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1 Introduction

We are studying the connection between graph sparsifiers and subspace embeddings, two
closely related forms of matrix dimensionality reduction. The first is concerned specifically
with matrices used to represent graphs, while the later is applicable to any matrix. While
work on sparsification has impacted work in the general case, fewer techniques have flowed
the opposite way. Hoping to reverse this trend, we originally set out to apply recent work
on “oblivious subspace embeddings” [23] [5], the fastest techniques for sparse matrix em-
bedding, to the vertex-edge incidence matrices of graphs. While we have abandoned this
direction for now, based on our improved understanding of sparsification and general matrix
compression, we are currently working towards a new algorithm for sparse subspace embed-
dings. Our approach expands on and, if successful, would improve work in [22].

In this report, we begin by presenting background research on sparsification and dimension-
ality reduction (Section 2). We then review current algorithms for sparsification and their
application to general matrices (Section 3). We briefly introduce a current (unproven) ap-
proach that we are working on for sparse subspace embeddings (Section 4). Finally, over the
course of this project we explored several related topics, including spectral sparsification in
the semi-streaming model. We will present a brief literature review of that area in Appendix
A. In the appendix we will also briefly explain our initial thoughts about oblivious subspace
embeddings and their potential application to graph matrices.

2 Dimensionality Reduction for Graphs and Matrices

2.1 Spectral Sparsification

Consider an undirected, weighted graph G = (V,E) with n vertices and m edges. We can
write each edge e ∈ E as the pair of vertices it connects: (vi, vj). Each e = (vi, vj) is assigned
a positive weight, wi,j. If (vi, vj) is not an edge in G, wi,j = 0. The weighted degree of a
vertex vi is the sum of edge weights for edges adjacent to that vertex: deg(vi) =

∑n
j=1wi,j.

G can be represented by the n× n Laplacian matrix LG:

LG(i, j)
def
=

{
deg(vi) if i = j

−wi,j if i 6= j

The Laplacian is symmetric diagonally dominant and positive semidefinite since its diagonal
entries are ≥ 0. LG is especially useful since its quadratic form measures the smoothness or
“energy” of a function x over the vertices of G. If x varies little, the value of the quadratic
form will be small. Larger discrepancies in the value of x between adjacent vertices will
increase the measure. Discrepancies between strongly connected vertices (large wi,j) are
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penalized more heavily.

x>LGx =
∑

(vi,vj)∈E

wi,j(x(vi)− x(vj))
2 (1)

Definition 1. A spectral sparsifier H for G is a subgraph (possibly with reweighted edges)
such that

∀x ∈ Rn, (1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx

That is, H approximately preserves the Laplacian quadratic form, and hence the measure of
smoothness of functions over G. Another common way to denote this guarantee is to use the
symbol �. A � B if B−A is positive semidefinite. In other words, for all x, x>(B−A)x ≥ 0
and thus x>Bx ≥ x>Ax. So we can rewrite the inequality in Definition 1 as:

(1− ε)LG � LH � (1 + ε)LG

To be more succinct, we will also use the notation LH ≈ε LG to denote this inequality.

Spielman and Teng first introduced spectral sparsification when working on fast solvers for
systems of equations on Laplacian and symmetric diagonally dominant (SDD) matrices.
Their work appears initially in [25], but has been recently cleaned up and reorganized for
clarity in [28], [27], [26]. Since [25], spectral sparsifiers have found wide application in ap-
proximation algorithms for graph problems. Since a sparsifier H approximates G, we can
often reduce G to H and then run a graph algorithm on H to find an approximate solution
for G. As we will discuss, sparsifiers with only O(n log n/ε2) edges can be found in nearly
linear time in the size of the original graph, which may have up to m = O(n2) edges. Thus,
the speed up from approximation can be significant for algorithms whose runtime depends
on the number of edges in G.

However, from the above definition of approximation, it is not always obvious that such an
approach will work. We saw that LH approximates some measure of smoothness over LG,
but how do we know an algorithm run on H will yield an approximate solution for G? Does
H approximate G in the “right way”? This answer depends on the specific graph problem
we are attempting to solve approximately, but often it boils down to one very useful fact:
the Laplacian quadratic form of a spectral sparsifier H preserves every eigenvalue of LG
multiplicatively (even the smallest eigenvalues). This characterization of the approximation
requirement lends spectral sparsification its name.

Lemma 1. Let λ
(G)
i be the ith largest eigenvalue of LG and let λ

(H)
i be the ith largest eigenvalue

of LH . If H is an ε spectral sparsifier for G, then

(1− ε)λ(G)
i ≤ λ

(H)
i ≤ (1 + ε)λ

(G)
i (2)
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Proof. Following the approach suggested in [24], we can use the Courant-Fischer Max-Min
theorem to characterize the eigenvalues of LG:

λ
(G)
i = max

S:dim(S)=i
min
x∈S

x>LGx

x>x
(3)

Let S
(G)
k be the k-dimensional subspace spanned by the first k eigenvectors of LG, v

(G)
1 , . . . , v

(G)
k .

