Big-O Cheat Sheet

Cameron Musco

\(O(x) - \text{less than} \)
- Big O
- “5n is \(O(n) \) and \(O(n^2) \).” “Our algorithm runs in...”
- \(f < c \cdot g \) for large enough \(n \)

\(\Omega(x) - \text{greater than} \)
- Big Omega
- “5n is \(\Omega(n^2) \) and \(\Omega(n) \).” The opposite of Big-O. “Our lower bound shows...”
- \(f > c \cdot g \) for large enough \(n \)

\(\Theta(x) - \text{equal to} \)
- Big Theta
- “5n is \(\Theta(n^2) \).” “Furthermore, our bounds are tight...”
- \(c_1 \cdot g > f > c_2 \cdot g \) for large enough \(n \)

\(o(x) - \text{less than, not equal to.} \)
- Little O
- “5n\(^2\) is \(o(n^3) \).” “We break a long standing barrier, giving the first algorithm running in time...”
- \(f < c \cdot g \) for large enough \(n \) and for all \(c \). I.e. \(\frac{f}{g} \to 0 \)

\(\omega(x) - \text{greater than, not equal to.} \)
- Little Omega
- “\(n^2 \) is \(\omega(n) \).” The opposite of Little-O, and as far as I can tell, not very popular.
- \(f > c \cdot g \) for large enough \(n \) and for all \(c \). I.e. \(\frac{g}{f} \to 0 \)