levels, the network reaches a valid WTA configuration
with constant probability in 𝑂(𝛼 · (log 𝑛)1/(𝛼−1)) steps.

Again, while we do not analyze this construction here, it is possible to prove the
following:

Theorem 5.5.32 (𝛼-Inhibitor WTA). For any 𝑛, 𝛼 ∈ Z≥2 there is an a family of
SNNs containing 𝛼 auxiliary inhibitory neurons which solve WTA(𝑛, 𝑡𝑐, 𝑡𝑠, 𝛿) for any
𝑡𝑠, 𝛿 and any 𝑡𝑐 ≥ 𝑐1 ·𝛼(log 𝑛)1/(𝛼−1) · (log2(1/𝛿)+1), where 𝑐1 is some fixed constant.

5.6 Discussion and Future Work

We have presented an exploration of the WTA problem in stochastic spiking neural
networks, giving network constructions, runtime analysis, and lower bounds. Our
work leaves open a number of questions, both in regards to the WTA problem, and
more broadly, in exploring spiking neural networks from an algorithmic perspective.
We discuss some of these directions below. See also Section 5.2.5 in which we discuss
possible extensions two and modifications of our basic spiking neural network model.

316



5.6.1 Winner-Take-All Extensions and Open Questions

We first overview future work directly related to the WTA problem studied in this
chapter.

Lower Bounds

In Section 5.4 we present lower bounds for one and two-inhibitor WTA networks
(Theorems 5.4.3 and 5.4.14) . In [LMP17a] we also give nearly tight lower bounds on
the convergence time for networks using 𝛼 > 2 inhibitors, in a similar model to the
one presented here. A few interesting open questions remain:

∙ Can our lower bound for two-inhibitor networks (Theorem 5.4.14) be tightened
to match our upper bound (Theorem 5.3.2) up to a constant factor, rather than
a 𝑂(log log 𝑛) factor?

∙ Our lower bounds apply to somewhat restricted classes of simple and symmetric
SNNs (Definitions 5.4.1 and 5.4.2 respectively.) We conjecture, however, that
these lower bounds can be shown for general SNNs, with no restrictions on the
network structure.

∙ It would be interesting to obtain lower bounds which help explain the relation-
ship between history and convergence time. Our 𝑂(log 𝑛)-inhibitor network of
Section 5.5.2 achieves constant probability, 𝑂(1) convergence time. However,
it requires a history period of two steps. Is it possible to show that, with no
history period (i.e., in the basic SNN model of Section 5.2), it is not possible
to achieve this convergence time? Is the 𝑂(log 𝑛) time for our two-inhibitor
network optimal for historyless networks, regardless of the number of inhibitors
used? In a network with history, is it possible to solve WTA with a single
auxiliary neuron, or can the lower bound of Theorem 5.4.3 be extended to this
case?

Variations on the WTA Problem

Our work focuses on a simplified WTA problem in which all inputs either fire at every
time step or never fire (see Definition 5.2.7). The challenge in solving this problem
is in breaking symmetry between the firing inputs. In future work we plan to extend
this work to consider more general variants of WTA, discussed below.

317



∙ Non-Binary WTA: We plan to extend our WTA work to a non-binary setting,
in which inputs have different firing rates and selection is based on those rates.
The most common requirement is for the network to select an input neuron
with the highest or near-highest firing rate [YG89, CGL92, OL06].

In the most basic setting, we can consider 𝑛 inputs 𝑥1, ..., 𝑥𝑛 with firing rates
𝑟1, ..., 𝑟𝑛 ∈ [0, 1] as neurons that fire independently at random at each time step,
each time with probability 𝑟𝑖. In [LMP17c], we presented an initial exploration
of the non-binary WTA problem with inputs of this type, giving a solution
using 𝑂(𝑛 log 𝑛) auxiliary neurons to select an input with firing rate within
a constant factor of the maximum. It seems that in our basic SNN model,
Ω(𝑛 log 𝑛) auxiliary neurons may in fact be necessary: essentially, for each input
neuron, Ω(log 𝑛) auxiliary neurons are needed to record a short firing history,
from which the firing probability 𝑟𝑖 can be (implicitly) estimated to within a
constant factor, with high probability. Thus, networks using a sublinear number
of auxiliary neurons, like those we gave for binary WTA, may be ruled out.

However, more efficient solutions may be possible if we use an SNN model
with a history period. Even without history, efficient solutions may be possible
if we relax or modify the WTA problem. For example, we may just require
selecting each neuron with probability 𝑟𝑖∑︀𝑛

𝑖=1 𝑟𝑖
, or some other function of the

firing probabilities.

∙ WTA with Different Output Conditions: It would be interesting to con-
sider variations on the basic output condition of the WTA problem, both in
the binary and non-binary input setting. For example, 𝑘-WTA is a common
variant of WTA, in which the goal is to select 𝑘 inputs with the highest or
near-highest firing rates [MEAM89, Maa96, WS03, HW08], rather than just as
single input. 𝑘-WTA, for example, has been used in recent work in modeling
sparse coding in the fly olfactory via random projection methods [DSN17]. It
would be interesting to understand the fundamental complexity (in terms of
network complexity and convergence time) of implementing this primitive in
spiking neural networks.

Applications of WTA

Finally, it would be interesting to explore how our WTA constructions can be inte-
grated into solutions to higher-level neural tasks. Some problems which may be worth
considering are:

318



∙ Attention in sensory processing systems, which is thought to be implemented
via WTA competition [LIKB99, IK01]. In this setting, a specific set of neurons
is activated while others are suppressed, allowing computation to happen on the
selected neurons without interference. Formulating and studying simple tasks
which model the use of WTA as an attention mechanism would be an interesting
direction.

∙ The use of WTA in neural sparse coding algorithms [DSN17]. In this setting,
a stimulus, such as a specific odor, triggers the firing of a large set of neurons,
which is then “sparsified” via non-binary 𝑘-WTA competition to 𝑘 neurons that
encode the odor – those with the strongest response to the stimulus.

∙ Clustering problems, in a which the network is set up such that, when given
any input, the neuron which corresponds to the best cluster assignment for this
input fires at the highest rate. Non-binary WTA can be used to select this
neuron [AF94, WR94].

5.6.2 Other Neural Computational Primitives

WTA is a basic primitive that seems to be useful in a broad range of neural tasks,
discussed above. It is also useful in exploring the computational power of SNNs
and studying tradeoffs among such costs as runtime, network size, and the use of
randomness. In future work, we hope to to identify other such basic primitives, as
a means of building a general algorithmic theory for spiking neural networks. We
discuss some possible directions below:

Neural Indexing

In [LMP17b] we define and study the Neuro-RAM problem: the network is given a set
of 𝑛 binary inputs 𝑋1, along with a smaller set of log 𝑛 inputs 𝑋2 whose firing pattern
represents an index into 𝑋1. The goal is the for the output to fire if and only if the
selected neuron in 𝑋1 is firing. In [LMP17b], we applied our Neuro-RAM primitive
to the similarity testing problem: given two binary inputs 𝑋1, 𝑋2, determine with
high probability whether their Hamming distance is greater than some threshold. We
solved this problem efficiently by using a Neuro-RAM model to select and compare
random positions in 𝑋1 and 𝑋2.

It would be interesting to formulate other basic neural tasks that may employ
a Neuro-RAM primitive. For example, one can consider estimating the differences

319



between firing patterns (e.g., representing sensory inputs at successive times), esti-
mating the average firing activity of a group of neurons responding to some stimulus,
or randomly “exploring” different sets of neurons whose firing may trigger a desired
response (such as the recall of a memory).

In our work, aside from efficient Neuro-RAM constructions, we give lower bounds
demonstrating that these constructions give a near-optimal tradeoff between network
size and runtime in our basic SNN model with a sigmoidal spike probability func-
tion. Our proofs are based on reducing an SNN to a distribution over deterministic
networks, and then bounding the VC dimension [Vap98] of these networks.

Generally, while VC dimension has been studied for spiking networks [ZP96,
MS99], we are the first to apply it to prove computational lower bounds. We hope to
continue our work, greatly expanding the toolkit for proving lower bounds in biolog-
ically plausible networks, including those with different spike probability functions,
with history, and even with refractory periods or spike propagation delays.