Define S
(H)
k similarly for LH . Then, by Equation 3:

λ
(G)
i ≤ min

x∈S(H)
k

x>LGx

x>x
≤ min

x∈S(H)
k

(
1

1− ε

)
x>LHx

x>x
=

(
1

1− ε

)
λ
(H)
i (4)

The second to last inequality follows from Definition 1 of spectral approximation. Similarly:

λ
(H)
i ≤ min

x∈S(G)
k

x>LHx

x>x
≤ min

x∈S(G)
k

(1 + ε)
x>LGx

x>x
= (1 + ε)λ

(G)
i (5)

Combining (4) and (5) gives the desired eigenvalue bound.

2.1.1 Cut Sparsification

It is worth noting that spectral sparsifiers build on previously studied “cut sparsifiers”,
which ask for a subgraph H that preserves all cuts in G up to a multiplicative factor. The
spectral sparsification guarantee is strictly stronger than the cut sparsification guarantee,
which is equivalent to preserving x>LGx for all cut characteristic vectors - i.e. x ∈ {0, 1}n.
Cut sparsifiers were first introduced by Benczur and Karger in work on faster minimum cut
algorithms [4].

2.2 Subspace Embeddings

Definition 2. An ε-subspace embedding for the column space of an m × n matrix A is an
m′ × m matrix Π with m′ << m such that, for any x ∈ Rn, (1 − ε) ‖Ax‖2 ≤ ‖ΠAx‖2 ≤
(1 + ε) ‖Ax‖2.

We will also write this guarantee as ‖ΠAx‖2 ≈ε ‖Ax‖2. Subspace embeddings are used
to reduce a matrix’s size while preserving its operation on vectors. Much as solving graph
problems on sparsifiers can give approximate solutions to these problems on the original
graph, solving problems such as linear regression, low rank approximation, and leverage

score computation on the reduced matrix Ã
def
= ΠA gives fast approximate solutions to these

problems on the original matrix A. To maximize acceleration of linear algebraic problems,
the goal is to find a Π that is both fast to apply to A and has few rows (i.e. it gives a small Ã).

Recent work on various subspace embedding techniques largely stems from closely related
work on Johnson-Lindenstrauss transforms, which reduce the dimension of a finite set of vec-
tors and preserve their norms. Subspace embeddings are a continuous analog, attempting to

3



simultaneously compress and preserve the norms of every vector in a certain low dimensional
subspace. Specifically, consider the n dimensional subspace spanned by the columns of A.
This subspace lives in the much large Rm. Every vector in the subspace can be written as
Ax for some x ∈ Rn. Thus, if ‖ΠAx‖2 ≈ε ‖Ax‖2, Π can be used to compress every vector in
our subspace from Rm → Rn while preserving its `2 norm.

As mentioned, subspace embeddings are also closely related to graph sparsifiers. For any
graph G with n vertices and m edges, let WG be an m×m matrix with the edge weights of
G on its diagonal. Let BG be the m× n “vertex-edge incidence matrix” of G. Each row of
BG corresponds to an edge e = (vi, vj). The row has a 1 at position i, a (−1) at position j,
and zeros everywhere else. The ‘direction’ of an edge and thus the signs at positions i and j
can be chosen arbitrarily. The Laplacian matrix can be written LG = (W

1/2
G BG)>(W

1/2
G BG),

and thus:

x>LGx = x>(W
1/2
G BG)>(W

1/2
G BG)x = ‖W 1/2

G BGx‖22

So, if we have an ε-spectral sparsifier H with x>LHx = (1± ε)x>LGx, then:

‖W 1/2
H BHx‖22 = (1± ε)‖W 1/2

G BGx‖22 (6)

Let m′ < m be the number of edges in H. We can write W
1/2
H BH = SW

1/2
G BG, where S

is an m′ × m sampling matrix with a single nonzero in each row. Each entry in S selects
and reweights an edge of G to be placed in H. By Equation 6, S is a subspace embedding
for W

1/2
G BG, with error

√
1± ε. Therefore, finding a spectral sparsifier gives a subspace

embedding. More broadly, the subspace embedding and spectral sparsification guarantees are
exactly the same modulo an important point we will discuss below. Like spectral sparsifiers,
a subspace embedding preserves every eigenvalue of A>A multiplicatively.

