SUBLINEAR TIME LOW-RANK APPROXIMATION OF POSITIVE SEMIDEFINITE MATRICES

Cameron Musco (MIT) and David P. Woodruff (CMU)

 A near optimal low-rank approximation for any positive semidefinite (PSD) matrix can be computed in sublinear time (i.e. without reading the full matrix).

- A near optimal low-rank approximation for any positive semidefinite (PSD) matrix can be computed in sublinear time (i.e. without reading the full matrix).
- **Concrete:** Significantly improves on previous, roughly linear time approaches for general matrices, and bypasses a trivial linear time lower bound for general matrices.

- A near optimal low-rank approximation for any positive semidefinite (PSD) matrix can be computed in sublinear time (i.e. without reading the full matrix).
- **Concrete:** Significantly improves on previous, roughly linear time approaches for general matrices, and bypasses a trivial linear time lower bound for general matrices.
- **High Level:** Demonstrates that PSD structure can be exploited in a much stronger way than previously known for low-rank approximation. Opens the possibility of further advances in algorithms for PSD matrices.

• Closely related to principal component analysis, spectral embedding/clustering, and low-rank matrix completion.

.

Low-rank approximation is one of the most widely used methods for general matrix and data compression.

• Closely related to principal component analysis, spectral embedding/clustering, and low-rank matrix completion.

Important Special Case: A is positive semidefinite (PSD). I.e.

$$\mathbf{x}^{\mathcal{T}} \mathbf{A} \mathbf{x} \geq \mathbf{0}, \forall \mathbf{x} \in \mathbb{R}^{n}$$

• Closely related to principal component analysis, spectral embedding/clustering, and low-rank matrix completion.

Important Special Case: A is positive semidefinite (PSD). I.e.

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$$

• Includes graph Laplacians, Gram matrices and kernel matrices, covariance matrices, Hessians for convex functions.

$$\mathbf{A}_k = \arg\min_{\mathbf{B}: \operatorname{rank}(\mathbf{B})=k} \|\mathbf{A} - \mathbf{B}\|_F$$

$$\mathbf{A}_{k} = \underset{\mathbf{B}: \mathsf{rank}(\mathbf{B})=k}{\arg\min} \|\mathbf{A} - \mathbf{B}\|_{F} = \sqrt{\sum_{i,j} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}}$$

$$\mathbf{A}_{k} = \operatorname*{arg\,min}_{\mathsf{B}:\mathsf{rank}(\mathsf{B})=k} \|\mathbf{A} - \mathbf{B}\|_{\mathsf{F}} = \sqrt{\sum_{i,j} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}}$$

• Unfortunately, computing the SVD takes $O(nd^2)$ time.

Recent work on matrix sketching gives state-of-the-art runtimes

Recent work on matrix sketching gives state-of-the-art runtimes Theorem (Clarkson, Woodruff '13)

There is an algorithm which in $O(\text{nnz}(\mathbf{A}) + n \cdot \text{poly}(k, 1/\epsilon))$ time outputs $\mathbf{N} \in \mathbb{R}^{n \times k}$, $\mathbf{M} \in \mathbb{R}^{d \times k}$ satisfying with prob. 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^{\mathsf{T}}\|_{\mathsf{F}} \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_{\mathsf{F}}.$$

Recent work on matrix sketching gives state-of-the-art runtimes Theorem (Clarkson, Woodruff '13)

There is an algorithm which in $O(\text{nnz}(\mathbf{A}) + n \cdot \text{poly}(k, 1/\epsilon))$ time outputs $\mathbf{N} \in \mathbb{R}^{n \times k}$, $\mathbf{M} \in \mathbb{R}^{d \times k}$ satisfying with prob. 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^T\|_F \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F.$$

• When $k, 1/\epsilon$ are not too large, runtime is linear in input size.

Recent work on matrix sketching gives state-of-the-art runtimes Theorem (Clarkson, Woodruff '13)

There is an algorithm which in $O(\text{nnz}(\mathbf{A}) + n \cdot \text{poly}(k, 1/\epsilon))$ time outputs $\mathbf{N} \in \mathbb{R}^{n \times k}$, $\mathbf{M} \in \mathbb{R}^{d \times k}$ satisfying with prob. 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^T\|_F \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F.$$

- When $k, 1/\epsilon$ are not too large, runtime is linear in input size.
- Best known runtime for both general and PSD matrices.