Further, Neuro-RAM lower bounds let us compare our SNN models with artificial
neural network models that use continuous-output gates, e.g., sigmoidal gates [Bar93,
Bar97] or rectified linear units (ReLUs) [JKLR09, NH10]. The Neuro-RAM problem
can be solved very efficiently in such networks [Koi96], contrasting with its apparent
difficulty in SNNs. However, the continuous-output solutions do not seem very robust:
they do not appear to tolerate small variations in edge weights, and they seem to rely
on precise (infinite precision) gate outputs. We hope that comparing these models
with our SNNs could lead to a better understanding of continuous-output circuits in
noisy settings. We conjecture that in these settings, these networks behave more like
their spiking network counterparts than like ideal continuous-output networks.

Binary Vector Problems

Beyond the WTA and Neuro-RAM problems it would also be interesting to consider
other basic problems with fixed input firing patterns, that is, binary vector problems.
For example, the problem of estimating the total firing strength of a population of
neurons corresponds to determining the Hamming weight of a binary input vector.
More complex problems include string matching, in which we test whether the input
firing pattern contains a copy of a specified substring. In the brain, this may be
used for pattern recognition, or for alignment and comparison of patterns triggered
by multiple stimuli.

320



Problems with Non-Binary Inputs

It would also be valuable to consider problems in which the input is non-binary, for
example, problems that require computing some function of the firing rates of the
input neurons. For example, we may consider the problem of approximating the sum
of input firing probabilities, or more generally, some norm of the firing rate vector
𝑟1, ..., 𝑟𝑛. We may also consider similarity testing under different norms (generalizing
the Hamming distance similarity testing problem in [LMP17b]).

Many algorithms proposed in computational neuroscience and computer science
apply operations such as addition and multiplication to continuous neuron output
values [DR89, AZGMS14, AGMM15, DSN17]. These continuous output values can
be thought of as abstractions of firing rates in SNNs. We would like to understand
how such basic operations may be emulated in more biologically plausible SNNs.

Synchronization Problems

Finally, it would be interesting to study algorithmic primitives that are not expressed
in terms of simple input-output mappings. Notably, we would like to consider synchro-
nization problems in which neurons, starting from arbitrary firing states, cooperate to
align their firing in some way. Synchronization of spiking patterns and the emergence
of neural rhythms are widely studied in both empirical and computational neuro-
science [VVAE94, Buz06, RGDA97, WSO+07]. Synchronization is also an important
technique used in distributed algorithms [BL85, KO87, Cri89, LSW09], and thus is a
natural problem to include in an algorithmic theory of neural computation.

5.6.3 Learning Problems and Dynamic Networks

The work presented in this chapter, as well as the work proposed in Section 5.6.2
focuses on computation in static networks, with fixed edge weights. An important
direction is studying algorithms for learning in dynamic spiking networks, in which
synapse weights change throughout the computation via, for example, a Hebbian
update rule.

In classical Hebbian learning [Heb05, CD08], the weight of a synapse is continu-
ously updated by a factor that depends on the product of the firing strengths of its two
endpoints. The more the firing of the endpoints correlates, the stronger the synapse
becomes. We hope to define a Hebbian-style rule for our synchronous SNN models
similar to, for example, the simple rule used in [LMPV18]. When both endpoints fire
at the same time, the synapse weight should increase by a small factor, and when just

321



one fires, the weight may decrease. We then hope to use our dynamic network model
to study the costs of many learning problems such as memory formation and con-
cept association [Ama77, Val05, LMPV18], linear classification [HNGS+06], principal
component analysis [San89, HO97, HO00], and sparse coding [OF04, AGMM15].

5.6.4 Neural Linear Algebraic Computation

Finally, a very interesting open direction is to tie together the two parts of this
thesis, understanding how linear algebraic computation may be performed in spiking
neural networks, possibly with the use of randomized computation. As discussed in
Chapter 2, randomized algorithms have recently led to a number of breakthroughs in
fundamental linear-algebraic and geometric problems such as linear regression [CW13,
CLM+15], low-rank approximation [Sar06, NN13], clustering [BZD10], and locality-
sensitive hashing [DIIM04, AI06].

Many mechanisms used in neural computation have close analogs to randomized
linear algebraic techniques; e.g., Oja’s Hebbian-style rule for neural principal compo-
nent analysis (PCA) [HO97, HO00] is a common technique for low-memory PCA and
eigenvector approximation [Sha15, JJK+16]. Fast linear-algebraic methods based on
random projections [Ach03, Sar06] are also conjectured to play a role in neural com-
putation [GS12a, AZGMS14], with random synaptic connectivity providing a natural
implementation of randomized dimensionality-reduction. We hope to study the appli-
cation of these techniques in stochastic spiking neural networks, forging connections
with work on new algorithms for fast linear algebraic computation.

322



Bibliography

[AAB+11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai,
and Ziv Bar-Joseph. A biological solution to a fundamental distributed
computing problem. Science, 331(6014):183–185, 2011.

[AB04] Chen Avin and Carlos Brito. Efficient and robust query processing in
dynamic environments using random walk techniques. In Proceedings of
the 3rd International Symposium on Information Processing in Sensor
Networks, pages 277–286. ACM, 2004.

[ABB00] Orly Alter, Patrick O Brown, and David Botstein. Singular value de-
composition for genome-wide expression data processing and modeling.
Proceedings of the National Academy of Sciences, 97(18):10101–10106,
2000.

[ABH16] Naman Agarwal, Brian Bullins, and Elad Hazan. Second order stochastic
optimization in linear time. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016.

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. Journal of Computer and System Sci-
ences, 66(4):671–687, 2003.

[ACW16] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper
bounds for regression and low-rank approximation with regularization,
2016.

[Ada90] Eldridge S Adams. Boundary disputes in the territorial ant Azteca trig-
ona: effects of asymmetries in colony size. Animal Behaviour, 39(2):321–
328, 1990.

[AF94] Hazem M Abbas and Moustafa M Fahmy. Neural networks for maximum
likelihood clustering. Signal Processing, 36(1):111–126, 1994.

[AF02] David Aldous and Jim Fill. Reversible Markov chains and random walks
on graphs, 2002.

[AFK+01] Yossi Azar, Amos Fiat, Anna R. Karlin, Frank McSherry, and Jared
Saia. Spectral analysis of data. In Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC), pages 619–626, 2001.

323



[AFKM01] Dimitris Achlioptas, Amos Fiat, Anna R. Karlin, and Frank McSherry.
Web search via hub synthesis. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 500–
509, 2001.

[AGMM15] Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, effi-
cient, and neural algorithms for sparse coding. In Proceedings of the 28th
Annual Conference on Computational Learning Theory (COLT), pages
113–149, 2015.

[AGR16] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte Carlo
Markov chain algorithms for sampling strongly Rayleigh distributions
and determinantal point processes. In Proceedings of the 29th Annual
Conference on Computational Learning Theory (COLT), pages 103–115,
2016.

[AHS85] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learn-
ing algorithm for Boltzmann machines. Cognitive Science, 9(1):147–169,
1985.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 459–468, 2006.

[AKM+17] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco,
Ameya Velingker, and Amir Zandieh. Random Fourier features for kernel
ridge regression: Approximation bounds and statistical guarantees. In
Proceedings of the 34th International Conference on Machine Learning
(ICML), 2017.

[AM05] Dimitris Achlioptas and Frank McSherry. On spectral learning of mix-
tures of distributions. In Proceedings of the 18th Annual Conference on
Computational Learning Theory (COLT), pages 458–469, 2005.

[AM07] Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank
matrix approximations. Journal of the ACM, 54(2), 2007.

[AM15a] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge
regression with statistical guarantees. In Advances in Neural Information
Processing Systems 28 (NIPS), pages 775–783, 2015.

[AM15b] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel
methods with statistical guarantees. In Advances in Neural Information
Processing Systems 28 (NIPS), 2015.

[Ama77] S-I Amari. Neural theory of association and concept-formation. Biological
Cybernetics, 26(3):175–185, 1977.

324



[AMS01] Dimitris Achlioptas, Frank Mcsherry, and Bernhard Schölkopf. Sam-
pling techniques for kernel methods. In Advances in Neural Information
Processing Systems 14 (NIPS), 2001.

[And03] Alex M Andrew. Spiking neuron models: Single neurons, populations,
plasticity. Kybernetes, 32(7/8), 2003.

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings
for the polynomial kernel. In Advances in Neural Information Processing
Systems 27 (NIPS), pages 2258–2266, 2014.

