
Fast Approximation of Maximum Flow using

Electrical Flows

Cameron Musco

Advisor: Dan Spielman

April 18, 2011

Abstract

We look at a variety of topics relating to better understanding the

fast approximate maximum flow algorithm presented in ‘Electrical Flow,

Laplacian Systems, and Faster Approximation of Maximum Flow in Undi-

rected Graphs’ (Christiano, Kelner, Madry, and Spielman 2010). The

algorithm constructs an approximate maximum flow from a series of in-

termediate electrical flows over an iteratively updated resistor network.

We explore the relationship between electrical flows and maximum flow

and discuss a number of topics relevant to the goal of proving that the

intermediate electrical flows calculated in the algorithm directly converge

to a maximum flow (rather than converge as an averaged set). We present

a proof that the algorithm can be run without the binary search technique

described in the original paper, and discuss how the slightly modified al-

gorithm may help better understand the overall behavior of the technique.

Finally, we look at some interesting results that arise when we consider

continuous time analogs of the discrete iterative algorithm. We discuss

how the maximum flow on a graph can arise as a steady state flow of

a related thermistor network and how this phenomena could possibly be

used to design future maximum flow algorithms.

1 Background

1.1 Maximum Flow Problem

The maximum flow problem is a well studied and widely applicable problem
in algorithmic graph theory and optimization. The problem is: given a graph
and an associated set of flow constraints on the edges of the graph, to find the
maximum amount of flow that may travel between a source node s and a sink
node t. Solving this problem has applications ranging from image segmentation,
to airline flight scheduling, to solving other fundamental graph based problems
like the related maximal bipartite matching and perfect matching problems [12].

1

There are many known algorithms for solving maximum flow on a graph.
The Ford-Fulkerson algorithm is a staple of undergraduate algorithms classes
and two techniques - the push relabel method and the binary blocking algo-
rithm, have been the basis for much recent work on improving runtime bounds
for the problem. However, finding faster algorithms (and faster approximation
algorithms) has been a long standing open question.

1.2 Overview of Technique

In 2010, Christiano et al. published a paper describing a new algorithm for
computing approximate maximum flow on an undirected graph. This algorithm
can compute a (1 � ✏)-approximate maximum flow in time Õ(mn1/3✏�11/3) -
where n is the number of nodes in the graph and m is the number of edges.
This algorithm currently has the best runtime dependence on m and n of any
known approximate maximum flow algorithm. [2]

The algorithm works by computing a series of electrical flows on the graph in
consideration. The electrical flow of value F is the flow f of F units from s to t
that minimizes the energy function Er(f) =

P
e ref

2(e), where re is a resistance
value assigned to each edge. This electrical flow can be solved as a system
of linear equations of the graph Laplacian. Recent work by Spielman, Teng,
and others has shown that, since the Laplacian is symmetric and diagonally
dominant, these linear equations can be solved in nearly linear time.

Intuitively, what the algorithm does is chooses an initial set of resistances to
apply to the graph. The algorithm then computes the electrical flow over the
graph given these resistances. The electrical flow will not necessarily preserve
the capacity constraints that must be preserved in a maximum flow. So, the
resistances on edges where capacity constraints are violated are augmented in
order to decrease flow across these edges. The authors show that by appropri-
ately modifying the resistances at each iteration and by taking an average over
a set of intermediate electrical flows, an approximate maximum flow is achieved.

Although a full description of the algorithm can be found in [2], I will give
a brief description, without proof of correctness here.

1.3 Description of the Algorithm

Before presenting the Õ(mn1/3✏�11/3) time algorithm, the authors describe
a simpler Õ(m3/2✏�5/2) time algorithm. This simpler algorithm can be con-
verted into an Õ(m4/3✏�11/3) algorithm by removing certain edges of the graph
that have large capacity violations in the calculated electrical flows. The final
Õ(mn1/3✏�11/3) runtime is a achieved by applying graph smoothing techniques
described in [4] to the graph before running the algorithm. This step ‘shifts’
some of the time dependency from m to n, decreasing the runtime since m may
be on the order n2. Here we do not go into the details of these speed ups but
instead describe the simpler Õ(m3/2✏�5/2) algorithm presented in the paper.

2

Further, I assume that we are able to calculate the exact electrical flow for any
set of resistances. Since the algorithm uses an approximate electrical flow solver,
the proofs of the bounds in the papers are (very) slightly more complex.

Throughout the execution of the algorithm, we maintain a vector of edge
weights w. When calculating an intermediate electrical flow, the resistance of
an edge is given by:

re =
1

u2
e

✓
we +

✏|w|1
3m

◆
(1)

where ue is the capacity of the edge and |w|1 is the sum of edge weights.
In the original paper, all edge weights are initialized to 1, causing the initial
resistances to be approximately proportional to the inverses of the capacities
squared. The initial edge weights do not particularly matter however, with the
analysis given in the paper going through as long as they are scaled to sum to
m. In practice, it makes sense to set the initial edge weights porportional to
the capacities - so that the initial resistances are inversely propositional the the
capacities (rather than the capacities squared). In a simple graph, such as the
one in Figure 1 below, this will cause initial flows to exactly respect the capacity
constraints. In more complex graphs, although the capacity constraints may be
violated in the initial electrical flow, having resistances inversely proportional
to capacities rather than capacities squared prevents much larger resistances on
low capacity edges, causing too little initial flow across these edges.

Figure 1: Setting resistances to 1/u will lead to maximum flow from the start
of algorithm

! "

!"#"$!"#"$

!"#"%
!"#"%

After initializing the edge weights and calculating the initial resistances, we
compute the electrical flow of value F from the source s to the sink t. F is an
initial guess of the maximum flow value. We will describe below how this guess
is updated using a binary search technique. Recall that this electrical flow is the
minimum energy flow of value F from s to t. Letting f⇤ be the actual maximum
flow, with value F ⇤ we know that:

3

E(f⇤) =
X

e

ref
⇤(e)2

=
X

e

1

u2
e

✓
we +

✏|w|1
3m

◆
f⇤(e)2

=
X

e

✓
we +

✏|w|1
3m

◆✓
f⇤(e)

ue

◆2

=
X

e

✓
we +

✏|w|1
3m

◆
(congf⇤(e))2

X

e

✓
we +

✏|w|1
3m

◆

=
⇣
1 +

✏

3

⌘
|w|1

since the flow is feasible so congf⇤(e) 1 for all edges. Now, if F F ⇤ then
the electrical flow fe, which minimizes the energy over all flows of value F has
energy less than or equal to the electrical flow f⇤

e , the electrical flow of value
F ⇤. This is because we could just scale down f⇤

e to get a flow of value F with
lower energy. So, E(fe) E(f⇤

e) E(f⇤)
�
1 + ✏

3

�
|w|1 < (1 + ✏)|w|1.

If the returned electrical flow has energy greater than this bound, then we
know that F must be greater than the maximum flow value. So, we update our
guess of F (performing binary search between and upper and lower bound for
the maximum flow that we compute at the beginning of the algorithm). If the
returned electrical flow respects this energy bound, then we can show (see [2]
for details) that, X

e

we ⇤ congfe(e) < (1 + ✏)|w|1 (2)

and, for all edges e, since
P

e re ⇤ f2
e < (1 + ✏)|w|1, we must have:

re ⇤ f2
e < (1 + ✏)|w|1

1

u2
e

✓
we +

✏|w|1
3m

◆
⇤ f2

e < (1 + ✏)|w|1

f2
e

u2
e

✓
✏|w|1
3m

◆
< (1 + ✏)|w|1

congfe(e)
2

✓
✏|w|1
3m

◆
< (1 + ✏)|w|1

congfe(e) <
p

3m(1 + ✏)/✏

congfe(e) < 3
p
m/✏

if we restrict ✏ < 1/2.

4

So, our worst case congestion on any edge is:

congfe(e) < 3
p

m/✏ (3)

These bounds, on average congestion and maximum congestion respectively,
are key to showing that the average of our electrical flows will eventually con-
verge to a feasible flow of approximately maximum value.

After computing an electrical flow, we update our edge weights using the
formula:

wi
e = wi�1

e (1 +
✏

⇢
congfi(e)) (4)

where ⇢ = 3
p
m/✏, is the ‘width’ of our electrical flow subroutine.

We repeat this process of calculating the electrical flow using our current
resistance set and then updating the edge weights (and hence the resistances).

After 2⇢ln(m)
✏2 iterations, it can be shown that the appropriately scaled average

of all intermediate electrical flows we calculated will have value approximately
F and will have no capacity violations. Once calculating such a flow for a value
of F , we increase our guess of F and repeat the process. By increasing our
guess everytime we compute a feasible flow, and decreasing the guess everytime
an electrical flow violates the energy bound discussed above, we can perform a
binary search until we have discovered F to the desired level of accuracy.