There is an algorithm running in $\tilde{O}\left(\frac{nk^2}{\epsilon^4}\right)$ time which, given PSD **A**, outputs **N**, **M** $\in \mathbb{R}^{n \times k}$ satisfying with probability 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^T\|_F \le (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F.$$

There is an algorithm running in $\tilde{O}\left(\frac{nk^2}{\epsilon^4}\right)$ time which, given PSD **A**, outputs **N**, **M** $\in \mathbb{R}^{n \times k}$ satisfying with probability 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^{\mathsf{T}}\|_{\mathsf{F}} \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_{\mathsf{F}}.$$

• Compare to CW'13 which takes $O(nnz(\mathbf{A})) + n \cdot poly(k, 1/\epsilon)$.

There is an algorithm running in $\tilde{O}\left(\frac{nk^2}{\epsilon^4}\right)$ time which, given PSD **A**, outputs **N**, **M** $\in \mathbb{R}^{n \times k}$ satisfying with probability 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^{\mathsf{T}}\|_{\mathsf{F}} \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_{\mathsf{F}}.$$

• Compare to CW'13 which takes $O(nnz(\mathbf{A})) + n \cdot poly(k, 1/\epsilon)$.

There is an algorithm running in $\tilde{O}\left(\frac{nk^2}{\epsilon^4}\right)$ time which, given PSD **A**, outputs $\mathbf{N}, \mathbf{M} \in \mathbb{R}^{n \times k}$ satisfying with probability 99/100:

$$\|\mathbf{A} - \mathbf{N}\mathbf{M}^{\mathsf{T}}\|_{\mathsf{F}} \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}_k\|_{\mathsf{F}}.$$

- Compare to CW'13 which takes $O(nnz(\mathbf{A})) + n \cdot poly(k, 1/\epsilon)$.
- If k, 1/e are not too large compared to nnz(A), our runtime is significantly sublinear in the size of A.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, $\Omega(nnz(\mathbf{A}))$ time is required.

• Randomly place a single entry which dominates **A**'s Frobenius norm.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, $\Omega(nnz(\mathbf{A}))$ time is required.

• Randomly place a single entry which dominates **A**'s Frobenius norm.

- Randomly place a single entry which dominates **A**'s Frobenius norm.
- Finding it with constant probability requires reading at least a constant fraction of the non-zero entries in **A**.

- Randomly place a single entry which dominates **A**'s Frobenius norm.
- Finding it with constant probability requires reading at least a constant fraction of the non-zero entries in **A**.

 Lower bound holds for any approximation factor and even rules out o(nnz(A)) time for weaker guarantees.

- Randomly place a single entry which dominates **A**'s Frobenius norm.
- Finding it with constant probability requires reading at least a constant fraction of the non-zero entries in **A**.

 Lower bound holds for any approximation factor and even rules out o(nnz(A)) time for weaker guarantees.

$$\mathbf{A} - \mathbf{N}\mathbf{M}^{\mathcal{T}} \|_{\mathcal{F}} \leq (1 + \epsilon) \|\mathbf{A} - \mathbf{A}_k\|_{\mathcal{F}}$$

- Randomly place a single entry which dominates **A**'s Frobenius norm.
- Finding it with constant probability requires reading at least a constant fraction of the non-zero entries in **A**.

Lower bound holds for any approximation factor and even rules out o(nnz(A)) time for weaker guarantees.
||A - NM^T||_F < ||A - A_k||_F + ε||A||_F.

WHAT ABOUT FOR PSD MATRICES?

Observation: For PSD **A**, we have for any entry \mathbf{a}_{ij} :

 $\mathbf{a}_{ij} \leq \max(\mathbf{a}_{ii}, \mathbf{a}_{jj})$

since otherwise $(\mathbf{e}_i - \mathbf{e}_j)^T \mathbf{A} (\mathbf{e}_i - \mathbf{e}_j) < 0$.

Observation: For PSD **A**, we have for any entry a_{ij} :

 $\mathbf{a}_{ij} \leq \max(\mathbf{a}_{ii}, \mathbf{a}_{jj})$

since otherwise $(\mathbf{e}_i - \mathbf{e}_j)^T \mathbf{A} (\mathbf{e}_i - \mathbf{e}_j) < 0$.

• So we can find any 'hidden' heavy entry by looking at its corresponding diagonal entries.

Observation: For PSD **A**, we have for any entry a_{ij} :

 $\mathbf{a}_{ij} \leq \max(\mathbf{a}_{ii}, \mathbf{a}_{jj})$

since otherwise $(\mathbf{e}_i - \mathbf{e}_j)^T \mathbf{A} (\mathbf{e}_i - \mathbf{e}_j) < 0$.