2.2.1 Row Selection vs. Recombination

The key difference between sparsifiers and subspace embeddings is that Definition 2 places
no constraints on Π. The rows of Ã = ΠA are arbitrary linear combinations of the rows of
A. However, a spectral sparsifier H must be a subgraph of G. W

1/2
H BH must contain only

reweighted single rows of W
1/2
G BG. Of course it is possible to consider a “spectral sparsifier

matrix” that is not a subgraph, but still a subspace embedding of W
1/2
G BG. Furthermore,

in the general matrix context, it is possible to consider subspace embeddings where Π is re-
stricted to be a row sampling matrix. Both of these formulations may be useful in application
and we will consider them later in this report.

2.3 Outer Product Sparsification

We will present one final perspective on sparsification and subspace embedding that appears
in the literature and may be helpful in gaining intuition. For a general m×n matrix A, lets
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call the n×n matrix C = A>A the ‘covariance matrix’ of A (a true covariance matrix would
have the columns centered to mean zero, so we are abusing vocabulary a bit). LG is simply
the covariance matrix of W 1/2B and, like all covariance matrices, is symmetric and positive
semidefinite since x>Cx = ‖Ax‖22 ≥ 0 for all x. Preserving ‖Ax‖22 is equivalent to preserving
the quadratic form on C, x>Cx. We can write C as a sum of rank one outer products:

C =
m∑
i=1

a>i ai

where ai is the ith row of A. If A is a vertex edge incidence matrix, ai is simply the
characteristic vector of the ith edge of the graph (having ±1 at the indices corresponding
to the edge’s endpoints). Thus, finding a spectral sparsifier, or more generally a subspace
embedding via row selection, is equivalent to finding a sparse vector s such that:

C ≈ε
m∑
i=1

sia
>
i ai

Alternatively, we can put our row vectors in ‘isotropic’ position. Consider the singular value

decomposition, A = UΣV >. C
def
= A>A = V Σ2V >. Let C−1/2

def
= V Σ−1. Then, we see that

(AC−1/2)>(AC−1/2) = I. Our goal becomes to find a sparse s such that:

I ≈ε
m∑
i=1

si(aiC
−1/2)>(aiC

−1/2)

Thus, both graph sparsification and subspace embedding through row selection boil down to
sparsifying a sum of rank one outer products that sum to the identity. Standard subspace
embeddings that combine rows arbitrarily do not fit as cleanly into this framework.

2.4 Limits for Dimensionality Reduction

Before moving on to actual algorithms, lets quickly point out a lower bound on the number
of rows in a subspace embedding matrix Π. Such a bound would also limit the minimum
number of edges required for constructing a spectral sparsifier (since row selection is strictly
more difficult than general subspace embedding) . If Ã ≈ε A, then Ã and A must have the
same null space, and hence the same rank. If there is a vector x in the null space of Ã but
not in the null space of A, then ‖Ãx‖22 = 0 while ‖Ã‖22 > 0. We would not have a (1 ± ε)
multiplicative preservation of norm. We conclude that Ã (and therefore Π) must have at
least rank(A) rows, or n rows if A is full rank.

In fact, a Π achieving this lower bound can be found using the singular value decomposition,
A = UΣV >. Consider the “reduced SVD” where U is an m×rank(A) matrix, Σ is rank(A)×
rank(A), and V is rank(A)× n. U has orthonormal columns, so U>U = I. Thus:∥∥U>Ax∥∥2

2
= x>A>U>UAx = x>A>Ax = ‖Ax‖22 (7)
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So Π = U> is actually a perfect subspace embedding and has just rank(A) rows. Ã =
U>A = ΣV >.

This lower bound is intuitive in the context of graph sparsification. It states that we cannot
find W

1/2
H BH with fewer than rank(W

1/2
G BG) rows. If G is connected, the rank of W

1/2
G BG

is n− 1. Its null space, which is the same as the null space of LG, is spanned by the all ones
vector, which is a completely smooth function over G (see Equation 1). Thus, we cannot
have a spectral sparsifier with fewer than n − 1 edges. Well, that many edges is necessary
even just to ensure that H is connected (a spanning tree requires n− 1 edges). Recall that
spectral sparsification is strictly stronger than cut sparsification. The graph better remain
connected if we are to preserve cut values multiplicatively (if not, the cut between two sets
of nodes that are disconnected in H but connected in G falls to 0). Technically, if k is the
number of connected components in G, we can have a sparsifier with n− k edges. However,
we usually only consider the connected case since spectral sparsifiers of different connected
components can be found independently from one another.