2 Electrical Flow

As seen in the above description, the fact that the electrical flow minimizes
energy over all flows allows us to bound the average congestion and maximum
congestion of this flow, and eventually to compose a series of electrical flows
into an approximate maximum flow. It is worth discussing a bit more about
electrical flows, how they are computed, and how they relate to maximum flows.

As explained above, given a graph G where each edge e has an associated
resistance re, the electrical flow of value F from a source node s to a sink node
t is the flow of value F from s to t that minimizes the energy:

Er(f) =
X

e

ref
2(e)

To be a valid flow from s to t, the electrical flow must have no net flow
into or out of vertices other than s and t. As the name suggests, the electrical
flow is simply the flow that we would see in an electric circuit where each edge
is a resistor with value re and where s and t are connected with a current
source sending F units of current from t back to s (and hence forcing F units
of current to flow through the resistor network from s to t.) At first glance
the electrical flow seems like it may need to be solved using techniques from
optimization theory. However, it is easily found as the solution to a system of
linear equations.

5

2.1 Solution as a System of Equations in the Laplacian.

We first introduce a few matrices that will make the discussion of the elec-
trical flow as the solution to a system of linear equations simpler. Let n = |V |
be the number of vertices in our graph and let m = |E| be the number of edges.
Further, although we work with undirected graphs, we assign each edge an ar-
bitrary direction. So, each vertex has a set of ‘in’ edges E�(v) and a set of ‘out’
edges E+(v). The vertex-edge incidence matrix B is the n⇥m with

Bv,e =

8
><

>:

1, if e 2 E�(v)

�1, if e 2 E+(v)

0, otherwise

Intuitively, B has rows corresponding to vertices and columns corresponding
to edges. The column corresponding to e = (u, v) has a zeros everywhere except
a 1 at position u and a �1 and position v (where the direction of the edge u to
v or v to u is decided arbitrarily.

B =

2

64

1 1 ... 0 0 ... 0 0
�1 0 ... 1 1 ... 0 0
0 �1 ... �1 0 ... 0 0

...
...

...
...
...
...

...
...

0 0 ... 0 0 ... �1 �1

3

75

B clearly contains all the structural information for our graph. However, to
incorporate information on edge resistances we use the m⇥m diagonal matrix
R with Re,e = re. We often look not at R but at its inverse C. Ce,e = 1

re
, the

conductance of e.

The matrix L = BCBT is the well known Laplacian matrix of our electrical
network. The Laplacian is an n⇥n symmetric diagonally dominant matrix. Its
diagonal contains the degrees of each vertex weighted by their conductances,
and position u, v contains the negative conductance on e = (u, v) if u and v are
connected in the graph. Explicitly:

Lu,v =

8
><

>:

P
e2E(v) 1/re, if u = v

�1/re, if e = (u, v) 2 V

0, otherwise

Finally, we introduce the n⇥ 1 vector �s,t, which is all zeros except with a
F at position s (our source node) and a �F at position t (our sink node). �s,t

is the characteristic vector of an electrical flow of value F . It encapsulates the
fact that F units of flow should flow into and out of s and t respectively, and
that no net flow should flow into or out of any other vertex (Kirchho↵’s first
law for electrical circuits). Now, it can easily be seen that any valid flow f of
value F from s to t satisfies:

Bf = �s,t

6

And we can see that:

Er(f) =
X

e

ref
2(e) = (R1/2f)T · (R1/2f) = ||C�1/2f ||2

Now, letting j = C�1/2f , we have that solving the electrical flow with value
F is the same as solving:

min
f

||j||2 subject to BC1/2j = �s,t

In general, there will be many solutions to BC1/2j = �s,t. (Except if s and t
are disconnected in our graph.) To obtain the solution with the smallest magni-
tude, we take a solution that is orthogonal to the nullspace of BC1/2. If j is not
orthogonal to the nullspace of BC1/2, then j can be split into two orthogonal
vectors j = jN + jR, where jN 2 N(BC1/2), jR 2 C(AT), and BC1/2jR = �s,t.

||jN + jR||2 � ||jR||2, so jR achieves a lower energy than j. Now, we can ob-
tain the unique j orthogonal to N(BC1/2) by using the Moore-Penrose pseudo-
inverse:

j = (BC1/2)+�s,t

And so, our electrical flow is given by:

f = C1/2(BC1/2)+�s,t

Using the identity: A+ = AT (AAT)+ we get:

f = C1/2(C1/2BT (BCBT)+�s,t

f = CBT (L+�s,t)

We let the n length vector � be defined as � = L+�s,t. So f = CBT�. � is
most intuitively interpreted as a voltage vector for our electrical flow. The flow
across any edge e = (u, v) is given by:

Ce,e ⇤ (�(u)� �(v)) =
�(u)� �(v)

re

which is the famous Ohm’s law, relating voltage and current with the equa-
tion I = V

R .
So, we can see that solving an electrical flow can be reduced to finding the

voltage (potential) vector � = L+�s,t. Of course, actually computing the puesdo
inverse of L is not the fastest way to find �. We explain how we can quickly
find � below.

7

2.2 Quickly Solving Electrical Flows

� = L+�s,t means that � solves the linear equation L� = �s,t, and that � is
orthogonal to the nullspace of L. However, we can see that since the columns
(and rows since its symmetric) of L sum to 0, the nullspace of L is spanned
by the all ones vector 1. So not being in the nullspace of L simply means that
the voltages � are shifted to have mean 0. Intuitively, we know that shifting all
the voltages by a constant amount in an electrical network will not a↵ect the
final flow of current. We can see that this is the case by revisting the equation
f = CBT�. The columns of BT also sum to 0, so 1 is in the nullspace of CBT .
So, f = CBT� = CBT (�+ c) for any constant vector c.

So any solution to L� = �s,t will be a valid potential vector for our electrical
flow. Further, consider fixing �(s) = 1 and �(t) = �1. If we solve for a � with
�(s) = 1, �(t) = �1, and L� = c�s,t for some constant c, we can clearly simply
rescale � so that L� = �s,t. Letting s be the first node and t the last so that
the algebra is easier to see, we can convert our system of equations to:

2

64

e1
L2

...
Ln�1

�en

3

75� =

2

4
1
0
...
0
�1

3

5

where e1 and en are the standard unit basis vectors with 1’s at positions 1
and n respectively and Li is the ith row of L. Since this system still enforces
the no net outflow condition of vertices other than s and t, a solution to this
new system will be a solution to L� = c�x,t for some c. So such a solution will
simply be a scaling of our final solution. Now, we can use row combinations to
eliminate the first and last columns of our modified Laplacian matrix. Let cs be
the n⇥ 1 vector with a 1 at position s, Cs,u at position u if e = (u, s) 2 E, and
0 otherwise. Similarly let, ct be n⇥ 1 with a 1 at position t, Ct,u at position u
if e = (u, t) 2 E, and 0 otherwise. Working through the matrix multiplications
we get:

[c1 e2
T ... en�1

T ct]

2

64

e1
L2

...
Ln�1

�en

3

75� = [c1 e2
T ... en�1

T ct]

2

4
1
0
...
0
�1

3

5

2

64

e1
0 L2,2 ... L2,n�1 0

...
...

...
...

0 Ln�1,2 ... Ln�1,n�1 0
en

3

75� = cs � ct

Since the first and last variables of this equation are determined we can
simply strip o↵ the first and last columns of the matrix and the first and last

8

elements of the vectors to the get linear equation:

Linner

"
�(2)

...
�(n�1)

#
=

"
(c�t)(2)

...
(c�t)(n�1)

#

where Linner is the ‘inner Laplacian’ - L without its first and last rows and
columns. It turns out that Linner is positive definite. It is well known that L,
when edge weights are positive, is positive semi-definite since its quadratic form
gives the smoothness of a function over a graph:

x

T Lx =
1

2

X

e=(u,v)2E

Cu,v(x(u)� x(v))2 � 0

The inner Laplacian gives the smoothness over G� {s, t} so is still positive
semi-definite. In fact, it has no nullspace, since it has the same row space as
the modified Laplacian with its first and last rows and columns reduced to unit
vectors, except its row space does not include e1 and en. Since this modified
Laplacian had full rank (we fixed �(s) and �(t) to eliminate the all-ones vector
nullspace), the inner Laplacian (with two fewer rows), must also have full rank.

The positive definiteness of the inner Laplacian allows us to quickly solve
the above linear equation using a variety of techniques. For smaller matrices
a Cholesky decomposition can be used. For large matrices, we can use the it-
erative conjugate gradient method. When combined with preconditioning (an
incomplete Cholesky preconditioner in my MATLAB implementation), this allows
us to quickly solve electrical flows even over massive graphs with tens of thou-
sands of nodes and hundreds of thousands of edges.