• So we can find any 'hidden' heavy entry by looking at its corresponding diagonal entries.

Question: How can we exploit additional structure arising from positive semidefiniteness to achieve sublinear runtime?

Very Simple Fact: Every PSD matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as $\mathbf{B}^T \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{n \times n}$.

Very Simple Fact: Every PSD matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as $\mathbf{B}^T \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{n \times n}$.

• **B** can be any matrix square root of **A**, e.g. if we let $V\Sigma V^{T}$ be the eigendecomposition of **A**, we can set $\mathbf{B} = \Sigma^{1/2} \mathbf{V}^{T}$.
Very Simple Fact: Every PSD matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as $\mathbf{B}^T \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{n \times n}$.

- **B** can be any matrix square root of **A**, e.g. if we let $V\Sigma V^{T}$ be the eigendecomposition of **A**, we can set $\mathbf{B} = \Sigma^{1/2} \mathbf{V}^{T}$.
- Letting b₁, ..., b_n be the columns of B, the entries of A contain every pairwise dot product a_{ij} = b_i^Tb_j.

The fact that **A** is a Gram matrix places a variety of geometric constraints on its entries.

The fact that **A** is a Gram matrix places a variety of geometric constraints on its entries.

• The heavy diagonal observation is just one example. By Cauchy-Schwarz:

$$\mathbf{a}_{ij} = \mathbf{b}_i^{\mathsf{T}} \mathbf{b}_j \leq \sqrt{(\mathbf{b}_i^{\mathsf{T}} \mathbf{b}_i) \cdot (\mathbf{b}_j^{\mathsf{T}} \mathbf{b}_j)} = \sqrt{\mathbf{a}_{ii} \cdot \mathbf{a}_{jj}} \leq \max(\mathbf{a}_{ii}, \mathbf{a}_{jj}).$$

The fact that **A** is a Gram matrix places a variety of geometric constraints on its entries.

• The heavy diagonal observation is just one example. By Cauchy-Schwarz:

$$\mathbf{a}_{ij} = \mathbf{b}_i^T \mathbf{b}_j \le \sqrt{(\mathbf{b}_i^T \mathbf{b}_i) \cdot (\mathbf{b}_j^T \mathbf{b}_j)} = \sqrt{\mathbf{a}_{ii} \cdot \mathbf{a}_{jj}} \le \max(\mathbf{a}_{ii}, \mathbf{a}_{jj}).$$

Another View: A contains a lot of information about the column span of B in a very compressed form – with every pairwise dot product stored as a_{ij} .

Why? **B** has the same (right) singular vectors as **A**, and its singular values are closely related: $\sigma_i(\mathbf{B}) = \sqrt{\sigma_i(\mathbf{A})}$.

Why? **B** has the same (right) singular vectors as **A**, and its singular values are closely related: $\sigma_i(\mathbf{B}) = \sqrt{\sigma_i(\mathbf{A})}$.

So the top k singular vectors are the same for the two matrices.
 An optimal low-rank approximation for B thus gives an optimal low-rank approximation for A.

Why? **B** has the same (right) singular vectors as **A**, and its singular values are closely related: $\sigma_i(\mathbf{B}) = \sqrt{\sigma_i(\mathbf{A})}$.

- So the top k singular vectors are the same for the two matrices.
 An optimal low-rank approximation for B thus gives an optimal low-rank approximation for A.
- Things will be messier once we introduce approximation, but this simple idea will lead to a sublinear time algorithm for A.

LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala '06)

For any $\mathbf{B} \in \mathbb{R}^{n \times n}$, there exists a subset of $\tilde{O}(k^2/\epsilon)$ columns whose span contains $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying:

$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F \le (1+\epsilon)\|\mathbf{B} - \mathbf{B}_k\|_F$$

Theorem (Deshpande, Vempala '06)

For any $\mathbf{B} \in \mathbb{R}^{n \times n}$, there exists a subset of $\tilde{O}(k^2/\epsilon)$ columns whose span contains $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying:

$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F \leq (1+\epsilon)\|\mathbf{B} - \mathbf{B}_k\|_F$$

Adaptive Sampling

Theorem (Deshpande, Vempala '06)

For any $\mathbf{B} \in \mathbb{R}^{n \times n}$, there exists a subset of $\tilde{O}(k^2/\epsilon)$ columns whose span contains $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying:

$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F \leq (1+\epsilon)\|\mathbf{B} - \mathbf{B}_k\|_F$$

Adaptive Sampling

Initially, start with an empty column subset $S := \{\}$. For $t = 1, ..., \tilde{O}(k^2/\epsilon)$ Let \mathbf{P}_S be the projection onto the columns in S. Add \mathbf{b}_i to S with probability $\frac{\|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2} = \frac{\|\mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i\|^2} = \frac{\mathbf{a}_{ii}}{\operatorname{tr}(\mathbf{A})}$.