3 Algorithms for Spectral Sparsification

Known algorithmic results for graph sparsification are quite strong. Furthermore, most of
the algorithms we discuss can actually be applied to row selection schemes that give good
subspace embeddings for general matrices. It is known that spectral sparsifiers with O(n/ε2)
edges exist and can be found in polynomial time [3]. These sparsifiers are sometimes known
as ‘constant degree sparsifiers’ since they have constant average degree. Of greater practical
interest, sparsifiers with O(n log n/ε2) edges can be found in Õ(m log2 n/ε2) time, where the
tilde hides log log n factors [18]. We briefly review algorithmic results for constant degree
and O(n log n) sparsifiers before looking more in depth into edge sampling, the most popular
technique for computing sparsifiers, and the one we are currently focused on.

3.1 Constant Degree Sparsifiers

The existence of O(n/ε2) sparsifiers was first shown by Batson, Spielman, and Srivastava in
[3], which also gives a polynomial time algorithm for finding them (the existence proof is
by construction). The authors named their sparsifiers ‘Twice Ramanujan Sparsifiers’ based
on close connections to Ramanujan expanders. A Ramanujan expander is a d-regular graph
that optimally approximates the complete graph amongst all possible d-regular graphs. For
any given d, the Ramanujan graph achieves a multiplicative spectral approximation factor

of d+1+2
√
d

d+1−2
√
d
, which is known as the Ramanujan bound. The sparsification algorithm in [3]

achieves this same error for any graph G by finding a subgraph with d(n− 1) edges (giving
an average degree of 2d, which is about twice as dense as a Ramanujan expander). Although
the Ramanujan bound is only known to holds for d-regular graphs, it is conjectured that it
also holds for graphs with average degree d [29]. If that is the case, then the graphs presented
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in [3] are essentially optimal (within a factor or 2).

Although improvements have followed [3], the current fastest algorithm for finding O(n/ε2)
sparsifiers requires Õ(n4 log n/ε2 max{log2 n, 1/ε2}) time [30]. This is not fast enough to
justify the use of such sparsifiers in accelerating graph algorithms, especially since nearly as
good O(n log n/ε2) sparsifiers can be found in nearly linear time. Nevertheless, the existence
of constant degree sparsifiers is interesting. As explained above, in order to preserve even
connectivity, a sparsified graph must contain (n− 1) edges. It is surprising that only a con-
stant factor increase in the number of edges is required for preserving the full spectrum of the
Laplacian. Furthermore, the techniques introduced in [3] are directly applicable to general
matrices, and can thus be used for finding subspace embeddings through row selection. This
means that it is possible to match the number of rows achieved by the optimal embedding
Π = U> up to a factor of ε−2, even when our Π is only allowed to select and reweight rows
(as opposed to linearly combining them).

Finally, recall the perspective on sparsification presented in Section 2.3. Our goal is to
sparsifier a sum of outer products, each of which is a rank 1 positive semidefinite matrix.
De Carli Silva, Harvey, and Sato are actually able to extend the approach in [3] to the
sparsification of sums of general PSD matrices [7] (as opposed to just rank-1 PSDs). For
any set of n× n matrices A0, A1, . . . , Am � 0 they show how to find s with sparsity O(n/ε2)
satisfying

(1− ε)
m∑
i=1

Ai �
m∑
i=1

siAi � (1 + ε)
m∑
i=1

Ai

Their algorithm requires O(mn3/ε2) time. These strong generalizations lead to an interesting
open question:

Open Question. If current state of the art algorithms do not use graph structure or, in the
case of [7], even the fact that our component PSD matrices are outer products of single rows,
can constant degree sparsifiers and subspace embeddings be computed more quickly? Is it
possible to leverage these structural facts to improve runtime and then possibly use constant
degree compressions for fast approximation algorithms?

3.2 O(n log n) Sparsifiers

In the mean time, there has been significant work on computing spectral sparsifiers with
O((n log n)/ε2) edges in time nearly linear in m (the original number of edges in G). As
mentioned in Section 2.1, such sparsifiers were originally motivated by applications to solv-
ing symmetric diagonally dominant linear systems in nearly linear time [25]. The goal was to
reduce a general SDD system to a Laplacian system and to then use sparsification to quickly
approximate the solution to that system. If (u− 1) is the maximum edge weight in a graph
G and δ is the maximum failure probability of the algorithm, [25] shows how to compute
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O(n log31(n/δ) log(u)/ε2) sparsifiers in O(m log15(n) log(u) log(1/δ)) time. Their algorithm
decomposes G into multiple high conductance components with few connections between
them. It then uses uniformly random edge sampling to sparsify each component separately.

In [24], Spielman and Srivastava show that O((n log n)/ε2) spectral sparsifiers can be found
by sampling edges according to their “effective resistances”. We will explain this method in
more detail below. Effective resistances can be computed in nearly linear time in m using
Spielman and Teng’s fast SDD solver, which itself employs Spielman and Teng’s original
sparsification scheme. So, while Spielman and Srivastava’s work does not improve on the
runtime of this scheme (it uses it as a subroutine), it does achieve better sparsifiers (removing
the large exponent on log n and the dependence on 1/δ and u).