Of course, the run time bounds given in the original paper are based o↵
using the current fastest known algorithm for approximately solving Laplacian
systems. This algorithm will return a value for � satisfying ||� � L+�s,t||L <

✏||L+�s,t||L in time Õ(mlogn + nlog2n ⇤ log(1/✏)) where ||x||2A = xTAx. [5].
However, because this algorithm does not currently have fast or stable imple-
mentations, we use the more standard techniques described above in our testing
of the maximum flow algorithm.

2.3 Maximum Flows as Electrical Flows

It is worth noting a couple interesting properties about electrical flows and
their relationship to maximum flows.

Recall from above that we find an electrical flow f with the equation f =
CBT�. So, f is in the row space of BC, and so is orthogonal to all vectors
in its nullspace. Setting each resistance value to 1, BCf = Bf = �. So, any
flow in the nullspace of B is one that leads to � = 0, so no net flow into any
vertex. Such a flow is called a ‘circulation’. So, electrical flows are orthogonal to

9

circulations. If the resistances are not all 1, then an electrical flow is orthogonal
to capacitance weighted circulations.

Intuitively, when finding a maximum flow we would like the avoid circulations
since they simply congest edges without increasing the flow from s to t. Of course
not all maximum flows avoid circulations. When there is excess capacity in the
graph, there may be many maximum flows that have circulatory components.

Figure 2: A circulating maximum flow that could not be an electrical flow with
positive resistances.

1/1 1/1
3/3

2/2

However, we can see that there always exists at least some maximum flow
that can be written as an electrical flow. In fact, if we fix a set of voltages
satisfying a few basic properties, we can always find a set of resistances whose
electrical flow will be a maximum flow and whose vertex potentials will be equal
to the fixed set of voltages.

Theorem 2.1. There always exists a maximum flow that can be written as an

electrical flow.

Proof. Consider any maximum flow f⇤ over the graph G. Now, we would like
to eliminate all circulations from f⇤. If f⇤ has a cycle of vertices v1, v2, ...vk
such that the flows on edges (v1, v2), (v2, v3), ..., (vk�1, vk), (vk, v1) all have the
same sign (either all strictly positive or strictly negative - but we will assume
positive without loss of generality), then set f(emin) to be the minimum flow on
one of these edges, emin. If we then subtract f(emin) from the flow on all edges
in the cycle, we see that the total flow into and out of every vertex remains the
same, so we still have a maximum flow. Further, emin now has flow 0 across
it, while the flow on all other vertices in the cycle has remained positive. So,
we have removed the cycle of strictly positive flow. And, since we have not
flipped the sign of the flow on any edge, we have not created any new cycles
with either strictly positive or strictly negative flow. By repeating this process
we can arrive by construction at some flow f⇤ that contains no cycles of edges
all with either strictly positive or strictly negative flow.

Now, we can assign voltages � and resistances r to the vertices and edges
of G so that f⇤ is the electrical flow over G with resistances r and leads to the
potential vector �. We start by assigning s to have an arbitrary voltage, possibly
1. We then consider all neighbors of s (all v 2 N(s)). If f⇤ has a positive flow
going from s to some neighbor v, we assign v to have a voltage lower than s.
We then look at the interactions amongst the set of neighbors N(s). Whenever
one neighbor v1 has positive flow going to another neighbor v2, we decrement
the voltage of v2 to be lower than the voltage of v1. Since we have removed

10

all positive flow edge cycles from f⇤, this process of decrementing voltages will
eventually terminate. We continue on, assigning voltages to the neighbors of
all members of N(s), at each stage decrementing voltages as necessary so that
all positive flows in f⇤ are from vertices with higher potentials to vertices with
lower potentials. Upon completing this process we consider each edge e = (u, v)
of G. If f⇤ sends a flow of value F > 0 from u to v, then our above process
guarantees that �(u) > �(v) and we can set re =

�(u)��(v)
F . If instead f⇤ sends

a positive flow from v to u then our above process guarantees that �(v) > �(u)

and we can set re =
�(v)��(u)

F . If no flow moves along e then we can set re = 1.
Or, using a slightly more complex voltage assignment process, could have set
�(u) = �(v), so re can take any value.

Essentially what we have done above is found a maximum flow with no
circulations - i.e. a maximum flow that could be made orthogonal to all f̃ with
BCf̃ = 0. Such an maximum flow can be written as an electrical flow.

Of course, writing a given maximum flow as an electrical flow is a much
easier task than actually finding the proper set of resistances that will lead to
an electrical flow that is a maximum flow. In the algorithm studied such a set of
resistances may never actually be found. The final approximate maximum flow is
obtained by averaging a large set of electrical flows, all calculated over di↵erent
resistance sets. Empirically however, it does seem that the algorithm always
converges to a set of resistances that gives a feasible approximate maximum
flow. As will be discussed below, proving that this convergence always occurs
would be an important step in understanding this algorithm.

2.4 A Di↵erence in Norms

One interesting way to look at the di↵erence between calculating electrical
flows and calculating maximum flows is that both calculations require minimiz-
ing the magnitude of the energy vector of a flow over the graph, but use di↵erent
vector norms when calculating this magnitude. As explained above, letting F
be the value of the maximum flow on our graph, the electrical flow of value F
minimizes the energy Er(f) =

P
e ref

2
e = kprefek2 where

p
refe is the m length

vector with value
p
re ⇤ fe at position e. If re is set proportional to 1/u2

e, then
calculating the electric flow corresponds to minimizing kfe/uek2 (minimizing
the 2-norm).

Now, a maximum flow on the graph must have at least 1 edge saturated
to full capacity (or else we could scale up the flow by a constant to get a
higher flow value.) However, it has no edges flowing over capacity. So, letting
re = 1/ue, a maximum flow is a flow of value F that minimizes the valueP

e(re ⇤ fe)1 = kfe/uek1. A maximum flow minimizes this value to 1. Any
flow of value F with capacity constraints violated would have this value go to
infinity. Any flow where this value is 0 must have all edges unsaturated, and so
cannot be a maximum flow, and so cannot have value F .

If we had an e�cient algorithm to minimize the infinity norm of refe over
all valid flows, we could set re = 1/ue and compute the maximum flow using

11

this algorithm. However, we do not have such an algorithm. Instead we use the
fact that linear algebra allows us to e�ciently minimize the 2-norm of vectors
and use a series of 2-norm minimizations (in calculating the electrical flows) to
eventually lead to the approximate infinity norm minimization.

The runtime of our algorithm is inherently limited by the gap between the
2-norm and the infinity norm. As explained above, with the resistance scheme
used in the algorithm, an electrical flow with value F will never violate the
capacity of an edge by a factor greater than 3

p
m/✏. If we used the appropriate

resistance values and calculated a general p-electrical flow, a flow minimizing
the p-norm of the energy vector refe, then the capacity would not be violated
by more than a factor of O((m✏)

1/p). This would allow us to iterate on the order

of (m✏)
1/p

⇣
ln(m)
✏2

⌘
times rather than (m✏)

1/2
⇣

ln(m)
✏2

⌘
times.

Of course, while linear algebraic techniques give many techniques for mini-
mizing vector 2-norms, much less is known about minimizing higher order norms.
It would be an interesting line of research to see if looking at higher order norm
minimization could somehow lead to an improved maximum flow algorithm (or
improved infinity norm minimizations in general). Or to see if there is some limit
to the e�ciency of higher order norm minimization algorithms that is related
to the e�ciency of 2-norm minimization algorithms.

3 Removing Binary Search with Flow Scaling

As described above, in the original algorithm being studied, the maximum
flow value was found through a process of binary search. Initially upper and
lower bounds on the maximum flow value are calculated (using a variety of
possible techniques). Call these bounds fl and fu. At each step of the binary
search the algorithm attempts to find a feasible flow with inputed value F 2
[fl, fu]. Letting F ⇤ be the actual maximum flow value, if F F ⇤, then, as
described above, each intermediate electrical flow will respect the (1 + ✏)|w|1
energy bound. So, the algorithm will always return a feasible flow with value
F . If F > F ⇤, then any flow of value F will be infeasible. So, when running
the algorithm, some intermediate electrical flow must break the energy bound
(or else, the algorithm would produce a feasible flow of value F , which is a
contradiction). Note: Technically, if we have F ⇤ F 1

1�O(✏)F
⇤ then the

algorithm may return a feasible flow with value < F ⇤ and no intermediate
electrical flow failure.

However, since the algorithm will always indicate failure if F > F ⇤ by a wide
enough margin because an electrical flow will violate the energy bound, and will
always return a feasible flow of value F if F F ⇤, we can perform a binary
search for F in the range [fl, fu]. This search does not increase the asymptotic
runtime of the algorithm as it only adds a multiplicative factor logarithmic in
m and ✏. However, in practice, performing the binary search can significantly
increase runtime and seems unnecessary.