Initially, start with an empty column subset $S := \{\}$. For $t = 1, ..., \tilde{O}(k^2/\epsilon)$ Let \mathbf{P}_S be the projection onto the columns in S. Add \mathbf{b}_i to S with probability $\frac{\|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2} = \frac{\|\mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i\|^2} = \frac{\mathbf{a}_{ii}}{\operatorname{tr}(\mathbf{A})}$.

Initially, start with an empty column subset $S := \{\}$. For $t = 1, ..., \tilde{O}(k^2/\epsilon)$ Let \mathbf{P}_S be the projection onto the columns in S. Add \mathbf{b}_i to S with probability $\frac{\|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i - \mathbf{P}_S \mathbf{b}_i\|^2} = \frac{\|\mathbf{b}_i\|^2}{\sum_{i=1}^n \|\mathbf{b}_i\|^2} = \frac{\mathbf{a}_{ii}}{\operatorname{tr}(\mathbf{A})}$.

Theorem (Factor Matrix Low-Rank Approximation) There is an algorithm using $\tilde{O}(nk^2/\epsilon)$ accesses to $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ which computes $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability 99/100: $\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F \leq (1 + \epsilon)\|\mathbf{B} - \mathbf{B}_k\|_F.$ Theorem (Factor Matrix Low-Rank Approximation) There is an algorithm using $\tilde{O}(nk^2/\epsilon)$ accesses to $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ which computes $\mathbf{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability 99/100: $\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F \le (1 + \epsilon)\|\mathbf{B} - \mathbf{B}_k\|_F.$

• How does this translate to low-rank approximation of A itself?

Lemma If $\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le \left(1 + \frac{\epsilon^{3/2}}{\sqrt{n}}\right) \|\mathbf{B} - \mathbf{B}_k\|_F^2$, then for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$: $\|\mathbf{A} - \mathbf{B}^T\mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le (1 + \epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F^2$.

Lemma If $\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le \left(1 + \frac{\epsilon^{3/2}}{\sqrt{n}}\right) \|\mathbf{B} - \mathbf{B}_k\|_F^2$, then for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$: $\|\mathbf{A} - \mathbf{B}^T\mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le (1 + \epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F^2$.

Lemma
If
$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le \left(1 + \frac{\epsilon^{3/2}}{\sqrt{n}}\right) \|\mathbf{B} - \mathbf{B}_k\|_F^2$$
, then for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$:
 $\|\mathbf{A} - \mathbf{ASCS}^T\mathbf{A}^T\|_F^2 \le (1 + \epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F^2$.

Lemma
If
$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le \left(1 + \frac{\epsilon^{3/2}}{\sqrt{n}}\right) \|\mathbf{B} - \mathbf{B}_k\|_F^2$$
, then for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$:
 $\|\mathbf{A} - \mathbf{ASCS}^T\mathbf{A}^T\|_F^2 \le (1 + \epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F^2$.

• This gives a low-rank approximation algorithm which accesses just $\tilde{O}\left(\frac{nk^2}{\epsilon^{3/2}/\sqrt{n}}\right) = n^{3/2} \cdot \text{poly}(k, 1/\epsilon)$ entries of **A**.

Lemma
If
$$\|\mathbf{B} - \mathbf{Z}\mathbf{Z}^T\mathbf{B}\|_F^2 \le \left(1 + \frac{\epsilon^{3/2}}{\sqrt{n}}\right) \|\mathbf{B} - \mathbf{B}_k\|_F^2$$
, then for $\mathbf{A} = \mathbf{B}^T\mathbf{B}$:
 $\|\mathbf{A} - \mathbf{A}\mathbf{S}\mathbf{C}\mathbf{S}^T\mathbf{A}^T\|_F^2 \le (1 + \epsilon)\|\mathbf{A} - \mathbf{A}_k\|_F^2$.

- This gives a low-rank approximation algorithm which accesses just $\tilde{O}\left(\frac{nk^2}{\epsilon^{3/2}/\sqrt{n}}\right) = n^{3/2} \cdot \text{poly}(k, 1/\epsilon)$ entries of **A**.
- Our best algorithm accesses just $\tilde{O}\left(\frac{nk}{\epsilon^{2.5}}\right)$ entries of **A** and runs in $\tilde{O}\left(\frac{nk^2}{\epsilon^4}\right)$ time.