Finally, an improved version of the effective resistance method is used by Koutis, Levine,
and Peng in [18] to find sparsifiers with O((n log n)/ε2) edges in Õ((m log2 n)nic/ε2) time.
Improvements to SDD system solvers, which no longer rely on full O(npolylog(n)) sparsifiers
like Spielman and Teng’s original solver, have contributed to runtime improvements for
effective resistance sampling algorithms ([19], [20], [17], [21]).

3.3 Edge Sampling

We are focusing on edge sampling, which is the most popular technique for O((n log n)/ε2)
sparsification. The general approach is to assign a probability to each edge in G and to
then sample O((n log n)/ε2) edges independently according to this probability distribution.
The edges are appropriately reweighted and combined to form a sparsifier H. The goal is to
choose a distribution over edges that ensures H is an ε spectral sparsifier with high probabil-
ity. We are especially interested in edge sampling techniques because they are fairly simple
to analyze and they extend naturally to row sampling schemes for subspace embedding.

Informally, a sparsifier with O(n log n) edges is essentially optimal for any sampling approach.
Consider sparsifying a complete graph with unit edge weights. If you sample each edge with
equal probability (since the graph is completely symmetric) then even to have one edge
incident to every vertex with high probability, you need O(n log n) samples. This is an
instance of the coupon collector’s problem. Recall that at minimum a graph must remain
connected if it is to achieve the spectral sparsification guarantee.

3.3.1 Sampling for Cut Sparsification

Edge sampling was first introduced by David Karger as a method for computing cut sparsi-
fiers [15]. Each edge in G is included in the sparsifier H with probability Θ(lnn/(ε2c)), where
c is the minimum cut of G. Included edges are reweighted by the inverse of the probability of
inclusion so that, in a sense, the expected value of H is G. By using a crude, easy to compute
under estimate for c, Karger’s first sparsifiers could be used to find fast approximations of
minimum cuts, maximum flows, and other graph properties.
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In [4], Benczur and Karger removed the dependence on the minimum cut value of G, showing
that cut sparsifiers with O(n log n/ε2) edges can be computed in O(m log3 n) time. In this
paper, edges are sampled nonuniformly, with probability inversely proportional to the edge’s
“strong connectivity”, ce. Upper bounded by an edge’s standard connectivity, ce is is the
maximum value of k such that a k-connected subgraph of G contains e. Benczur and Karger
show how to quickly find good enough approximations to ce for sampling. [12] finally resolves
a conjecture that edges can be sampled simply by regular connectivity (the minimum cut
between their endpoints), to obtain O(n log n/ε2) cut sparsifiers.

3.3.2 Sampling for Spectral Sparsification

Sampling algorithms for spectral sparsifiers require further refinements to the nonuniform
sampling probabilities. O(n log n/ε2) spectral sparsifiers can be constructed by sampling
edges of G by “effective resistance” [24]. Treating the edges of G as resistors with resistance
inversely proportional to their weight, the effective resistance between vi and vj is the voltage
drop between vi and vj if 1 unit of current is forced to flow between them. The effective
resistance, Re, of an edge can be computed by Re = BeL

+B>e , where Be is the row of the
edge-vertex incidence matrix B corresponding to edge e. L+ is the pseudoinverse of the
graph Laplacian. Sampling probabilities are selected to be proportional to weRe. Spielman
and Srivastava use a matrix concentration result of Rudelson and Vershynin to prove that
effective resistance sampling is sufficient for spectral sparsification (see Lemma 5 in [24]).
Furthermore, using a fast SDD solver, L+ can be found in nearly linear time. The bottleneck
for computing effective resistances then becomes the multiplication of BeL

+B>e , which is
accelerated via an application of the Johnson-Lindenstrauss lemma.

3.3.3 Sampling for Subspace Embeddings

Effective resistance sampling extends naturally to row sampling for general matrices. For an
m×n matrix A with rows ai, define the statistical leverage score of row i as τi = ai(A

>A)+a>i ,
which is the ith diagonal entry of AC+A>. Leverage scores have appeared in the statistics
literature for a while. If A is a data matrix (each row is a high dimensional data point), τi
measures the importance of row i in determining a line of best fit. For a weighted vertex
edge incidence matrix:

τe = (W 1/2B)eL
+(W 1/2B)Te = weRe

Theorem 3 (Leverage Score Sampling). If q = O(n log n/ε2) rows of A are sampled (inde-
pendently with replacement) with probability pi ∝ τi, and reweighted by a factor of 1

piq
where

q is the number of samples taken, then with high probability Ã>Ã ≈ε A>A.