[AS94] Christina Allen and Charles F Stevens. An evaluation of causes for unre-
liability of synaptic transmission. Proceedings of the National Academy
of Sciences, 91(22):10380–10383, 1994.

[ASNN+15] Maruan Al-Shedivat, Rawan Naous, Emre Neftci, Gert Cauwenberghs,
and Khaled N Salama. Inherently stochastic spiking neurons for prob-
abilistic neural computation. In 2015 7th International IEEE/EMBS
Conference on Neural Engineering (NER), pages 356–359. IEEE, 2015.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. In Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

[AZGMS14] Zeyuan Allen-Zhu, Rati Gelashvili, Silvio Micali, and Nir Shavit. Sparse
sign-consistent Johnson–Lindenstrauss matrices: Compression with
neuroscience-based constraints. Proceedings of the National Academy
of the Sciences, 2014.

[Bar93] Andrew R Barron. Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Transactions on Information Theory,
39(3):930–945, 1993.

[Bar97] Peter L Bartlett. For valid generalization the size of the weights is more
important than the size of the network. In Advances in Neural Informa-
tion Processing Systems 10 (NIPS), pages 134–140, 1997.

[BCF09] Constantine Bekas, Alessandro Curioni, and I Fedulova. Low cost high
performance uncertainty quantification. In Proceedings of the 2nd Work-
shop on High Performance Computational Finance, page 8. ACM, 2009.

[BCKY16] Vladimir Braverman, Stephen R Chestnut, Robert Krauthgamer, and
Lin F Yang. Sketches for matrix norms: Faster, smaller and more general.
arXiv:1609.05885, 2016.

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified the-
ory of sparse dimensionality reduction in Euclidean space. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC),
pages 499–508, 2015.

325

http://arxiv.org/abs/1609.05885


[BFKN18] Lucas Boczkowski, Ofer Feinerman, Amos Korman, and Emanuele Na-
tale. Limits for rumor spreading in stochastic populations. In Proceedings
of the 9th Conference on Innovations in Theoretical Computer Science
(ITCS), 2018.

[BHOP18] Anna Ben-Hamou, Roberto I Oliveira, and Yuval Peres. Estimating
graph parameters via random walks with restarts. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1702–1714, 2018.

[BIS17] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained
complexity of empirical risk minimization: Kernel methods and neural
networks. In Advances in Neural Information Processing Systems 30
(NIPS), pages 4311–4321, 2017.

[BJ02] Francis Bach and Michael I. Jordan. Kernel independent component
analysis. Journal of Machine Learning Research, 3(Jul):1–48, 2002.

[BK96] András A Benczúr and David R Karger. Approximating st minimum
cuts in (𝑛2) time. In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC), pages 47–55, 1996.

[BL85] James E Burns and Nancy A Lynch. The Byzantine firing squad problem.
Technical report, Massachusetts Institute of Technology, 1985.

[BMF+00] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebas-
tian Thrun. Collaborative multi-robot exploration. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).,
volume 1, pages 476–481, 2000.

[BMV12] Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can
compute shortest paths. Journal of Theoretical Biology, 309:121–133,
2012.

[BP73] LA Bassalygo and MS Pinsker. The complexity of an optimal
non-blocking commutation scheme without reorganization. Problemy
Peredaci Informacii, 9(1):84–87, 1973.

[BP14] Monami Banerjee and Nikhil R Pal. Feature selection with SVD entropy:
some modification and extension. Information Sciences, 264:118–134,
2014.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.
Theoretical computer science, 22(3):317–330, 1983.

[BS02] Maxim A Batalin and Gaurav S Sukhatme. Spreading out: A local
approach to multi-robot coverage. In Distributed Autonomous Robotic
Systems, pages 373–382. Springer, 2002.

326



[Buz06] Gyorgy Buzsaki. Rhythms of the Brain. Oxford University Press, 2006.

[BW09] Mohamed-Ali Belabbas and Patrick J. Wolfe. Spectral methods in ma-
chine learning: New strategies for very large datasets. Proceedings of the
National Academy of Sciences, 106:369–374, 2009.

[BY02] Ziv Bar-Yossef. The Complexity of Massive Data Set Computations. PhD
thesis, University of California at Berkeley, 2002.

[BZD10] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random
projections for 𝑘-means clustering. In Advances in Neural Information
Processing Systems 23 (NIPS), 2010.

[Car14] Petre Caraiani. The predictive power of singular value decomposition
entropy for stock market dynamics. Physica A: Statistical Mechanics
and its Applications, 393:571–578, 2014.

[CC00] Trevor F Cox and Michael AA Cox. Multidimensional Scaling. CRC
Press, 2000.

[CD08] Natalia Caporale and Yang Dan. Spike timing–dependent plasticity: a
Hebbian learning rule. Annual Review of Neuroscience, 31:25–46, 2008.

[CDLN14] Alejandro Cornejo, Anna Dornhaus, Nancy Lynch, and Radhika Nag-
pal. Task allocation in ant colonies. In International Symposium on
Distributed Computing, pages 46–60. Springer, 2014.

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. Dimensionality reduction for 𝑘-means clustering and low
rank approximation. In Proceedings of the 47th Annual ACM Symposium
on Theory of Computing (STOC), 2015.

[CGK+17] Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi,
Rina Panigrahy, and David P Woodruff. Algorithms for ℓ𝑝 low rank
approximation. In Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017.

[CGL92] Robert Coultrip, Richard Granger, and Gary Lynch. A cortical model
of winner-take-all competition via lateral inhibition. Neural Networks,
5(1):47–54, 1992.

[Cha09] Bernard Chazelle. Natural algorithms. In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 422–431,
2009.

[CKS11] Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approxi-
mations of the Gaussian kernel. arXiv:1109.4603, 2011.

327

http://arxiv.org/abs/1109.4603


[CLLM12] Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher.
Chernoff-Hoeffding bounds for Markov chains: Generalized and simpli-
fied. arXiv:1201.0559, 2012.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco,
Richard Peng, and Aaron Sidford. Uniform sampling for matrix ap-
proximation. In Proceedings of the 6th Conference on Innovations in
Theoretical Computer Science (ITCS), 2015.

[CMKB04] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo.
Coverage control for mobile sensing networks. IEEE Transactions on
Robotics and Automation, 20(2):243–255, 2004.

[CMM17] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input spar-
sity time low-rank approximation via ridge leverage score sampling. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2017.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, 14(1):210–223, 1985.

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace
inequalities. In Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 278–287, 2016.

[CP15] Michael B. Cohen and Richard Peng. 𝑙𝑝 row sampling by Lewis weights.
In Proceedings of the 47th Annual ACM Symposium on Theory of Com-
puting (STOC), 2015.

[CR09] Emmanuel J Candès and Benjamin Recht. Exact matrix completion
via convex optimization. Foundations of Computational Mathematics,
9(6):717–772, 2009.

[CR12] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via
convex optimization. Communications of the ACM, 55(6):111–119, 2012.

[Cri89] Flaviu Cristian. Probabilistic clock synchronization. Distributed Com-
puting, 3(3):146–158, 1989.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation
and regression in input sparsity time. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), 2013.

[CW17a] Kenneth L. Clarkson and David P. Woodruff. Low-rank PSD approxi-
mation in input-sparsity time. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2017.

328

http://arxiv.org/abs/1201.0559


[CW17b] Kenneth L. Clarkson and David P. Woodruff. Low-rank PSD approxi-
mation in input-sparsity time. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2061–2072,
2017.

[Dav91] Mark L Davison. Multidimensional scaling. 1991.

[DB11] Marco Dorigo and Mauro Birattari. Ant colony optimization. In Ency-
clopedia of machine learning, pages 36–39. Springer, 2011.

[Dem13] James Demmel. An arithmetic complexity lower bound for computing ra-
tional functions, with applications to linear algebra. submitted to SIMAX,
2013.

[DFK+04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and
V. Vinay. Clustering large graphs via the singular value decomposition.
Machine Learning, 56(1-3):9–33, 2004.

[DHJZ15] Haishun Du, Qingpu Hu, Manman Jiang, and Fan Zhang. Two-
dimensional principal component analysis based on Schatten p-norm for
image feature extraction. Journal of Visual Communication and Image
Representation, 32:55–62, 2015.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the Twentieth Annual Symposium on Computational Ge-
ometry, pages 253–262. ACM, 2004.