Recall that our algorithm accesses the diagonal of **A** along with $\tilde{O}(k^2/\epsilon)$ columns.

Recall that our algorithm accesses the diagonal of **A** along with $\tilde{O}(k^2\sqrt{n})$ columns.

Recall that our algorithm accesses the diagonal of **A** along with $\tilde{O}(k^2\sqrt{n})$ columns.

Recall that our algorithm accesses the diagonal of **A** along with $\tilde{O}(k^2\sqrt{n})$ columns.

• If we take fewer columns, we can miss a $\sqrt{n} \times \sqrt{n}$ block which contains a constant fraction of **A**'s Frobenius norm.

Solution: Sample both rows and columns of A.
Solution: Sample both rows and columns of A.

 Instead of adaptive sampling we use ridge leverage scores, which can also be computed using an iterative sampling scheme making Õ(nk) accesses to A (Musco, Musco '17). Solution: Sample both rows and columns of A.

- Instead of adaptive sampling we use ridge leverage scores, which can also be computed using an iterative sampling scheme making Õ(nk) accesses to A (Musco, Musco '17).
- Same intuition select a diverse set of columns which span a near-optimal low-rank approximation of the matrix.

Solution: Sample both rows and columns of A.

- Instead of adaptive sampling we use ridge leverage scores, which can also be computed using an iterative sampling scheme making Õ(nk) accesses to A (Musco, Musco '17).
- Same intuition select a diverse set of columns which span a near-optimal low-rank approximation of the matrix.
- Sample AS is a projection-cost-preserving sketch for A [Cohen et al '15,'17]. For any rank-k projection P,

$$\|\mathbf{AS} - \mathbf{PAS}\|_{F}^{2} = (1 \pm \epsilon) \|\mathbf{A} - \mathbf{PA}\|_{F}^{2}.$$

Recover low-rank approximation using two-sided sampling and projection-cost-preserving sketch property.

Recover low-rank approximation using two-sided sampling and projection-cost-preserving sketch property.

Recover low-rank approximation using two-sided sampling and projection-cost-preserving sketch property.

 View each entry of A as encoding a large amount of information about its square root B. In particular a_{ij} = b_i^Tb_j.

- View each entry of A as encoding a large amount of information about its square root B. In particular a_{ij} = b_i^Tb_j.
- Use this view to find a low-rank approximation to **B** using sublinear accesses to **A**.

- View each entry of A as encoding a large amount of information about its square root B. In particular a_{ij} = b_i^Tb_j.
- Use this view to find a low-rank approximation to **B** using sublinear accesses to **A**.
- Since **B** has the same singular vectors as **A** and $\sigma_i(\mathbf{B}) = \sqrt{\sigma_i(\mathbf{A})}$, a low-rank approximation of **B** can used to find one for **A**, albiet with a \sqrt{n} factor loss in quality.

- View each entry of A as encoding a large amount of information about its square root B. In particular a_{ij} = b_i^Tb_j.
- Use this view to find a low-rank approximation to **B** using sublinear accesses to **A**.
- Since **B** has the same singular vectors as **A** and $\sigma_i(\mathbf{B}) = \sqrt{\sigma_i(\mathbf{A})}$, a low-rank approximation of **B** can used to find one for **A**, albiet with a \sqrt{n} factor loss in quality.
- Obtain near-optimal complexity using ridge leverage scores to sample both rows and columns of **A**.

OPEN QUESTIONS

• What else can be done for PSD matrices? We give applications to ridge regression, but what other linear algebraic problems require a second look?

- What else can be done for PSD matrices? We give applications to ridge regression, but what other linear algebraic problems require a second look?
- Are there other natural classes of matrices that admit sublinear time low-rank approximation?

- What else can be done for PSD matrices? We give applications to ridge regression, but what other linear algebraic problems require a second look?
- Are there other natural classes of matrices that admit sublinear time low-rank approximation?
 - Starting points are matrices that break the Ω(nnz(A)) time lower bound: e.g. binary matrices, diagonally dominant matrices.

- What else can be done for PSD matrices? We give applications to ridge regression, but what other linear algebraic problems require a second look?
- Are there other natural classes of matrices that admit sublinear time low-rank approximation?
 - Starting points are matrices that break the Ω(nnz(A)) time lower bound: e.g. binary matrices, diagonally dominant matrices.

• What can we do when we have PSD matrices with additional structure? E.g. kernel matrices.

Thanks! Questions?