In other words, leverage score sampling gives an ε subspace embedding forA withO(n log n/ε2)
rows. The proof follows immediately from Spielman and Srivistava’s matrix concentration
result in [24], which does not depend on graph structure. As far as we could tell, this paper
is the first to realize that leverage scores (effective resistances) can be used directly for row
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sampling. However, other lines of research were quite close to that realization at the time.
For example, [9] and [10] give strict requirements on the probabilities that would be required
for finding subspace embeddings via sampling. It is easy to verify that leverage scores satisfy
the properties proposed.

Without a formal proof, lets consider why leverage scores make natural sampling probabili-
ties. Recall that a subspace embedding preserves all of the eigenvalues of A>A (the singular
values of A) multiplicatively, regardless of their size. Thus, after sampling, we would like
our compression, Ã, to contain a fair number of rows in the direction of every eigenvector of
A>A (right singular vector of A). Using the singular value decomposition:

τi = ai(A
>A)+a>i = ai((UΣV >)>UΣV >)+a>i (8)

= ai(V Σ2V >)+a>i = aiV Σ−2V >a>i (9)

The entries in the diagonal matrix Σ2 are the eigenvalues of A>A, or the squared singular
values of A. Σ−2 is formed by inverting each non-zero diagonal entry and leaving any 0’s at
0. If A has k ≤ n non-zero singular values, σ1, . . . , σk, and vj is the jth column of V :

aiV Σ−2V >a>i =
k∑
j=1

1

σ2
j

〈ai, vj〉2 (10)

The squared singular value σ2
j , is equal to

∑m
i=1 〈ai, vj〉

2, so we see that:

τi =
k∑
j=1

〈ai, vj〉2∑m
l=1 〈al, vj〉

2 (11)

In other words, to compute the leverage score of a row, we first compute its relative con-
tribution to every singular vector, vj. These contributions are summed to get our sampling
probability, with no preference given to more dominant singular directions.

4 A New Approach to Row Selection

Since [24], leverage score sampling has been successfully applied to general matrix compres-
sion [8]. In contrast to unrestricted subspace embeddings, row selection schemes are often
desirable because they give an approximation, Ã, that preserves some of the structure of A.
For example, when compressing the vertex-edge incidence matrix of a graph, row selection
ensures that Ã is also a vertex-edge incidence matrix. Sometimes this preservation is impor-
tant for interpretation: we would like to know which data points in a set are most important.
In other case, it is important algorithmically. For graphs, maintaining an edge-vertex inci-
dence is essential because it allows us to use fast SDD solvers on our compressed matrix.
We are most interested in this second justification for row sampling.
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Unfortunately, leverage score sampling for general matrices has had limited algorithmic suc-
cess because computing leverage scores is slow. Both the multiplication of A>A = C and the
inversion of C are major algorithmic stumbling blocks. Thus, work on sampling has largely
focused on data analysis, our first justification for row sampling. It is possible to obtain
approximate leverage scores through other subspace embedding techniques, but if that ap-
proach is used, we may as well use those techniques directly. For example, sparse subspace
embeddings can be used to find leverage scores for a sparse matrix in Õ(nnz(A) + nω) time
[23]. If we incur the nω cost during compression, there is no point in finding an Ã with struc-
ture that allows for faster system solves (which could be used for approximate regression,
for example).

Recent work by Li, Miller, and Peng takes an important step towards solving this problem
[22]. They introduces an iterative approach to leverage score sampling that computes a row
sampled Ã in Õ(nnz(A) + nω+θ) time, where θ is some small constant. While this does not
improve upon other approaches, the paper avoids first compressing A via another subspace
embedding technique. However, the nω+θ term does arise from intermediate system solves
on dense matrices whose rows are linear combinations of rows in A.

Open Question. Is it possible to modify the iterative approach in [22] such that all inter-
mediate system solves are only on matrices whose rows are scaled versions of rows in A?
In doing so, can we eliminate the nω+θ runtime factor, replacing it with the time required
to solve, for example, a Laplacian system (via an SDD solver) or a sparse system (via the
conjugate gradient method).

Solving this question would justify the use of row selection in an algorithmic context. De-
pending on the structure of A (i.e. if it’s a graph or sparse), it could make most sense to
compress via a row selection technique so that any system solves on Ã are faster. We believe
that this goal is achievable, possibly using ideas that draw on the partitioning/uniform sam-
pling techniques used by Spielman and Teng for finding their original O(n log n) sparsifiers
(see Section 3.2). Unfortunately, our work on this final question (which is in collaboration
with Aaron Sidford and Yin-Tat Lee at MIT) has come too close to the project deadline to
be included in this report. However, we’re working towards a proof of the technique we have
in mind and will definitely pass along updates if it is successful.