Below I will explain how the binary search can be avoided for the simpler

12

Õ(m3/2e�5/2) algorithm through the use of ‘flow scaling’. Unfortunately, despite
some e↵ort, I have not yet been able to prove that we can avoid binary search
when using the faster Õ(m4/3✏�11/3) version of the algorithm with edge cutting.

At each iteration of the algorithm the electrical flow over the current resis-
tance set is returned. Normally if this flow has energy > (1 + ✏)|w|1, we will
halt iteration because we will know that F > F ⇤. However, letting E(f) be the
energy of the returned flow, then by multiplying the flow value on each edge

by the factor:
q

(1+✏)|w|1
E(f) , we obtain a valid electrical flow that is a scaling of

the returned flow but has energy exactly equal to (1 + ✏)|w|1. We can in fact
solve the initial electric flow with any flow value we choose - for example, we
can always force 1 unit of flow from s to t. Since we then scale up to the energy
bound, the initial value of the computed electrical flow is irrelevant.

Theorem 3.1. If at each step of the algorithm described in [2] we solve an elec-

trical flow of value 1 on the graph and then set f =
⇣q

(1+✏)|w|1
E(f)

⌘
⇤f and update

weights as described, the algorithm will converge so that f̄ = (1�✏)2

(1+✏)N (
P

i f
i) is a

feasible, approximate maximum flow.

Proof. The fact that each scaled flow respects the (1 + ✏)|w|1 energy bound
means that the congestion bounds shown in equations (2) and (3) still hold.
So, the proof that the final average of electrical flows is feasible goes through
exactly as presented in the paper.

Further, we have that the scaled value of the electrical flow is at least as
large as the true maximum flow value F ⇤. If the value were any less, then an
electrical flow of value F ⇤ could be found by scaling up f . However, the scaled
up version of f would have energy > (1 + ✏)|w|1. This is a contradiction since
this flow must have energy E(f⇤) (1 + ✏)|w|1.

Now, we show that when simply scaling the electrical flows instead of failing,
Lemma 3.4 and Lemma 3.5 of the original paper still hold so the multiplicative
weights update technique still converges to a feasible average flow. Lemma 3.4
states that for any i � 0

µi+1 µiexp

✓
(1 + ✏)✏

⇢

◆

where ⇢ = 3
p
m/✏ is the width of the electrical flow oracle. Since, as ex-

plained above, the average congestion bound:
P

e w
i
econgfi+1(e) (1 + ✏)|wi|1

still holds, we can follow the same proof in the original paper:

µi+1 =
X

e

wi+1
e =

X

e

wi
e

✓
1 +

✏

⇢
congfi+1(e)

◆

=
X

e

wi
e +

✏

⇢

X

e

wi
econgfi+1(e) µi +

(1 + ✏)✏

⇢
|wi|1

Again following the analysis of the paper this gives Lemma 3.4: µi+1
µiexp

⇣
(1+✏)✏

⇢

⌘
.

13

In particular this gives µN m ⇤ exp
⇣

(1+✏)✏
⇢ N

⌘
.

We can also easily see that Lemma 3.5 holds, since it only uses the fact that
in each electrical flow, for each edge e, congfi(e) ⇢, which holds after we scale
the flow to the proper energy threshold. Following the analysis of the paper, we
can use this maximum congestion bound to show that

wi
e � exp

0

@ (1� ✏)✏

⇢

iX

j=1

congfj (e)

1

A

Setting i = N gives

wN
e � exp

✓
(1 + ✏)✏N

(1� ✏)⇢
congf̄ (e)

◆

And again following the analysis of the paper, we combine the two lemmas
above to get that for each edge e:

m ⇤ exp
✓
(1 + ✏)✏

⇢
N

◆
� µN � wN

e � exp

✓
(1 + ✏)✏N

(1� ✏)⇢
congf̄ (e)

◆

ln(m) +

✓
(1 + ✏)✏

⇢
N

◆
�

✓
(1 + ✏)✏N

(1� ✏)⇢
congf̄ (e)

◆

congf̄ (e) 1� ✏+
(1� ✏)⇢ln(m)

(1 + ✏)✏N
 1

So, the moral of the above algebra is that, as long as each electrical flow is
scaled to have energy (1 + ✏)|w|1 (where the weights are those used to give the
resistances used to calculate the flow), then the original bounds shown in the
paper still hold. So, the average of the electrical flows is feasible. Since each
scaled electrical flow has value � F , this average approximates the maximum

flow within order ✏ since f̄ = (1�✏)2

(1+✏)N (
P

i f
i), where f i is the ith scaled electrical

flow.

3.1 Flow Scaling and Convergence on Maximum Flow

As discussed in more detail below, an open question about the algorithm be-
ing studied is whether the averaging of intermediate electrical flows is necessary.
In practice it seems that the final electrical flow is always a feasible approximate
maximum flow, making averaging unnecessary. However, we currently have no
proof that the electrical flows don’t have some sort of oscillatory behavior, with
di↵erent edges over capacity in each flow despite having a feasible average flow.

The modification of the algorithm to not use binary search gives at least
a di↵erent view of the problem of determining whether the electrical flows do
in fact converge on a maximum flow without averaging. All scaled electrical
flows have flow value � F ⇤ as explained above. Yet, since f̄ is feasible, it must

14

have flow value F ⇤. f̄ = (1�✏)2

(1+✏)N

PN
i=1 f

i. Now, empirically, it seems that if
we record the flow values of the scaled electric flows in our non-binary search
algorithm, these values decrease throughout the course of the algorithm. This
means that, if we solve the electrical flows always with a constant value before
scaling, every time we update our edge weights, we are increasing the ratio:

E(f)
|w|1

where E(f) is the energy of the electrical flow over the graph with value
F , the constant throughput value we use. If this ratio is in fact increasing
monotonically, and so the scaled flow values are decreasing monotonically, in
order to have f̄ with value F ⇤ we must have the electrical flows converging
to have scaled value near F ⇤. Specifically, letting fN be the final electrical flow
and FN be the final scaled electrical flow value, we would have:

F̄ =
(1� ✏)2

(1 + ✏)N

NX

i=1

F i

F̄ � (1� ✏)2

(1 + ✏)N
N ⇤ FN

F ⇤ � (1� ✏)2

(1 + ✏)
FN

FN (1 + ✏)

(1� ✏)2
F ⇤

Further, the scaled fN has E(fN) = (1 + ✏)|wN |1 � E(f⇤). And, E(f⇤) �
E(f), where f is the electrical flow with value F ⇤. Additionally, E((1+✏)

(1�✏)2 f) �
E(fN) since it has at least as high a flow value. These facts give us:

✓
(1 + ✏)

(1� ✏)2

◆2

E(f) � E(fN)

(1 + ✏)2

(1� ✏)4
E(f) � E(f⇤)

(1 + ✏)2

(1� ✏)4
E(f) � E(f⇤) � E(f)

where the above energies are calculated using the final resistance set rN . This
means that, with our final resistance set, the maximum flow has nearly minimal

energy (Within the factor (1+✏)2

(1�✏)4 .) Perhaps this means that the maximum flow
is also nearly an electrical flow given these resistances.

Of course our assumption that the scaled flow values decrease over the course
of the algorithm is based only o↵ empirical findings. Proving this fact is still

15

open. It is possible (and was the case in my initial non-binary search imple-
mentation) to force this behavior by recording a ‘flow goal value’. Whenever
an electrical flow breaks the energy barrier, it is scaled down to have energy
E(f) = (1 + ✏)|w|1. The flow value of this scaled flow becomes the new flow
goal. Future electrical flows are calculated to have this same goal and scaled
down further if they again break the energy barrier. In this way, we maintain
a constantly decreasing goal, which is similar to a dual upper bound variable
used in some interior point algorithms. However, it may be that in this method
the final electrical flow, which is scaled to have value equal to the flow goal, has
energy much lower than (1+ ✏)|wN |1. So, it is not clear that the maximum flow
has nearly minimal energy under the final resistance set.

Even given the monotonic decrease of the scaled flow values, it is unclear
whether the approximate energy optimality of the maximum flow means that
this flow is close to an electrical flow. More work would have to be done to de-
termine how being close to a flow energy-wise translates to being close flow-wise.