[DKJ+07] Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S
Dhillon. Information-theoretic metric learning. In Proceedings of the 24th
International Conference on Machine Learning (ICML), pages 209–216,
2007.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast Monte
Carlo algorithms for matrices I: Approximating matrix multiplication.
SIAM Journal on Computing, 36(1):132–157, 2006.

[DKR02] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Compet-
itive recommendation systems. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 82–90, 2002.

[DLWZ14] Xuefeng Duan, Jiaofen Li, Qingwen Wang, and Xinjun Zhang. Low rank
approximation of the symmetric positive semidefinite matrix. Journal of
Computational and Applied Mathematics, 260:236–243, 2014.

[DM05] Petros Drineas and Michael W Mahoney. On the Nyström method for ap-
proximating a Gram matrix for improved kernel-based learning. Journal
of Machine Learning Research, 6:2153–2175, 2005.

329



[DMM06a] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling
algorithms for ℓ2 regression and applications. In Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1127–1136, 2006.

[DMM06b] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Sub-
space sampling and relative-error matrix approximation: Column-row-
based methods. In European Symposium on Algorithms, pages 304–314.
Springer, 2006.

[DMM08] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Relative-
error CUR matrix decompositions. SIAM Journal on Matrix Analysis
and Applications, 30(2), 2008.

[DR89] Richard Durbin and David E Rumelhart. Product units: A computa-
tionally powerful and biologically plausible extension to backpropagation
networks. Neural Computation, 1(1):133–142, 1989.

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang.
Matrix approximation and projective clustering via volume sampling.
In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2006.

[DSN17] Sanjoy Dasgupta, Charles F Stevens, and Saket Navlakha. A neural al-
gorithm for a fundamental computing problem. Science, 358(6364):793–
796, 2017.

[DTV11] Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms
and hardness for subspace approximation. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
482–496, 2011.

[DV06] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast
low-rank matrix approximation. In Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques, pages 292–303.
Springer, 2006.

[ES02] Brian Everitt and Anders Skrondal. The Cambridge Dictionary of Statis-
tics, volume 106. Cambridge University Press, 2002.

[ES09] Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover time
of multiple random walks. In Automata, Languages and Programming,
pages 415–426. Springer, 2009.

[FHT08] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics, 9(3):432–
441, 2008.

330



[FK13] Ofer Feinerman and Amos Korman. Theoretical distributed computing
meets biology: A review. In International Conference on Distributed
Computing and Internet Technology, pages 1–18. Springer, 2013.

[FKLS12] Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sébastien Sereni.
Collaborative search on the plane without communication. In Proceedings
of the 2012 ACM Symposium on Principles of Distributed Computing
(PODC), pages 77–86, 2012.

[FKV04] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo
algorithms for finding low-rank approximations. Journal of the ACM,
51(6):1025–1041, 2004.

[FMMS16] Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford.
Principal component projection without principal component analysis. In
Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

[FS02] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank
kernel representations. Journal of Machine Learning Research, 2:243–
264, 2002.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data
into tiny data: Constant-size coresets for 𝑘-means, PCA, and projective
clustering. In Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1434–1453, 2013.

[FSW08] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous
system. Nature Reviews Neuroscience, 9(4):292–303, 2008.

[FT07] Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained
matrix approximations. SIAM Journal on Matrix Analysis and Applica-
tions, 29(2):656–659, 2007.

[GCD+03] Sonja Glavaski, Madalena Chaves, Robert Day, Parthasarathi Nag, Anca
Williams, and Wei Zhang. Vehicle networks: achieving regular formation.
In Proceedings of the American Control Conference, volume 5, pages
4095–4100. IEEE, 2003.

[GE95] Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for
the symmetric tridiagonal eigenproblem. SIAM Journal on Matrix Anal-
ysis and Applications, 16(1):172–191, 1995.

[GHJ+16] Dan Garber, Elad Hazan, Chi Jin, Sham M Kakade, Cameron Musco,
Praneeth Netrapalli, and Aaron Sidford. Faster eigenvector computation
via shift-and-invert preconditioning. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning (ICML), 2016.

331



[Gil98] David Gillman. A Chernoff bound for random walks on expander graphs.
SIAM Journal on Computing, 27(4):1203–1220, 1998.

[Git11] Alex Gittens. The spectral norm error of the naive Nyström extension.
arXiv:1110.5305, 2011.

[GK02] Wulfram Gerstner and Werner M Kistler. Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge University Press, 2002.

[GKBM09] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou.
A walk in Facebook: Uniform sampling of users in online social networks.
arXiv:0906.0060, 2009.

[GL09] Ankur Gupta and Lyle N Long. Hebbian learning with winner take all
for spiking neural networks. In 2009 International Joint Conference on
Neural Networks, pages 1054–1060. IEEE, 2009.

[GLF+10] David Gross, Yi-Kai Liu, Steven T Flammia, Stephen Becker, and Jens
Eisert. Quantum state tomography via compressed sensing. Physical
Review Letters, 105(15):150401, 2010.

[GLMN09] Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-stabilizing
robot formations over unreliable networks. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 4(3):17, 2009.

[GLPW16] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff.
Frequent directions: Simple and deterministic matrix sketching. SIAM
Journal on Computing, 45(5):1762–1792, 2016.

[GM13] Alex Gittens and Michael Mahoney. Revisiting the Nyström method
for improved large-scale machine learning. In Proceedings of the 30th
International Conference on Machine Learning (ICML), pages 567–575,
2013. Full version at arXiv:1303.1849.

[GMRL15] Mohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy
Lynch. Distributed house-hunting in ant colonies. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing (PODC),
2015.

[Gor99] Deborah M Gordon. Interaction patterns and task allocation in ant
colonies. In Information Processing in Social Insects, pages 51–67.
Springer, 1999.

[GPT93] Deborah M Gordon, Richard E Paul, and Karen Thorpe. What is the
function of encounter patterns in ant colonies? Animal Behaviour,
45(6):1083–1100, 1993.

[GS91] Leslie Greengard and John Strain. The fast Gauss transform. SIAM
Journal on Scientific and Statistical Computing, 12(1):79–94, 1991.

332

http://arxiv.org/abs/1110.5305
http://arxiv.org/abs/0906.0060
http://arxiv.org/abs/1303.1849


[GS12a] Surya Ganguli and Haim Sompolinsky. Compressed sensing, sparsity,
and dimensionality in neuronal information processing and data analysis.
Annual Review of Neuroscience, 35:485–508, 2012.

[GS12b] Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based
low-rank matrix reconstruction. In Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1207–1214.
SIAM, 2012.

[Gu14] Ming Gu. Subspace iteration randomization and singular value problems.
arXiv:1408.2208, 2014.

[GU17] François Le Gall and Florent Urrutia. Improved rectangular ma-
trix multiplication using powers of the Coppersmith-Winograd tensor.
arXiv:1708.05622, 2017.

[Gut92] Ivan Gutman. Total 𝜋-electron energy of benzenoid hydrocarbons. In
Advances in the Theory of Benzenoid Hydrocarbons II, pages 29–63.
Springer, 1992.

[Gut01] Ivan Gutman. The energy of a graph: old and new results. In Algebraic
Combinatorics and Applications, pages 196–211. Springer, 2001.

[GVL12] Gene H. Golub and Charles F Van Loan. Matrix Computations, volume 3.
JHU Press, 2012.

[GXL15] Rongbao Gu, Wei Xiong, and Xinjie Li. Does the singular value de-
composition entropy have predictive power for stock market? Evidence
from the Shenzhen stock market. Physica A: Statistical Mechanics and
its Applications, 439:103–113, 2015.

[Har14] Moritz Hardt. Understanding alternating minimization for matrix com-
pletion. In Proceedings of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 651–660, 2014.

[Hay09] Simon S Haykin. Neural Networks and Learning Machines, volume 3.
Pearson, 2009.

[Heb05] Donald Olding Hebb. The Organization of Behavior: A Neuropsycholog-
ical Theory. Psychology Press, 2005.

[Hig08] Nicholas J Higham. Functions of Matrices: Theory and Computation.
SIAM, 2008.

[HJM13] Stefan Habenschuss, Zeno Jonke, and Wolfgang Maass. Stochastic com-
putations in cortical microcircuit models. PLoS Computational Biology,
9(11):e1003311, 2013.

333

http://arxiv.org/abs/1408.2208
http://arxiv.org/abs/1708.05622


[HLM12] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practi-
cal algorithm for differentially private data release. In Advances in Neural
Information Processing Systems 25 (NIPS), pages 2348–2356. 2012.