References

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st symposium on Principles of
Database Systems, PODS ’12, pages 5–14, New York, NY, USA, 2012. ACM.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dy-
namic graph streams. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, volume 8096 of Lecture Notes in Computer Science,
pages 1–10. Springer Berlin Heidelberg, 2013.

11



[3] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 255–262, New York, NY, USA, 2009. ACM.
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A Other Research Directions

A.1 Oblivious Subspace Embeddings for Graph Compression

An Oblivious Subspace Embedding (OSE) is a random subspace embedding matrix Π that
can be applied to any m× n matrix A. OSE’s are attractive because they can be generated
independently, without examining A. This makes its easy to process any updates to A since
we can just multiply the update vector or matrix by Π and add the result to our current
compressed representation, ΠA, without recomputing Π or reapplying it to the full matrix A.
In addition, very sparse constructions for Π are known, which allow fast computation of the
embedded matrix ΠA when A is sparse (on the order of the number of non-zero entries in A).

We initially decided to look into using OSEs as an alternative to spectral sparsifiers for graph
compression. As discussed above, a spectral sparsification algorithm is an algorithm for pro-
ducing a row sampling matrix S that is a subspace embedding of the weighted vertex edge
incidence matrix W

1/2
G B of a graph G. Using OSEs for row sampling is hopeless. Imagine

a graph with two large cliques connected by a single edge. In order to spectrally approxi-
mate W

1/2
G BG with high probability, a row sampling OSE has to select this edge with high

probability (Note: the probability is over randomly generated instances of the OSE matrix
Π). However, since the embedding is generated obliviously, it must work for any reordering

of the rows in W
1/2
G BG. So, it must select every row with high probability and hence cannot

meaningfully reduce the number of rows in W
1/2
G BG.

Despite this limitation, OSEs with very few nonzero entries per column are known. These
OSE’s produce an embedded matrix whose rows are a linear combination of a limited number
of rows of the original matrix. Briefly, letting m′ < m be the dimension Π reduces A to,
and s be the number of nonzero entries per column of Π, constructions are known with the
following parameters ([?], [6]):

m′ = O(d2/ε2), s = 1

m′ = O(d1+γ/ε2), s = 1/ε2, for any γ > 0

m′ = O(dpolylog(d)/ε2), s = O(polylog(d)/ε2)

The parameters are quite remarkable - we can obliviously include each row of our original
matrix only a constant (1/ε2) number of times in the rows of a reduced matrix with only
O(d1+γ/ε2), and still spectrally preserve the original matrix. However, consider even a non-
existant ideal OSE that gives m′ = n, s = 1. Then if we have a dense graph with m = n(1+γ′)

edges, we still have an average of nγ
′
nonzeros per row in W̃ 1/2B̃ = Π(W 1/2B) - since each of

the n(1+γ′) rows of W 1/2B has two nonzeros and is included once in W̃ 1/2B̃, at the position
that the nonzero in its corresponding column of Π falls.

This is as many nonzeros as are in the Laplacian matrix LG, and in fact, as many nonzeros as
in W 1/2B originally, so W̃ 1/2B̃ is not a compression in terms of storage space - just dimension.
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It seems that, anything we can do with W̃ 1/2B̃, which only preserves the spectral properties
of W 1/2B, and not graph structure, we can do faster with LG. For example, we could apply
Π and then invert the covariance matrix of W̃ 1/2B̃ to estimate the effective resistances of
the edges in G. This takes time roughly Õ(nnz(W 1/2B) + nω) = Õ(n2 + nω) = Õ(nω).
To be competitive with using nearly linear time solvers to invert LG and compute effective
resistances, we would need to get this down to Õ(n2). However, there is a difficult to avoid
bottleneck in the matrix inversion of B̃>W̃ B̃, which no longer has the SDD structure of LG.
(Note that computing the Laplacian given W 1/2B only takes time O(nnz(W 1/2B)) = O(n2)).

Of course, we cannot definitively say that OSEs cannot be productively applied to graph
matrices. However, these sort of obstacles led us to abandon this line of work. One attractive
feature of OSEs is that they are useful for streaming computation. If an edge of G is updated,
the update vector can be multiplied by Π and added to the compressed representation of the
graph in constant time, maintaining the compression. Inspired by this we spent some time
thinking about streaming computation on graphs - specifically about computing spectral
sparsifiers in the semi-streaming model.

A.2 Streaming Sparsification

In the streaming graph model, you are not given a single data structure representing the
graph G. Instead, input comes in sequentially in the form of edge insertions of deletions.
After seeing a stream of insertions and deletions, you are required to compute a function
of G. Work is done on both single-pass algorithms - in which you only see one pass of the
input stream, and on multi-pass streaming algorithms. We will only consider single-pass
algorithms below.