The reason that we cannot so easily prove that the flow scaling approach
works when using the Õ(m4/3✏�11/3) time algorithm is that in this faster algo-
rithm, anytime an edge has congestion greater than ⇢ = Õ(m1/3/✏), the edge
is cut from the graph. In this way, we e↵ectively reduce ⇢ from depending on
m1/2 to depending on m1/3 without changing the operation of the algorithm.
It is possible to bound the total capacity of cut edges so we know that the final
returned flow is still approximately maximal. Unfortunately, this bound relies
on one very simple fact that we lose when taking the flow scaling approach -
that we never flow more than F ⇤ units across a single edge in an electrical flow.
In the original algorithm this is ensured because if the algorithm runs to com-
pletion then F , the value of the intermediate electrical flows, is F ⇤. So, it is
never necessary to flow more than F units across an edge in an electrical flow.
However, with flow scaling, we may scale an electrical flow to have value greater
than F ⇤ and so to possibly have more than F ⇤ units of flow moving across
a single edge. If we could better understand how the electrical flows actually
evolve, rather than just the properties of their average, then it seems that we
could bound the flow across a single edge in the graph after a certain number
of iterations. This would then allow us to bound the capacity of cut edges and
show that the faster algorithm could work without binary search.

3.2 Relationship to Interior Point Linear Programming
Algorithms

While working on this project, I spent a fair amount of time learning about
interior point algorithms for linear programming and seeing if I could connect
them to the algorithm being studied. I made little real progress in making
connections between the two and was eventually sidetracked into looking at
possible oscillatory behavior of the intermediate electrical flows and eventually
at the connection between maximum flow and thermistor circuits. In this section
I just briefly present how the algorithm being studied seems to relate to interior

16

point methods. Continuing to look at the connections between the two could
be an interesting area of future work.

Letting B be the vertex edge incidence matrix defined above, and assuming
that our first vertex is the source node and the last vertex the sink, we can
formulate the undirected maximum flow problem as a standard form linear
program. We convert the undirected problem into a directed problem, where
each original edge (u, v) now corresponds to two directed edges with the same
capacity flowing from u to v and vice versa. In this way, our flow vector will
only have positive values, so will obey the non-negativity constraint used for
standard form linear programs. Let B2 be the n ⇥ 2m vertex-edge matrix for
the new directed graph. Let B2

inner be B2 with the first and last rows removed
(those corresponding to the source and the sink). Let B2

1 be the first row vector
of B2 - which gives the in and out edges for the source vertex.

Consider some edge e in our undirected graph. If in some maximum flow e
is meant to have flow f(e) ue across it there are many ways to achieve the
equivalent of this flow in our directed graph. We can send f(e) from u to v and
nothing back from v to u. Or, since f(e) ue so ue � f(e) = c � 0, we could
send f(e) + c

2 from u to v and send c
2 back from v to u. This would achieve

a total flow of f(e) from u to v, while still maintaining feasibility over our two
directed edges.

In order to simplify our linear program, we will always use the second ap-
proach above. This ensures that in any solution, the total flow along the directed
edges corresponding to e is:

✓
f(e) +

ue � f(e)

2

◆
+

✓
ue � f(e)

2

◆
= ue

Now, letting the directed edges corresponding to each undirected edge e be
e1 and e2, and calling our new edge set E1 [E2, we use f1 to denote the vector
of positive flows across the edges in E1 and f2 to denote the vector of positive
flows across the edges in E2. We can finally set up our linear program as:

min
fi

�B2
1 ·

f1

f2

�
s.t.

B2

inner

Im Im

�
f1

f2

�
=

0
u

�

and fi � 0

Where Im is the m⇥m identity matrix. This linear program can be solving
using one of many standard linear programming algorithms - including interior
point algorithms. Although the algorithm studied in this paper is specifically
designed to solve maximum flow, it seems to be related to these generic interior
point algorithms. Perhaps by looking at the connections between the two it is
possible to build a better understanding of the algorithm’s behavior. In the most
general terms, an interior point algorithm solves a linear program by starting
at a feasible solution of the linear program. The algorithm then makes steps
within the feasible region of the program, eventually converging to the optimal

17

solution. It is worth noting that our algorithm is not an interior point algorithm
(or at least has not been proven to be). The intermediate electrical flows that
we compute at each iteration may be infeasible. It is in fact possible (although
not observed in practice) that no electrical flow we compute over the course of
the algorithm will ever be feasible. However, more important to look at is the
cumulative average of the electrical flows which at step k can be defined as:

f̄k =
(1� ✏)2

(1 + ✏)N
(

kX

i=1

f i)

As k goes to n, f̄k converges to an approximate maximum flow. However, f̄k

may be infeasible during the execution of the algorithm. Specifically, if the flow
along an edge switches direction as we update resistance, then even though f̄k

is scaled down significantly by the (1�✏)2

(1+✏)N factor, it could be infeasible at some
step. Of course it seems highly unlikely that this would occur - and showing that
f̄k remains feasible would be another goal in better understanding the behavior
of this algorithm.

Despite the fact that our algorithm is not strictly an interior point algorithm
is does share some of the higher level design of these algorithms. One way of
implementing the algorithm without binary search is to maintain a ‘flow goal’ g
during the course of the algorithm. g is initialized to be an upper bound of the
maximum flow value. Whenever an electrical flow breaks the energy threshold
(1 + ✏)|w|1, it is scaled down to meet the threshold. g is then reset to the flow
value of this scaled down flow. In this way, g acts as a constantly decreasing
upper bound on the maximum flow. As described in the previous section, in
order for f̄ to be feasible this upper bound must converge to be near the actual
maximum flow.

The use of a flow goal seems very similar to the use of an upper bound for
the optimal value of the linear program in potential reduction interior point
methods, such as the A�ne Potential Reduction algorithm described in [1]. In
potential reduction algorithms, the primal potential function:

f(x, z) = qln(cTx� z)�
nX

i=1

ln(xi)

is often considered. x is the current interior feasible solution to the linear
program. z is an upper bound on the optimal value of the linear program
cTx⇤ (where x⇤ is the optimal feasible solution - f⇤ in the maximum flow case).
These algorithms work by iteratively updating x and z in a way that guarantees
a reduction in f(x, z). As z converges towards cTx (so x converges towards
being optimal) the qln(cTx � z) term goes to �1. The �

Pn
i=1 ln(xi) goes to

infinity on the boundary of our feasible space (when xi = 0 for any i), so ‘pushes’
our intermediate values of x towards the interior of this region. (Note: a more
detailed explanation of why minimizing the barrier function leads to solving our
linear program is given in [11].)

18

One interesting question is whether there is some potential function that is
decremented at each step of our algorithm. The use of such a potential function
could help prove that the intermediate electrical flows actually converge to an
approximate maximum flow and avoid the use of f̄ . If for any intermediate
electrical flow we define v(f) to be the flow value of f once f is scaled to be
feasible, then it is still unclear that our flow goal g approaches v(f i) as we
iterate. As the oscillations discussed in the next section demonstrate, there do
clearly exist graphs on which v(f) does not increase monotonically. So, it may
be that convergence only occurs after an initial ‘burn in’ period during which
unstable initial conditions settle out.

Another interesting question to explore is whether graphs that cause poor
performance of our algorithm also cause poor performance of traditional interior
point algorithms. Identifying a relationship here could help us understand how
the algorithms are fundamentally similar or di↵erent. Of course, it can be
di�cult to find graphs on which our algorithm ‘behaves poorly’. Perhaps it
would be useful to look at combinations of the oscillating graphs described
below and the graphs that nearly reach the ⇢ bound on maximum congestion
as described in [2].

4 Oscillatory behavior of intermediate electrical
flows

As mentioned earlier, a major open question about the current algorithm is
whether the averaging of all intermediate electrical flows is neccesary. Empiri-
cally, it seems that the edge resistances always converge to a steady configura-
tion that gives an electrical flow that is itself an approximate maximum flow.
However, we have no proof of this fact. It is possible that having a certain set
of edges under capacity in an electrical flow will cause other edges to be over
capacity, and that our algorithm will never produce an electrical flow that is
feasible.

In trying to prove that the electrical flows always converge to a feasible maxi-
mum flow, I attempted to construct graphs in which edge congestions oscillated.
It is in fact very simple to produce oscillations using resistor chains. In a graph,
consider replacing an edge with capacity ue with a chain of edges, each with
capacity ue. This replacement does not e↵ect the maximum flow of the graph.
However, if we run our algorithm on the graph, we initialize resistances to be
inversely proportional to capacities. So in the original graph our initial re is
approximately 1

ue
. The resistance on each edge in the new graph is set in the

same way. However, since resistors in series are additive, this means that the
total resistance across the chain of edges is l⇤ 1

ue
, where l is the number of edges

in the chain.
In fact, the possibility of edge chains demostrates why the initial weights

we assign to the edges, while important in practice, do not a↵ect the overall

19

runtime of the algorithm. By replacing each edge in the graph with chains of
varying lengths we could force any arbitrary initial resistance set (considering
the total resistances across edge chains), and so any arbitrary initial flow. Since,
in order for the conservation of flow to hold, each edge in a chain must flow the
same amount, the resistances on the chains in the graph will be updated exactly
how the resistances of a single edge in the original graph would be updated. So,
solving the maximum flow on the chain graph will essentially simulate solving
the maximum flow on the original graph, except with a di↵erent initial edge
weight vector.