[HNGS+06] Ramón Huerta, Thomas Nowotny, Marta García-Sanchez, Henry DI
Abarbanel, and Mikhail I Rabinovich. Learning classification in the ol-
factory system of insects. Learning, 16(8), 2006.

[HO97] Aapo Hyvärinen and Erkki Oja. One-unit learning rules for indepen-
dent component analysis. In Advances in Neural Information Processing
Systems 10 (NIPS), pages 480–486, 1997.

[HO00] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algo-
rithms and applications. Neural Networks, 13(4):411–430, 2000.

[Hof03] Thomas Hofmann. Collaborative filtering via Gaussian probabilistic la-
tent semantic analysis. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 259–266, 2003.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2(5):359–366, 1989.

[HT+86] John J Hopfield, David W Tank, et al. Computing with neural circuits
– a model. Science, 233(4764):625–633, 1986.

[HW08] Xiaolin Hu and Jun Wang. An improved dual neural network for solving
a class of quadratic programming problems and its 𝑘-winners-take-all
application. IEEE Transactions on Neural Networks, 19(12):2022–2031,
2008.

[IK01] Laurent Itti and Christof Koch. Computational modeling of visual at-
tention. Nature Reviews Neuroscience, 2(3):194–203, 2001.

[IR77] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In
Proceedings of the 9th Annual ACM Symposium on Theory of Computing
(STOC), pages 1–10, 1977.

[Isa08] Garth Isaak. Fast matrix multiplication and inversion, Math 242 notes.
http://www.lehigh.edu/~gi02/m242/08linstras.pdf, 2008.

[Izh04] Eugene M Izhikevich. Which model to use for cortical spiking neurons?
IEEE Transactions on Neural Networks, 15(5):1063–1070, 2004.

[JJK+16] Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron
Sidford. Streaming PCA: Matching matrix bernstein and near-optimal
finite sample guarantees for Ojaś algorithm. In Proceedings of the 29th
Annual Conference on Computational Learning Theory (COLT), pages
1147–1164, 2016.

334

http://www.lehigh.edu/~gi02/m242/08linstras.pdf


[JKLR09] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, and Marc’Aurelio Ran-
zato. What is the best multi-stage architecture for object recognition?
In 12th International Conference on Computer Vision, pages 2146–2153.
IEEE, 2009.

[JNS13] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix
completion using alternating minimization. In Proceedings of the 45th
Annual ACM Symposium on Theory of Computing (STOC), pages 665–
674, 2013.

[Jol02] Ian Jolliffe. Principal Component Analysis. Wiley Online Library, 2002.

[KBM12] Maciej Kurant, Carter T Butts, and Athina Markopoulou. Graph size
estimation. arXiv:1210.0460, 2012.

[KK94] Samuel Kaski and Teuvo Kohonen. Winner-take-all networks for physio-
logical models of competitive learning. Neural Networks, 7(6-7):973–984,
1994.

[KKKL11] Majid Khabbazian, Dariusz Kowalski, Fabian Kuhn, and Nancy
Lynch. Decomposing broadcast algorithms using abstract MAC
layers, 2011. http://groups.csail.mit.edu/tds/papers/Lynch/
MIT-CSAIL-TR-2011-010.pdf.

[KKS65] V. V. Klyuev and N. I. Kokovkin-Shcherbak. Minimization of the num-
ber of arithmetic operations in the solution of linear algebra systems of
equations. 5(1):25-43, 1965. translated by H. F. Cleaves.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[KLM+17] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco,
and Aaron Sidford. Single pass spectral sparsification in dynamic
streams. SIAM Journal on Computing, 46(1):456–477, 2017. Prelimi-
nary version in the IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2014.

[KLP+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and
Daniel Spielman. Sparsified Cholesky and multigrid solvers for connec-
tion Laplacians. In Proceedings of the 48th Annual ACM Symposium on
Theory of Computing (STOC), 2016.

[KLS11] Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of social
networks via biased sampling. In Proceedings of the 20th International
Conference on World Wide Web (WWW), pages 597–606. ACM, 2011.

[KLSC14] Liran Katzir, Edo Liberty, Oren Somekh, and Ioana A Cosma. Estimat-
ing sizes of social networks via biased sampling. Internet Mathematics,
10(3-4):335–359, 2014.

335

http://arxiv.org/abs/1210.0460
http://groups.csail.mit.edu/tds/papers/Lynch/MIT-CSAIL-TR-2011-010.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/MIT-CSAIL-TR-2011-010.pdf


[KM09] Jonathan A. Kelner and Aleksander Madry. Faster generation of random
spanning trees. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 13–21, 2009.

[KMT09] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling tech-
niques for the Nyström method. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics (AISTATS), pages
304–311, 2009.

[KMTS16] Varun Kanade, Frederik Mallmann-Trenn, and Thomas Sauerwald. On
coalescence time in graphs–when is coalescing as fast as meeting?
arXiv:1611.02460, 2016.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization
in distributed real-time systems. IEEE Transactions on Computers,
100(8):933–940, 1987.

[Koi96] Pascal Koiran. VC dimension in circuit complexity. In Proceedings of the
Eleventh Annual IEEE Conference on Computational Complexity, pages
81–85. IEEE, 1996.

[KS70] N. I. Kokovkin-Shcherbak. Minimization of numerical algorithms for
solving arbitrary systems of linear equations. 22(4):494-502, 1970.

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian elimination
for Laplacians: Fast, sparse, and simple. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2016.

[KSV08] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. The spec-
tral method for general mixture models. SIAM Journal on Computing,
38(3):1141–1156, 2008.

[KU87] Christof Koch and Shimon Ullman. Shifts in selective visual attention:
towards the underlying neural circuitry. In Matters of Intelligence, pages
115–141. Springer, 1987.

[KW92] Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest
eigenvalue by the power and Lanczos algorithms with a random start.
SIAM Journal on Matrix Analysis and Applications, 13(4):1094–1122,
1992.

[LACBL16] Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford.
Efficient second order online learning by sketching. In Advances in Neural
Information Processing Systems 29 (NIPS), pages 902–910, 2016.

[LB07] Luisa Lima and Joao Barros. Random walks on sensor networks. In 5th
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks and Workshops, pages 1–5. IEEE, 2007.

336

http://arxiv.org/abs/1611.02460


[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Na-
ture, 521(7553):436–444, 2015.

[LBKW14] Yingyu Liang, Maria-Florina Balcan, Vandana Kanchanapally, and
David P. Woodruff. Improved distributed principal component analy-
sis. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 3113–3121, 2014.

[LG12] François Le Gall. Faster algorithms for rectangular matrix multiplication.
In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 514–523, 2012.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation. ACM, 2014.

[LHLS17] Xuanqing Liu, Cho-Jui Hsieh, Jason D. Lee, and Yuekai Sun. An inex-
act subsampled proximal Newton-type method for large-scale machine
learning. arXiv:1708.08552, 2017.

[LIKB99] Dale K Lee, Laurent Itti, Christof Koch, and Jochen Braun. Atten-
tion activates winner-take-all competition among visual filters. Nature
Neuroscience, 2(4):375–381, 1999.

[LJS16] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP sampling for
Nyström with application to kernel methods. In Proceedings of the 33rd
International Conference on Machine Learning (ICML), pages 2061–
2070, 2016.

[LKL10] Mu Li, James Tin-Yau Kwok, and Baoliang Lu. Making large-scale Nys-
tröm approximation possible. In Proceedings of the 27th International
Conference on Machine Learning (ICML), page 631, 2010.

[LL12] Jianguo Lu and Dingding Li. Sampling online social networks by ran-
dom walk. In Proceedings of the First ACM International Workshop on
Hot Topics on Interdisciplinary Social Networks Research, pages 33–40.
ACM, 2012.

[LLNR14] Christoph Lenzen, Nancy Lynch, Calvin Newport, and Tsvetomira
Radeva. Trade-offs between selection complexity and performance when
searching the plane without communication. In Proceedings of the
2014 ACM Symposium on Principles of Distributed Computing (PODC),
pages 252–261, 2014.

[LM12] Chao Li and Gerome Miklau. Measuring the achievable error of query
sets under differential privacy. arXiv:1202.3399, 2012.

337

http://arxiv.org/abs/1708.08552
http://arxiv.org/abs/1202.3399


[LMP13] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 127–136, 2013.