Traditionally, streaming algorithms are required to use space sublinear in the input size.
However, under this restriction, it is difficult to compute anything meaningful about G. So
the authors of [11] introduced the ‘semi-streaming’ model. In this model you are allowed
O(npolylog(n)) space. Meaning that, in principle, you have enough space to store a spectral
sparsfier of G. An algorithm for maintaining a sparsifer while processing edge insertions and
deletions would provide a remarkably general tool for semi-streaming graph computation,
since many problems could be reduced to maintaining a spectral sparisfier H and computing
the output function of H to approximate the function of G.

As discussed above, OSEs won’t directly work in the semi-streaming model - an obliviously
compressed representation of W 1/2B will take O(n1+γ′) space. However, related methods
using oblivious sketch matrices provide powerful tools for streaming processing. A sketch
matrix S, like an OSE is just a linear transformation that can be quickly applied to update
vectors as they come in so SA can be maintained as edges are inserted and deleted. Here A
is some representation of G. For example, A might be W 1/2B.
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A.2.1 Streaming Cut Sparsifiers

A single-pass algorithm for maintaining cut sparsifiers in the dynamic semi-streaming graph
model was first presented in by Ahn, Guha, and McGregor in [1]. ‘Dynamic’ means that the
algorithm handles both edge insertions and deletions. This algorithm relies on the finding in
[12] that cut sparsifiers can be found by sampling edges according to their connectivity. This
allows the authors to combine previous work on estimating edge connectivity in the dynamic
semi-streaming model with sparse recovery algorithms so that they can approximately sam-
ple from W 1/2B using edge connectivities and output a sparsifier using a representation of
the graph that takes only O(npolylog(n)) space to store, and that can be maintained with
edge insertions and deletions.

Another single-pass dynamic algorithm for cut sparsifiers is given by Goel, Ashish, and
Kapralov in [13]. This algorithm also relies on edge sampling using connectivity.

A.2.2 Streaming Spectral Sparsifiers

Currently, no single-pass dynamic algorithm for spectral sparsifiers is known, however there
have been efforts in find such algorithms. In [2], Ahn, Guha, and McGregor prove that
the connectivity of an edge approximates its effective resistance by a multiplicative fac-
tor of O(n2/3) - so a spectral sparsifier can be found by sampling edges by connectivities
and oversampling by a factor of O(n2/3). Using this fact, they directly apply their results
on dynamic cut sparsifiers to maintain a spectral sparsifier with O(n5/3 log n/ε2) edges in
O(n5/3polylog(n)) space. Unfortunately they also show that their connectivity-resistance
bound is tight - so achieving dynamic spectral sparsifiers in O(npolylog(n)) requires a new
approach.

In [16], Kelner and Levin show that it is possible to maintain a spectral sparsifier in the
insertion-only model. The basic idea is to collect edges until you have c ∗n log n/ε2 for some
fixed c. Upon reaching this bound, you sparsify this graph, reducing down to c′ ∗ n log n/ε2

for c′ < c. You then continue collecting edges, until you again have too many and need to
resparsify again. It is possible to show that using the (i− 1)th sparsifier to estimate effective
resistance when computing the ith sparsifier gives a sufficient estimation. As edges are added
to the graph, effective resistances only go down, so using the estimated effective resistances
of the graph before the most recent set of insertions will only cause oversampling. However,
the oversampling will not be so large as to require sampling more than O(n log n/ε2) edges.
Unfortunately, this strategy does not generalize well to the dynamic setting.

Kelner and Levin’s algorithm only maintains a current sparsifier of G plus some recently
inserted edges. It maintains no other information. However, in the dynamic setting, addi-
tional information must be stored in some form, since after deletions it may be necessary to
add edges to the graph that were previously excluded. For example, consider two connected
subgraphs each of size n/2, and interconnected by n2/4 edges. It is not possible to save
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all these connecting edges in a sparsifier. However, if all but one of the edges between the
cliques are deleted, it is necessary to include the remaining edge. Since an adversary can
choose deletions to insure that the remaining edge is not one that you saved, you must have
stored additional information that lets you recover this edge with high probability.

In an interesting effort to pin down more precisely what is required to compute spectral spar-
sifiers in the dynamic streaming model, Kapralov and Panigrahy show that a spectral spar-
sifier can be constructed in nearly linear time using the union of spanners of O(polylog(n))
random subgraphs of G [14]. This finding implies that if there were an algorithm for comput-
ing a log n-spanner of G in the dynamic semi-streaming model, one could use this algorithm
black box to get a semi-streaming dynamic spectral sparsification algorithm. No such algo-
rithm is known to exist, however this connection gives another direction to look for streaming
algorithms for spectral sparsifiers.
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