If a chain is long and so l(1
ue
) is very high, flow may stay too low on the

edges in the chain for a number of iterations of the algorithm. By combining
chains of di↵erent lengths we can easily generate occilatory behavior. In the
graph in Figure 3 below, the source and sink nodes each have three outgoing
edges connecting to three separate paths - chains of length 100, 10, and 1. All
edges have capacity 1, so the maximum flow is 3 and is achieved by saturating
all edges fully. However, the chain of length 100 will initially have a much higher
total resistance, so will start with edges flowing far below capacity. The edge
in the chain of length 1 will correspondingly flow over capacity in our initial
electrical flows. Eventually, as we increment the resistance on the short chain
relative to the resistances on the long chain, the flow values will converge to
1. Interestingly, the edges in the middle chain of length 10 will initially start
below capacity. As we increment the resistance on the length 1 chain, the
length 10 chain will absorb some of the flow being taken o↵ the shortest chain.
Its edges will begin to flow over capacity before its own resistance is incremented
su�ciently and all edges converge to flowing 1 unit. Figure 4 shows how the
flows evolve over the course of the algorithm. The decreasing line is the flow
along the edge in the length 1 chain, and the increasing is the flow along the
edges in the length 100 chain. The middle line shows how the edges in the
length 10 chain start below capacity, go above capacity, and eventually drop to
full saturation at f = 1.

Figure 3: Basic chain graph with chains of length 100, 10, and 1

20

Figure 4: Edge flows in initial iterations of algorithm.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

While this very simple graph only demonstrates a flow oscillation with one
peak, it is possible to construct graphs in which the flow oscillates multiple
times. By simply taking the above graph G and replacing one of the edges in
the middle chain by a full copy of G, with capacities scaled down to 1/3, we get
another graph with maxflow value 3. If we look at the flow along an edge in the
middle chain of the copy of G that was inserted, we see that this flow oscillates
twice, moving from around 70% capacity up to full capacity, back down to 70%
capacity, and finally back up to full capacity in the steady state.

Figure 5: Double oscillation on chain graph

0 50 100 150
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Of course, the above oscillations are not sustained. They are reminiscent
of damped harmonic oscillators - displaying oscillatory behavior initially due to
a specific starting condition but eventually settling down to a steady state. It
remains open whether sustained flow oscillations could occur, forcing the use of
the averaging technique used in the algorithm.

21

5 Maximum flow though thermistor circuits

In considering whether or not flow oscillations are possible in the current
algorithm it seems relevant to consider a continuous analog to our iterative
algorithm. The study of oscillatory behavior is common in work with di↵erential
equations and continuous time phenomena such as the study of the behavior of
electrical circuits containing capacitors, inductors, and other elements.

Consider starting with the algorithm described in [2], but setting ✏ to an
infinitesimally small step size. So we have, going back to equation (4), we(t+✏) =
we(t)(1+

✏
⇢conge(t)). ⇢ = 3

p
m/e is inversely dependent on ✏ so goes to infinity

as ✏ goes to 0. So, the evolution of our edge weights can then be described by:

dwe

dt
= conge ⇤ we

dwe

dt
=

fe
ue

we (5)

Further, as ✏ goes to 0, we have re =
we
u2
e
.

It seems that starting from these equations it may be feasible to study the
evolution of the electric flow as we update the weights and resistances. We know
that for a given matrix A, (A+✏X)�1 = A�1�✏A�1XA�1. This formula should
allow us to study how the inverse Laplacian (or technically, the inverse of the
positive definite inner Laplacian) changes with the changing resistance values.
This would show us to see how flow values change over time.

One unnatural fact about these equations is that since dwe/dt is always a
positive multiple of we the weights and resistances all grow exponentially. This
cause the conductance values, which are the weights of the Laplacian matrix,
to move towards 0.

A seemingly more natural set of di↵erential equations is found by looking
at the behavior of a relatively common electronic circuit element - a thermis-
tor. A thermistor is a resistor whose resistance value is heavily a↵ected by its
temperature. Using the basic equations introduced in [8] and [10], letting Te be
the temperature of the thermistor and re be its resistance, we have re = Te↵e,
where ↵e is a constant temperature coe�cient of resistance. If we model an
edge of our graph with a thermistor and set ↵e = 1/u2

e, then we have re = Te
u2
e
.

Considering the temperature to be the edge weight, this is the same relationship
we have in the original algorithm. Now, the evolution of the temperature of the
thermistor over time is given by:

dTe

dt
=

�
f2
e↵eTe

�
+ d(Ta � Te) (6)

where Ta is an outside ambient temperature and d is the rate of heat dissi-
pation to the environment. The term f2

e↵eTe derives from the fact that power
delivered to the thermistor at a given point in time is v(t) ⇤ i(t) = ve ⇤ fe =
re ⇤ f2

e = f2
e↵eTe.

22

Again setting ↵e = 1/u2
e, and simplifying the equation by setting Ta = 0

and d = 1 we have:
dTe

dt
=

✓
f2
e

u2
e

� 1

◆
Te (7)

This equation is really pretty similar to the equation for dwe/dt in the orig-
inal algorithm. Notably, the congestion is squared and recentered with the �1,
so we do not see the same exponential growth of temperature as we did with
weights.

Now, consider the circuit obtained by taking the graph over which we are
trying to calculate maximum flow, connecting the source and the sink with a 1
volt voltage source, and turning each edge into a thermistor with ↵e = 1/u2

e.
This circuit will be in a steady state if dTe

dt = 0 for each edge. Looking at
equation (7), we solve:

dTe

dt
= 0

✓
f2
e

u2
e

� 1

◆
Te = 0

Te = 0 or
fe
ue

= 1 (8)

This is quite an interesting result. It means that in a steady state, each
edge either has temperature 0 or flows exactly its capacity. In particular, any
maximum flow corresponds to a steady state flow in which edge that is fully
saturated has positive temperature and all other edges will have 0 temperature.
In the graph shown below, we fix the voltage across s and t to be 1, so vs = 1
and vt = 0. If T(a,t) = 0 then r(a,t) = 0 and so va = vt = 0. Now, if the capacity
2 edge flows 2 units of flow, then its resistance must be re = V/I = 1/2. So, its
temperature must be 1/2⇤u2

e = 1/2⇤4 = 2 = ue. Similarly, if the capacity 1 edge
flows 1 unit of flow it will have Te = ue = 1 and re = 1. In this configuration,
we will be in a steady state, with 3 units of flow moving from s to t (note, with
0 resistance, the capacity 5 edge absorbs the 3 units of flow in order to preserve
conservation of flow).

Figure 6: Simple graph with possible unfeasible steady state

! "!"#"$

!"#"%

!"#"&

#

23

It is worth noticing that the results of the above analysis are especially clean.
Not only does the unsaturated edge have resistance 0, but the saturated edges
each have a full voltage drop of 1 across them and have Te = ue. In fact, given
any graph and set of edge capacities, if we randomly perturb the capacities to
any extent, we will obtain with probability 1 a graph whose thermistor model has
a similarly simple steady state. In the chain graph shown in Figure 3, all edges
are saturated in the maximum flow. So there is a steady state of the thermistor
circuit in which each edge has positive temperature and some voltage drop across
it. However, if we randomly perturb the edge capacities, each chain will, with
probability 1, have a single bottleneck edge that is saturated at maximum flow.
All other edges will be unsaturated. We will then have a simple steady state
in which each path from s to t has a single edge with Te = ue and ve = 1. All
other edges will have Te = 0. We show that this simple steady state exists for
general graphs.

Theorem 5.1. Given any graph and associated set of edge capacities, a random

perturbation of edge capacities will with probability 1 give us a new graph whose

equivalent thermistor circuit has for any steady state configuration, for any edge,

either Te = ue, ve = 1, and fe = ue, or Te = ve = 0.

Proof. With a random perturbation of edge capacities, the probability that the
sum of any set of edge capacities exactly equals another capacity (or sum of other
capacities) will be 0. Consider some steady state configuration for the circuit.
Take every non-exactly saturated edge e = (u, v) with Te = re = 0, and remove
it from the graph by combining u and v into one node. We allow multiple edges
between nodes, so if u and v were both connected to a third vertex a, we leave
two edges between a and the new combined node. This operation of collapsing
out Te = 0 edges will not change the voltage, and therefore the current, across
any exactly saturated edge (any edge with fe = ue) since any two combined
vertices must have had the same voltage in the original graph since they were
connected by an edge with re = 0. Current flow between these nodes was entirely
free, so from the view point of the rest of the circuit, the edges coming out of
these nodes behaved exactly as multiple edges coming out of one node. Further,
the collapsing operation will not remove any exactly saturated edges. This could
only happen if the saturated edge connected two vertices with the same voltage
in the original steady state configuration. However, without a voltage drop,
any edge with positive resistance would not flow any current so could not be
saturated. (Technically, if the exactly saturated edge had resistance 0 it could
have flow across it. However, if we just assume that if two zero resistance edges
flow between two nodes and at least one is not saturated, then they split the
flow so that neither is saturated, then this case cannot exist.)