[LMP17a] Nancy Lynch, Cameron Musco, and Merav Parter. Computational trade-
offs in biological neural networks: Self-stabilizing winner-take-all net-
works. In Proceedings of the 8th Conference on Innovations in Theoret-
ical Computer Science (ITCS), 2017.

[LMP17b] Nancy Lynch, Cameron Musco, and Merav Parter. Neuro-RAM unit
with applications to similarity testing and compression in spiking neu-
ral networks. In Proceedings of the 31st International Symposium on
Distributed Computing (DISC), 2017. Full version available at https:
//arxiv.org/abs/1706.01382.

[LMP17c] Nancy Lynch, Cameron Musco, and Merav Parter. Spiking neural net-
works: An algorithmic perspective. In 5th Workshop on Biological Dis-
tributed Algorithms (BDA 2017), July 2017.

[LMPV18] Robert Legenstein, Wolfgang Maass, Christos H Papadimitriou, and San-
tosh S Vempala. Long term memory and the densest k-subgraph prob-
lem. In Proceedings of the 9th Conference on Innovations in Theoretical
Computer Science (ITCS), 2018.

[LN15] Yu Lu and Sahand N Negahban. Individualized rank aggregation using
nuclear norm regularization. In 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1473–1479.
IEEE, 2015.

[Lov93] László Lovász. Random walks on graphs: A survey. Combinatorics, Paul
Erdos is Eighty, 2(1):1–46, 1993.

[LPDF08] Adi Livnat, Christos Papadimitriou, Jonathan Dushoff, and Marcus W
Feldman. A mixability theory for the role of sex in evolution. Proceedings
of the National Academy of Sciences, 105(50):19803–19808, 2008.

[LRMM88] John Lazzaro, Sylvie Ryckebusch, Misha Anne Mahowald, and Caver A
Mead. Winner-take-all networks of o(n) complexity. Technical report,
DTIC Document, 1988.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear pro-
gramming: Solving linear programs in 𝑜(

√
𝑟𝑎𝑛𝑘) iterations and faster

algorithms for maximum flow. In Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 424–
433, 2014.

[LSS13] Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood - Computing
Hilbert space expansions in loglinear time. In Proceedings of the 30th

338

https://arxiv.org/abs/1706.01382
https://arxiv.org/abs/1706.01382


International Conference on Machine Learning (ICML), pages 244–252,
2013.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Optimal
clock synchronization in networks. In Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems, pages 225–238. ACM,
2009.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cut-
ting plane method and its implications for combinatorial and convex
optimization. In Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1049–1065, 2015.

[LW14] Jianguo Lu and Hao Wang. Variance reduction in large graph sampling.
Information Processing & Management, 50(3):476–491, 2014.

[LYCG14] Lei Luo, Jian Yang, Jinhui Chen, and Yicheng Gao. Schatten p-norm
based matrix regression model for image classification. In Pattern Recog-
nition, pages 140–150. Springer, 2014.

[Maa96] Wolfgang Maass. On the computational power of noisy spiking neurons.
In Advances in Neural Information Processing Systems 9 (NIPS), pages
211–217, 1996.

[Maa97] Wolfgang Maass. Networks of spiking neurons: the third generation of
neural network models. Neural Networks, 10(9):1659–1671, 1997.

[Maa99] Wolfgang Maass. Neural computation with winner-take-all as the only
nonlinear operation. In Advances in Neural Information Processing Sys-
tems 12 (NIPS), pages 293–299, 1999.

[Maa00] Wolfgang Maass. On the computational power of winner-take-all. Neural
Computation, 12(11):2519–2535, 2000.

[Maa14] Wolfgang Maass. Noise as a resource for computation and learning in
networks of spiking neurons. Proceedings of the IEEE, 102(5):860–880,
2014.

[McC84] Peter McCullagh. Generalized linear models. European Journal of Op-
erational Research, 16(3):285–292, 1984.

[MD09] Michael W Mahoney and Petros Drineas. CUR matrix decompositions for
improved data analysis. Proceedings of the National Academy of Sciences,
106(3):697–702, 2009.

[MEAM89] E Majani, Ruth Erlanson, and Yaser S Abu-Mostafa. On the 𝑘-winners-
take-all network. In Advances in Neural Information Processing Systems
2 (NIPS), pages 634–642, 1989.

339



[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace em-
beddings in input-sparsity time and applications to robust linear regres-
sion. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC), 2013.

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov
methods for stronger and faster approximate singular value decomposi-
tion. In Advances in Neural Information Processing Systems 28 (NIPS),
2015.

[MM17] Cameron Musco and Christopher Musco. Recursive sampling for the
Nyström method. In Advances in Neural Information Processing Systems
30 (NIPS), 2017.

[MMG+07] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, pages 29–42, 2007.

[MNS+18] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru,
and David P. Woodruff. Spectrum approximation beyond fast matrix
multiplication: Algorithms and hardness. Proceedings of the 9th Confer-
ence on Innovations in Theoretical Computer Science (ITCS), 2018.

[Mor73] Jacques Morgenstern. Note on a lower bound on the linear complexity of
the fast Fourier transform. Journal of the ACM (JACM), 20(2):305–306,
1973.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.

[MS99] Wolfgang Maass and Michael Schmitt. On the complexity of learning for
spiking neurons with temporal coding. Information and Computation,
153(1):26–46, 1999.

[MSL17] Cameron Musco, Hsin-Hao Su, and Nancy Lynch. Ant-inspired density
estimation via random walks. Proceedings of the National Academy of
Sciences, 114(40):10534–10541, 2017. Preliminary version in the 2016
ACM Symposium on Principles of Distributed Computing (PODC),
2016.

[MSS91] Wolfgang Maass, Georg Schnitger, and Eduardo D Sontag. On the com-
putational power of sigmoid versus boolean threshold circuits. In Proceed-
ings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 767–776, 1991.

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast gen-
eration of random spanning trees and the effective resistance metric. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 2019–2036, 2015.

340



[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[Mus18] Christopher Musco. Faster Linear Algebra for Data Analysis and Ma-
chine Learning. PhD thesis, Massachusetts Institute of Technology, 2018.

[MW17a] Cameron Musco and David P. Woodruff. Is input sparsity time possible
for kernel low-rank approximation? In Advances in Neural Information
Processing Systems 30 (NIPS), 2017.

[MW17b] Cameron Musco and David P. Woodruff. Sublinear time low-rank ap-
proximation of positive semidefinite matrices. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2017.

[MYK10] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. Measuring the
mixing time of social graphs. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, pages 383–389. ACM, 2010.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML), pages 807–814, 2010.

[NHD12] Feiping Nie, Heng Huang, and Chris Ding. Low-rank matrix recovery via
efficient Schatten p-norm minimization. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence, 2012.

[NN13] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear al-
gebra algorithms via sparser subspace embeddings. In Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2013.

[NNS+14] Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anand-
kumar, and Prateek Jain. Non-convex robust PCA. In Advances in Neu-
ral Information Processing Systems 27 (NIPS), pages 1107–1115, 2014.

[Now89] Steven J Nowlan. Maximum likelihood competitive learning. In Ad-
vances in Neural Information Processing Systems 2 (NIPS), pages 574–
582, 1989.

[NTD05] Stamatios C Nicolis, Guy Theraulaz, and Jean-Louis Deneubourg. The
effect of aggregates on interaction rate in ant colonies. Animal Behaviour,
69(3):535–540, 2005.

[NWC+12] Feiping Nie, Hua Wang, Xiao Cai, Heng Huang, and Chibiao Ding. Ro-
bust matrix completion via joint Schatten 𝑝-norm and 𝑙𝑝-norm minimiza-
tion. In IEEE 12th International Conference on Data Mining (ICDM),
pages 566–574. IEEE, 2012.

341



[NWS02] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random
graph models of social networks. Proceedings of the National Academy
of Sciences, 99:2566–2572, 2002.

[ODL09] Matthias Oster, Rodney Douglas, and Shih-Chii Liu. Computation with
spikes in a winner-take-all network. Neural Computation, 21(9):2437–
2465, 2009.

[OF04] Bruno A Olshausen and David J Field. Sparse coding of sensory inputs.
Current Opinion in Neurobiology, 14(4):481–487, 2004.

[OL06] Matthias Oster and Shih-Chii Liu. Spiking inputs to a winner-take-all
network. Advances in Neural Information Processing Systems 19 (NIPS),
2006.

[Osb79] Neville N Osborne. Is Dale’s principle valid? Trends in Neurosciences,
2:73–75, 1979.