Now, after the collapsing operation is complete, we will be left with a graph
containing only edges flowing at exactly full capacity. We argue that this col-
lapsed graph will only contain two nodes - s and t, so all of these edges must
flow directly from the source to sink. If the graph contained any node, v other
than s and t, this node would have to obey the law of conservation of flow. It
would have to have

P
e:e=(v,u) Iinue = 0, where Iin = 1 if the edge is flowing

24

current into v and Iin = �1 if the current flows out of v. However, our random
perturbation insures that, with probability 1, this sum can never exactly equal
0. So, we cannot have any internal nodes.

As a consequence, we see that in the original graph all saturated edges with
positive temperature must have had a voltage drop of 1. They have a voltage
drop of 1 in the collapsed graph and the collapsing operations, as explained
above, did not change the voltage across any edge. A voltage drop of 1 means
that for any saturated edge, in the steady state we have:

ve = fe ⇤ re

1 = ue ⇤
1

u2
e

Te

Te = ue (9)

Unfortunately there can be many steady states of even a simple thermistor
circuit like the one shown above. For example, if we simply set the temperatures
on the capacity 1 and capacity 2 edges to 0, and the temperature of the capacity
5 edge to 5, then we will have va = vs = 1. So the capacity 5 edge will flow
va�vt

re
= 1

1/5 = 5 units of flow. This will clearly cause a capacity violation on at
least one of the two edges leading into a.

However, these infeasible steady states are in a sense ‘fragile’. If any edge is

flowing over capacity in a steady state then we must have Te = 0 since
⇣

f2
e

u2
e
� 1

⌘

must be positive. Now, any deviation from the 0 temperature will cause dTe/dt
to become positive. This will cause temperature to increase, further increasing
dTe/dt. In contrast, in a feasible steady state, any edge with Te = 0 will
be flowing under capacity. So if Te increases slightly, dTe/dt will be negative

since
⇣

f2
e

u2
e
� 1

⌘
will be negative. This negative derivative will tend to pull the

temperature back down to 0.
If we add back in a positive ambient temperature then we see that infeasible

steady states are eliminated altogether.

Theorem 5.2. If Ta > 0 then every steady state flow f has fe/ue 1 for all

e 2 E

Proof. To be in a steady state we need:
✓
f2
e

u2
e

� 1

◆
Te + Ta = 0

✓
f2
e

u2
e

� 1

◆
Te = �Ta (10)

This cannot hold for any edge flowing over capacity since we will have⇣
f2
e

u2
e
� 1

⌘
> 0. Further, if we start with all positive edge temperatures (nat-

urally, if we start with Te = Ta for all edges) then we must have Te � 0 since

25

dTe/dt goes to 0 as the temperature goes to 0. So, for an over capacity edge we

will always have
⇣

f2
e

u2
e
� 1

⌘
Te � 0 > �Ta. So we can have no overcapacity edges

in a steady state.

Further, if we set Ta very small, then it seems very likely that any steady
state flow will be an approximate maximum flow. We have not yet proved this
fact but we show the related fact:

Theorem 5.3. If Ta = 0 then any feasible steady state flow f will be a maximum

flow.

Proof. As described above, with a slight random perturbation of our edge capac-
ities, any feasible steady state will have all edges either saturated with Te = ue

or unsaturated with Te = 0 (since we are feasible, we don’t need to consider
over-saturated edges with Te = 0). Now, assume by way of contradiction that
we have a feasible steady state flow f that is not a maximum flow. As is well
known in the theory of maximum flow (and used for example as the basis for the
Ford-Fulkerson algorithm), f must have some augmenting flow path from s to t.
For a first case, assume that this path only contains edges that are unsaturated
in f . Then, the resistance along the path is 0, which would lead to unbounded
flow between s and t in f . So such an unsaturated path cannot exist. So any
augmenting path must include at least one saturated edge e. The voltage drop
across e in f is 1. In order to not violate capacity constraints, the augmenting
path must flow across e from its 0 volt node u0 towards its 1 volt node u1. Now,
let p0 be section of the augmenting path leading from s to u0. p0 must include
at least one saturated edge since s and u0 have di↵erent voltages in f . However,
the voltage drop across this second saturated edge must be in the direction of
flow along the augmented path - from s to u0. This edge is already saturated
in this direction. So our augmenting path cannot be valid.

So, f cannot contain any augmenting paths. So, f must in fact be a maxi-
mum flow.

Although it is yet to be proven, it seems likely that as we reduce Ta to a very
small positive value, we will ensure that any steady state flow is feasible, but
also that the steady state flows converge towards a maximum flow. Specifically,
it seems that we should be able to show that f contains no augmenting paths
above a certain capacity (which is a function of Ta). Using this, we should be
able to lower bound the flow throughput of f and show that it is near maximal
for small Ta.

5.1 Basic Forward Simulation Algorithm Using Thermis-
tor Circuits

The above facts and conjecture suggest a very simple algorithm to compute
maximum flow using thermistor circuits. If we simply start with our circuit in

26

some initial state, for example with Te = Ta for all edges, or simply Te very high
for all edges, we can then step forward in small discrete steps, recalculating tem-
peratures and flows at each step according to the relevant di↵erential equations.
Choosing a small Ta should cause our steady state flow to be an approximate
maximum flow. Of course there are some di�culties with this method and facts
that would need to be proven to show that the method actually converges on a
maximum flow.

Proof that steady state is approximate maximum flow As explained above,
this algorithm relies on the assumption that any steady state flow with
Ta > 0 but very small will be an approximate maximum flow.

Convergence on steady state Even after knowing that every steady state is
a maximum flow, to show that forward simulation works we would need to
show that the circuit eventually enters the steady state configuration and
does not oscillate out of steady state. It seems intuitive that this would
be true, and it may even be know in the electronics literature, however
we have yet to prove or find a proof that a pure thermistor circuit with a
single voltage source always reaches a steady state configuration.

Step size for forward simulation It would be necessary to find a step size
(or a function giving step size at any given iteration) that allows for accu-
rate simulation of the circuit so that approximate convergence on steady
state occurs. Determining the step size would also be the key determinant
of the algorithm’s runtime.

Zero-resistance edges Edges with zero resistance become a problem numer-
ically because as re goes to 0, the conductance ce = 1/re goes to infinity
- so the elements in the Laplacian matrix go to infinity. One way around
this problem is to collapse two nodes into a single node once the resistance
between them is 0. Once the resistance is 0 it can never change as we will
have Te = 0 so dTe/dt will be fixed at 0. Of course, there would need to be
a reasonable way to decide when the resistance between two nodes is small
enough that we can truncate to 0 and combine the nodes. Another option
(which I used in my test implementation of the thermistor flow algorithm)
is to simple choose a very low lower bound for resistance. Perhaps it is
possible to prove that approximating zero resistance by a very low value
will not have a large e↵ect on the steady state flow.

As a proof of concept I did implement a very simple algorithm that uses
forward simulation to calculate maximum flow from a thermistor circuit. Figure
7 below shows a very basic graph on which I tested the algorithm. At each step,
we recalculate the electric flow given current temperatures and then for each
edge set:

Te(i+ 1) = Te(i) + ✏

✓
f2
e

u2
e

� 1

◆
Te(i)

where ✏ = 10�3 and Te(0) = 1 for all edges. (Note: here Ta = 0). To prevent
a blow up in conductance values, we set re = min(re, 10�6) at each step. The

27

maximum flow on the graph is 11, with 6 flowing along (1, 2), 5 flowing along
(1, 3), 1 flowing along (2, 3) (towards 3), and 5 and 6 flowing along (2, 4) and
(3, 4) respectively. The simulated thermistor circuit correctly converges on this
final flow. In Figure 8 we show the convergence of flow values (noting that due
to symmetry the u = 10 edges and the u = 5 edges have the same flow at each
step of the algorithm so there trajectories overlap. In Figure 9 we see that the
unsaturated u = 10 edges converge to Te = 0. The saturated u = 5 and u = 1
edges converge to Te = ue.

Figure 7: A simple graph on which to test the thermistor flow algorithm

!

"

!"#"$

!"#"%&

!"#"%&

#

!"#"$

!"#"%

$

Figure 8: Convergence of flow values towards thermistor circuit steady state

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

Iterations

F
lo

w
 a

lo
n

g
 e

d
g

e
s

28

Figure 9: Convergence of temperature values towards steady state

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iterations

E
d

g
e

 T
e

m
p

e
ra

tu
re

5.2 Other Possible Thermistor Algorithms

Of course, despite the simplicity of forward simulation, there may be other
much more e↵ective ways of finding the steady state of our thermistor circuit.
One possibility would be to use a sort of ‘dual update’ algorithm in which we
start with a high ambient temperature and decrease it towards 0 over the course
of the algorithm. The initial high ambient temperature would possibly enforce

that
⇣

f2
e

u2
e
� 1

⌘
is kept well below 0. As ambient temperature was decreased, it

would allow the flow on the circuit to approach saturation on some edges. This
seems very analogous to the decrementing of the weight of a log barrier function
used in potential reduction interior point algorithms such as described in [1].

6 Conclusion and Future Work

Obviously, nearly all the work presented in this report is incomplete and
could be further developed. A proof that we can avoid binary search for the
faster Õ(m4/3✏�11/3) edge cutting algorithm would be interesting. In addition,
even if it does not improve the runtime of the algorithm, a proof (or counter
example disproving) that the electrical flows eventually converge to an approx-
imate maximum flow and settle down to a steady state rather than oscillate
would be key to understanding the algorithm’s behavior. It seems very intuitive
that the electrical flows should eventually converge to a steady state - even if
this is not within the number of iterations described in the algorithm. Perhaps
looking at the continuous time process analogous to the iterative algorithm will
help reveal more about that answer to this question.

The connection between maximum flow and the steady states of thermistor
networks seems to be an interesting area to explore. Perhaps that direction

29

will lead to an alternative maximum flow algorithm using the slightly modified
di↵erence equations but more closely tied to a real world physical phenomena.
The open questions raised in the thermistor section seem very approachable.
Exploring alternative methods for solving thermistor steady states could bring
new ideas to solving the maximum flow problem.

Finally, there is much work to be done in understanding the connection
between this specific maximum flow algorithm and general interior point algo-
rithms. This is in general a di�cult area to explore as useful empirical tests can
be di�cult to design and run. Further, the algorithms can be framed in such
di↵erent lights and proved correct using such di↵erent techniques that it can be
di�cult to clearly see the connections between their operation. However, there
could be a lot to learn about both the interior point algorithms and about this
algorithm by relating them to each other.

7 Code Appendix

This appendix includes a short description of the pieces of code that I pro-
duced for this project, just for the purpose of cataloging the work.

7.1 Flow Algorithms

approx flow.m Implements the original flow approximation algorithm described
in [2]. If cut is set to 1 then uses the faster Õ(m4/3✏�11/3) algorithm. Oth-
erwise uses the more basic algorithm. Does not perform graph smoothing
to get best runtime.

approx cut.m Implements the dual approximate minimum cut algorithm as
described in [2]

check flow no fail.m Implements the original flow approximation algorithm
without binary search (and without edge cutting). Maintains a flow goal
that is scaled down when necessary and used as the value for computed
electric flows.

check flow no fail upscale.m Implements the original algorithm without bi-
nary search exactly as described in this paper. Scales each electrical flow
to have energy exactly (1 + ✏)|w|1

linear prog flow.m Calculates the maximum flow using Matlab’s built in lin-
ear programming function.

thermistor flow.m Very basic forward simulation of a thermistor network to
compute maximum flow. Approximates 0 resistance values with very small
resistances, rather than with edge collapse.

30

7.2 Flow Utilities

check flow.m Called by the approx flow.m algorithm to find a feasible flow
of value F . This value is given in a flow vector x which has value F in
position s and �F in position t. Fails if F > F ⇤

crude flowbound.m Finds a crude flow lower bound (0) and upper bound (min-
imum of the sum of capacities into s and out of t). Used by approx flow.m

to bound binary search.

electric flow.m Calculates an electric flow over a set of resistances. Uses the
standard Matlab backslash solver unless cong flag is set to 1, in which
case it uses a preconditioned conjugate gradient solver with an incomplete
Cholesky preconditioner.

sqrtm oracle.m Uses edge weights to calculate resistances as prescribed in [2].
Returns the electric flow over these resistances. Performs edge cutting if
cut flag is set. Returns f = 0 if the calculated flow has energy above the
flow bound.

sqrtm oracle no fail.m Same as sqrtm oracle.m except never fails. Simply
returns a flag if the electric flow is above the energy bound.

7.3 Interior Point Algorithms

affine pra.m Solves maximum flow on a directed graph using the A�ne Poten-
tial Reduction Algorithm described in [1]. Uses Matlab backslash solver
for linear solves unless cong flag is set, in which case it uses a precondi-
tioned conjugate gradient method.

affine pra undir.m Same as affine pra.m except works on an undirected
graph. Uses the linear programming formulation described in this paper,
which produces a smaller program than simply converting to a directed
graph and running affine pra.m.

7.4 Other Utilities

a2u.m Converts an n ⇥ n graph adjacency matrix to an n ⇥ m vertex edge
transfer matrix (B as used in this paper).

count osc.m Basic utility code that counts how many times the flow values on
a set of edges cross their means. Used to find edges that may possibly be
experiencing oscillating flow.

display graph.m Plots a graph’s adjacency matrix using spy. Draws a graph
in 2 dimensions using all possible combinations of the first 20 Laplacian
eigenvectors.

31

udir2dir.m Converts vertex edge transfer matrix and capacity vector for undi-
rected graph into the appropriate values for the corresponding directed
graph (with each edge replaced by two edges flowing in opposite direc-
tions).

weight plot.m Plots a graph over a given set of vertex coordinates. Color
codes edges bases on weights.

combine graphs.m Takes in vertex edge transfer matrices and capacity vectors
for two graphs. Joins the graphs by mapping a specified vertex from one
onto a specified vertex of the other.

edge to graph.m Takes in vertex edge transfer matrices and capacity vectors
for two graphs. Replaces a specified edge from one graph with a full copy
of the second graph.

netflow2params.m Converts a graph from the form produced by the Netgen
program [7] to a vertex edge transfer matrix and capacity vector.

bad chains.m Produces a graph with a specified number of edge chains each
with a specified length running directly from s to t.

bad kgraph.m Builds a graph as shown in Figure 3 of [2]. Graph has k edge
chains of length k along with a single chain of length 1 all leading from
source to sink.

References

[1] Anstreicher, Kurt M. Potential Reduction Algorithms. Chapter 4 in Interior

Point Methods of Mathematical Programming, T. Terlaky, ed., Kluwer. 1996.

[2] Christiano, Kelner, Madry, Spielman and Teng. Electrical Flows, Lapla-
cian Systems, and Faster Approximation of Maximum Flow in Undirected
Graphs. Proceedings of the 43rd annual ACM Symposium on Theory of
Computing. (2010).

[3] Daitch, Samuel I. and Spielman, Daniel A. : Faster lossy generalized flow
via interior point algorithms. STOC 2008: 451-460.

[4] D.R. Karger. Better random sampling algorithms for flows in undirected
graphs. In Proceedings of the 9th Annual Symposium on Discrete Algotihms,
pages 490-499. Philadelphia, PA, USA, 1998. Society for Industrial and Ap-
plied Mathematics.

[5] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving SDD
systems. In Proceedings of the 51st Annual Symposium on Foundations of
Computer Science, 2010.

32

[6] Klingman, Napier, and Stutz. Netgen: A Program for Generating Large
Scale Capacitated Assignment, Transportation, and Minimum Cost Flow
Network Problems. Management Science. Vol. 20, No. 5, January 1974.

[7] Network Flows and Matching. The First DIMACS Implementation Chal-
lenge. 1990-1991. ftp://dimacs.rutgers.edu/pub/netflow. (Includes maxi-
mum flow and minimum cost flow code, test cases, and graph generators.)

[8] Reenstra, Arthur L. A Low-Frequency Oscillator Using PTC and NTC Ther-
mistors. IEEE Transactions on Electron Devices, Vol. ED-16, No. 6, Jine
1969.

[9] Renegar, James. A Polynomial-Time Algorithm, Based on Newton’s
Method, for Linear Programming. Mathematical Programming Volume 40
Issue 1, January 1988.

[10] Thermistor. http://en.wikipedia.org/wiki/Thermistor. Accessed April,
2012.

[11] Tzallas-Regas, George. Primal-Dual Interior Point algorithms for Linear
Programming. www.doc.ic.ac.uk/˜br/berc/pdiplin.pdf.

[12] Wayne, Kevin. Theory of Algorithms Lecture Slides. Spring 2011.
http://www.cs.princeton.edu/˜wayne/cs423/lectures/max-flow-
applications-4up.pdf

33