[Osb13] Neville N Osborne. Dale’s Principle and Communication Between Neu-
rons. Elsevier, 2013. Based on a Colloquium of the Neurochemical Group
of the Biochemical Society, Held at Oxford University, July 1982.

[PLSZ17] Victor Y Pan, Qi Luan, John Svadlenka, and Liang Zhao. Su-
perfast CUR matrix algorithms, their pre-processing and extensions.
arXiv:1710.07946, 2017.

[Pra05] Stephen C Pratt. Quorum sensing by encounter rates in the ant Tem-
nothorax albipennis. Behavioral Ecology, 16(2):488–496, 2005.

[PRTV00] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and
Santosh Vempala. Latent semantic indexing: A probabilistic analysis.
Journal of Computer and System Sciences, 61(2):217–235, 2000.

[Rad17] Tsvetomira Radeva. A Symbiotic Perspective on Distributed Algorithms
and Social Insects. PhD thesis, Dissertation, Massachusetts Institute of
Technology, 2017.

[Ras04] Carl Edward Rasmussen. Gaussian processes in machine learning. In
Advanced Lectures on Machine Learning, pages 63–71. Springer, 2004.

[Raz03] Ran Raz. On the complexity of matrix product. SIAM Journal on
Computing, 32(5):1356–1369, 2003.

[RB15] Lisa Roux and György Buzsáki. Tasks for inhibitory interneurons in
intact brain circuits. Neuropharmacology, 88:10–23, 2015.

[RFLHL11] Bernardo Rudy, Gordon Fishell, SooHyun Lee, and Jens Hjerling-Leffler.
Three groups of interneurons account for nearly 100% of neocortical
GABAergic neurons. Developmental Neurobiology, 71(1):45–61, 2011.

342

http://arxiv.org/abs/1710.07946


[RGDA97] Alexa Riehle, Sonja Grün, Markus Diesmann, and Ad Aertsen. Spike syn-
chronization and rate modulation differentially involved in motor cortical
function. Science, 278(5345):1950–1953, 1997.

[RML17] Tsvetomira Radeva, Cameron Musco, and Nancy Lynch. New perspec-
tives on algorithmic robustness inspired by ant colony house-hunting. In
5th Workshop on Biological Distributed Algorithms (BDA 2017), July
2017.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In Advances in Neural Information Processing Systems 20
(NIPS), 2007.

[RS03] Ran Raz and Amir Shpilka. Lower bounds for matrix product in
bounded depth circuits with arbitrary gates. SIAM Journal on Com-
puting, 32(2):488–513, 2003.

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, second edition, 2003.

[Saa11] Yousef Saad. Numerical Methods for Large Eigenvalue Problems: Revised
Edition, volume 66. SIAM, 2011.

[San89] Terence D Sanger. Optimal unsupervised learning in a single-layer linear
feedforward neural network. Neural Networks, 2(6):459–473, 1989.

[Sar06] Támas Sarlós. Improved approximation algorithms for large matrices via
random projections. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 143–152, 2006.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the
EATCS, 99:49–79, 2009.

[Sha15] Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential
convergence rate. In Proceedings of the 32nd International Conference
on Machine Learning (ICML), pages 144–152, 2015.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In Proceed-
ings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 263–269, 2013.

[SHG06] Robert J Schafer, Susan Holmes, and Deborah M Gordon. Forager
activation and food availability in harvester ants. Animal Behaviour,
71(4):815–822, 2006.

[Shp03] Amir Shpilka. Lower bounds for matrix product. SIAM Journal on
Computing, 32(5):1185–1200, 2003.

343



[SKP17] Michael L Smith, Phoebe A Koenig, and Jacob M Peters. The cues
of colony size: how honey bees sense that their colony is large enough
to begin to invest in reproduction. Journal of Experimental Biology,
220(9):1597–1605, 2017.

[SLO13] Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos. Hierarchical
probing for estimating the trace of the matrix inverse on toroidal lattices.
SIAM Journal on Scientific Computing, 35(5):S299–S322, 2013.

[SN94] Michael N Shadlen and William T Newsome. Noise, neural codes and
cortical organization. Current Opinion in Neurobiology, 4(4):569–579,
1994.

[SS95] Hava T Siegelmann and Eduardo D Sontag. On the computational power
of neural nets. Journal of Computer and System Sciences, 50(1):132–150,
1995.

[SS00] Alex J Smola and Bernhard Schökopf. Sparse greedy matrix approxi-
mation for machine learning. In Proceedings of the 17th International
Conference on Machine Learning (ICML), pages 911–918, 2000.

[SS02] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: sup-
port vector machines, regularization, optimization, and beyond. MIT
Press, 2002.

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effec-
tive resistances. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pages 563–568, 2008.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear systems.
In Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 81–90, 2004.

[STC04] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[Stu] Robert Stufflebeam. Introduction to neurons, synapses, action potentials,
and neurotransmission. In The Mind Project. http://www.mind.ilstu.
edu/curriculum/modOverview.php?modGUI=232.

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogo-
nal tensor decomposition. In Advances in Neural Information Processing
Systems 29 (NIPS), 2016.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approxi-
mation with entrywise 𝑙1-norm error. In Proceedings of the 49th An-
nual ACM Symposium on Theory of Computing (STOC), pages 688–701.
ACM, 2017.

344

http://www.mind.ilstu.edu/curriculum/modOverview.php?modGUI=232
http://www.mind.ilstu.edu/curriculum/modOverview.php?modGUI=232


[SY05] Anthony Man-Cho So and Yinyu Ye. Theory of semidefinite program-
ming for sensor network localization. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 405–414,
2005.

[TB97] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM,
1997.

[TB17] Daniel Ting and Eric Brochu. Optimal sub-sampling with influence func-
tions. arXiv:1709.01716, 2017.

[Tho90] Simon J Thorpe. Spike arrival times: A highly efficient coding scheme
for neural networks. Parallel Processing in Neural Systems, pages 91–94,
1990.

[Tra09] Thomas Trappenberg. Fundamentals of Computational Neuroscience.
OUP Oxford, 2009.

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities.
arXiv:1501.01571, 2015.

[TYUC16] Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.
Randomized single-view algorithms for low-rank matrix approximation.
arXiv:1609.00048, 2016.

[US16] Shashanka Ubaru and Yousef Saad. Fast methods for estimating the
numerical rank of large matrices. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), pages 468–477, 2016.

[Val00a] Leslie G Valiant. Circuits of the Mind. Oxford University Press, 2000.

[Val00b] Leslie G Valiant. A neuroidal architecture for cognitive computation.
Journal of the ACM (JACM), 47(5):854–882, 2000.

[Val05] Leslie G Valiant. Memorization and association on a realistic neural
model. Neural cCmputation, 17(3):527–555, 2005.

[Vap98] Vladimir Vapnik. Statistical Learning Theory, volume 1. Wiley New
York, 1998.

[VGLH06] Roy Varshavsky, Assaf Gottlieb, Michal Linial, and David Horn.
Novel unsupervised feature filtering of biological data. Bioinformatics,
22(14):e507–e513, 2006.

[VVAE94] Carl Van Vreeswijk, LF Abbott, and G Bard Ermentrout. When inhibi-
tion not excitation synchronizes neural firing. Journal of Computational
Neuroscience, 1(4):313–321, 1994.

345

http://arxiv.org/abs/1709.01716
http://arxiv.org/abs/1501.01571
http://arxiv.org/abs/1609.00048


[Wai15] Martin J Wainwright. High-dimensional statistics: A non-
asymptotic viewpoint, draft. http://www.stat.berkeley.edu/
~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf, 2015.

[Wei03] Eric W Weisstein. Gershgorin circle theorem. MathWorld: A Wolfram
Web Resource, 2003.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In Proceedings of the 44th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 887–898, 2012.

[Wil15] Virginia Vassilevska Williams. Hardness of easy problems: Basing hard-
ness on popular conjectures such as the strong exponential time hypoth-
esis (invited talk). In 10th International Symposium on Parameterized
and Exact Computation, IPEC 2015, September 16-18, 2015, Patras,
Greece, pages 17–29, 2015.

[Win70] Shmuel Winograd. On the number of multiplications necessary to com-
puter certain functions. 23:165-179, 1970.

[Win87] Shmuel Winograd. Arithmetic complexity of computations. 1987.

[WLZ16] Shusen Wang, Luo Luo, and Zhihua Zhang. SPSD matrix approximation
via column selection: theories, algorithms, and extensions. Journal of
Machine Learning Research, 17(49):1–49, 2016.

[WMK+02] Masahito Watanabe, Kentaro Maemura, Kiyoto Kanbara, Takumi
Tamayama, and Hana Hayasaki. GABA and GABA receptors in the
central nervous system and other organs. In International Review of
Cytology, volume 213, pages 1–47. Elsevier, 2002.

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra.
Foundations and Trends in Theoretical Computer Science, 10(1-2):1–157,
2014.

[WR94] Steve R Waterhouse and Anthony J Robinson. Classification using hi-
erarchical mixtures of experts. In Proceedings of the IEEE Workshop
Neural Networks for Signal Processing, pages 177–186, 1994.

[WS01] Christopher Williams and Matthias Seeger. Using the Nyström method
to speed up kernel machines. In Advances in Neural Information Pro-
cessing Systems 14 (NIPS), 2001.

[WS03] Wei Wang and Jean-Jacques E Slotine. 𝑘-winners-take-all computation
with neural oscillators. arXiv:q-bio/0401001, 2003.

[WSO+07] Thilo Womelsdorf, Jan-Mathijs Schoffelen, Robert Oostenveld, Wolf
Singer, Robert Desimone, Andreas K Engel, and Pascal Fries. Modula-
tion of neuronal interactions through neuronal synchronization. Science,
316(5831):1609–1612, 2007.

346

http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
http://arxiv.org/abs/q-bio/0401001


[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences
between path, matrix and triangle problems. In Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2010.

[WZ13] Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposi-
tion and the Nyström approximation via adaptive sampling. Journal of
Machine Learning Research, 14:2729–2769, 2013.

[WZZ14] Shusen Wang, Tong Zhang, and Zhihua Zhang. Adjusting leverage scores
by row weighting: A practical approach to coherent matrix completion.
arXiv:1412.7938, 2014.

[XGL+16] Yuan Xie, Shuhang Gu, Yan Liu, Wangmeng Zuo, Wensheng Zhang, and
Lei Zhang. Weighted Schatten 𝑝-norm minimization for image denoising
and background subtraction. IEEE Transactions on Image Processing,
25(10):4842–4857, 2016.

[XQT+16] Y. Xie, Y. Qu, D. Tao, W. Wu, Q. Yuan, and W. Zhang. Hyperspectral
image restoration via iteratively regularized weighted Schatten p-norm
minimization. IEEE Transactions on Geoscience and Remote Sensing,
PP(99):1–18, 2016.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified
measure of complexity. In Proceedings of the 18th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 222–227,
1977.

[YG89] Alan L Yuille and Norberto M Grzywacz. A winner-take-all mechanism
based on presynaptic inhibition feedback. Neural Computation, 1(3):334–
347, 1989.

[YH38] Gale Young and Alston S Householder. Discussion of a set of points in
terms of their mutual distances. Psychometrika, 3(1):19–22, 1938.

[YS07] Stephen J Young and Edward R Scheinerman. Random dot product
graph models for social networks. In International Workshop on Algo-
rithms and Models for the Web-Graph, pages 138–149. Springer, 2007.

[ZP96] Anthony M Zador and Barak A Pearlmutter. VC dimension of an
integrate-and-fire neuron model. In Proceedings of the 9th Annual Con-
ference on Computational Learning Theory (COLT), pages 10–18. ACM,
1996.

[ZTK08] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-
rank approximation and error analysis. In Proceedings of the 25th In-
ternational Conference on Machine Learning (ICML), pages 1232–1239,
2008.

347

http://arxiv.org/abs/1412.7938

	Introduction
	A Dual View of Randomized Computation
	This Thesis
	Sublinear Time Low-Rank Approximation
	Lower Bounds for Linear Algebraic Computation
	Ant Colony Density Estimation
	Computation in Spiking Neural Networks

	Notation and Preliminaries
	General Notation
	Matrix and Vector Notation


	Sublinear Time Low-Rank Approximation of PSD Matrices
	Background and Introduction to Results
	Low-rank Approximation of PSD Matrices
	Our Contributions
	Algorithm Overview
	Some Further Intuition on Error Guarantees
	Road Map

	Ridge Leverage Score Sampling
	Leverage Score Definitions and Basic Properties
	Approximation Bounds
	Fast Ridge Leverage Score Approximation

	Column Sampling
	Row Sampling
	Approximating the Ridge Leverage Scores of AS1
	Projection-Cost-Preserving Row Sampling
	Spectral Norm Projection-Cost-Preservation
	Frobenius Norm Projection-Cost-Preservation

	Full Low-Rank Approximation Algorithm
	Basic Algorithm
	Outputting a PSD Matrix

	Spectral Norm Error Bounds
	Algorithmic Approach
	Basic Algorithm
	Sublinear Time Ridge Regression

	Query Lower Bound
	Lower Bound Approach
	Primitive Approximation
	Lower Bound for Low-Rank Approximation

	Low-Rank Approximation of A via A1/2
	Converting a Low-Rank Approximation of A1/2 to a Low-Rank Approximation of A
	PSD Low-Rank Approximation in n1.69 poly(k/) Time

	Discussion and Future Work
	Sublinear Time Algorithms for PSD Matrices
	Sublinear Time Algorithms for Other Matrix Types
	Expanding the Applications of Leverage Scores


	Lower Bounds for Linear Algebraic Computation
	Background and Introduction to Results
	Spectral Sum Problems
	Kernel Low-Rank Approximation
	Our Contributions
	Prior Work

	Lower Bounds for Spectrum Approximation
	Lower Bound Approach
	Reductions From Triangle Detection
	Hardness for Computing Spectral Sums
	Leverage Score and Effective Resistance Hardness
	Determinant Hardness

	Lower Bounds for Kernel Approximation
	Lower Bound Approach
	Lower Bound for Gram Matrices
	Lower Bound for Dot Product Kernels
	Lower Bound for Distance Kernels
	Fast Low-Rank Approximation of AAT
	Hardness of Outputting a Low-Rank Subspace

	Discussion and Future Work
	Connecting Matrix Multiplication to Other Problems
	Understanding the Role of Randomness


	Ant-Inspired Density Estimation
	Background and Introduction to Results
	Density Estimation on the Grid
	Our Contributions
	Road Map

	Theoretical Model for Density Estimation
	Computational Model
	The Density Estimation Problem

	Random-Walk-Based Density Estimation
	Random-Walk-Based Density Estimation Analysis
	Decomposition of Collision Count into Independent Random Variables
	Correctness of Encounter Rate in Expectation
	A Re-collision Probability Bound
	Collision Moment Bound
	Correctness of Encounter Rate With High Probability

	Extensions to Other Regular Topologies
	From Re-collision Bounds to Density Estimation
	Density Estimation on the Ring
	Density Estimation on k-Dimensional Tori
	Density Estimation on Regular Expanders
	Density Estimation k-Dimensional Hypercubes

	Independent-Sampling-Based Density Estimation
	Applications
	Social Network Size Estimation
	Distributed Density Estimation by Robot Swarms

	Discussion and Future Work
	Extensions to Our Model
	Biological Applications
	Algorithmic Applications


	Computation in Spiking Neural Networks
	Background and Introduction to Results
	Spiking Neural Networks
	The Winner-Take-All Problem
	Our Contributions
	Road Map

	Spiking Neural Network Model
	Network Structure
	Network Dynamics
	Problems and Solving Problems
	Basic Results and Properties of the Model
	Potential Modifications to the Basic Model
	The Winner-Take-All Problem

	A Two-Inhibitor Solution to the WTA Problem
	Network Definition
	Basic Results and One-step Lemmas
	Stability
	Convergence to Good Configurations
	Transition Lemmas for Good Configurations
	Convergence to WTA
	Completing the Bounds

	WTA Lower Bounds
	Single Auxiliary Neuron Lower Bound
	Two Auxiliary Neuron Lower Bound

	Faster Convergence With More Inhibitors
	Use of History Period
	O(1) Convergence Time with O(logn) Inhibitors
	Two-Step Lemmas
	Stability
	Convergence in O(1) Steps
	Completing the Analysis
	Constructions With Runtime Tradeoffs

	Discussion and Future Work
	Winner-Take-All Extensions and Open Questions
	Other Neural Computational Primitives
	Learning Problems and Dynamic Networks
	Neural Linear Algebraic Computation



