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Our Contributions:

o A near optimal low-rank approximation for any positive
semidefinite (PSD) matrix can be computed
(i.e. without reading the full matrix).

e Concrete: Significantly improves on previous, roughly linear
time approaches for general matrices, and bypasses a trivial
linear time lower bound for general matrices.

e High Level: Demonstrates that PSD structure can be exploited
in @ much stronger way than previously known for low-rank
approximation. Opens the possibility of further advances in
algorithms for PSD matrices.
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LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

nxd nxk kxd

o Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.
Important Special Case: A is positive semidefinite (PSD). l.e.

x"Ax > 0,Vx € R"

® Includes graph Laplacians, Gram matrices and kernel matrices,
covariance matrices, Hessians for convex functions.
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OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors
03
03
O

Ax - Uy Dk Al

A= argmin |A—BJf= Z(A'J — Bj)?
B:rank(B)=k o

e Unfortunately, computing the SVD takes O(nd?) time.
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Recent work on matrix sketching gives state-of-the-art runtimes
Theorem (Clarkson, Woodruff '13)

There is an algorithm which in time
outputs N € R"™* M ¢ RI*k satisfying with prob. 99/100:

IA = NMT[[F < (1+€)]|A — AxllF.

e When k,1/¢ are not too large, runtime is

e Best known runtime for both general and PSD matrices.
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Theorem (Main Result — Musco, Woodruff ‘17)

There is an algorithm running in time which, given

A, outputs N, M € R"™¥¥ satisfying with probability 99/100:

IA = NMT|[F < (1+€)[|A — AxllF.

e Compare to CW'13 which takes O(nnz(A)) +

e If k,1/e are not too large compared to nnz(A), our runtime is
significantly sublinear in the size of A.
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For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

e Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A.

/ single large entry a;

]
A

e Lower bound holds for any approximation factor and even rules
out o(nnz(A)) time for weaker guarantees.
IA = NMT[[f < [|A — Ayl[F + e[| A]lF. 6
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Observation: For PSD A, we have for any entry a;;:
a,-j < max(a,-,-,ajj)
since otherwise (e; — e;) T A(e; — e;) < 0.

e So we can find any ‘hidden’ heavy entry by looking at its
corresponding diagonal entries.

Question: How can we exploit additional structure arising from
positive semidefiniteness to achieve sublinear runtime?
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Very Simple Fact: Every PSD matrix A € R"" can be written
as BT B for some B € R™".

e B can be any matrix square root of A, e.g. if we let VIV be
the eigendecomposition of A, we can set B = X1/2V T,

e Letting by, ...,b, be the columns of B, the entries of A contain

every pairwise dot product a;; = b,Tbj-

BT B = A
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EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is a Gram matrix places a variety of
on its entries.

e The heavy diagonal observation is just one example. By
Cauchy-Schwarz:

ajj =b;b; <

(b/b;) - (b]b;) = /aj-aj < max(aj, aj).

Another View: A contains a lot of information about the column
span of B in a very compressed form — with every pairwise dot
product stored as aj;.
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Question: Can we compute a low-rank approximation of B using
o(n?) column dot products? l.e. o(n?) accesses to A?

Why? B has the same (right) singular vectors as A, and its
singular values are closely related: ¢;(B) = \/o;(A).

e So the top k singular vectors are the same for the two matrices.
An low-rank approximation for B thus gives an optimal

low-rank approximation for A.

e Things will be messier once we introduce approximation, but

10



LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

11



LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"™ ", there exists a subset of O(k”/¢) columns
whose span contains Z € R"k satisfying:

IB—2ZTB||r < (1+¢)|B — Bylr

11



LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"*", there exists a subset of columns
whose span contains Z € R"k satisfying:

IB—2ZZ"B|lr < (1+¢)|B —Bullr

Adaptive Sampling
Initially, start with an empty column subset S := {}.
For t =1,..., O(k%/¢)
Let Ps be the projection onto the columns in S.
. f i |[bi—Psb;®
Add b; to S with probability S [b/—Psbi]?"

1

11



LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"*", there exists a subset of columns
whose span contains Z € R"k satisfying:

IB—2ZTB||r < (1+¢)|B — Bylr

Adaptive Sampling
Initially, start with an empty column subset S := {}.
For t =1,..., O(k%/¢)
Let Ps be the projection onto the columns in S.
Add b; to S with probability

11



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

B b

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., O(kz/e)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., 5(k2/e)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability "%
£ai=1 ! SH

B

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability "%
£ai=1 ! SH

B

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability . "2
AZfi=il ! SH

B

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability %

12



ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability %

12
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Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

1 il b;—Psb; ‘2
Add b; to S with probability =5 o
A=l / SYi

B
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SUBLINEAR DOT PRODUCT ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using which
computes Z € R™k satisfying with probability 99/100:
|B—2Z27B|r < (1+¢)[B - Byllr.

e How does this translate to low-rank approximation of A itself?
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BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If||B—2ZZ7B|2 < ( 3/2) IB—By||2 , then for A = BTB:
IA —ASCSTAT|7 < (1 +€)l|A — AxZ.
e This gives a low-rank approximation algorithm which accesses
0 =2 2
just O (47 ) =
nk

e Our best algorithm accesses just 0) (625) entries of A and runs

in O (24) time.

14
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LIMITATIONS OF COLUMN SAMPLING

Recall that our algorithm accesses the diagonal of A along with
O(k?\/n) columns.

n1/2
——

n1’2‘[

e If we take fewer columns, we can miss a /n X y/n block which
contains a constant fraction of A’'s Frobenius norm.
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COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A.

o Instead of adaptive sampling we use , which
can also be computed using an iterative sampling scheme
making O(nk) accesses to A (Musco, Musco '17).

e Same intuition — select a diverse set of columns which span a
near-optimal low-rank approximation of the matrix.

e Sample AS is a for A [Cohen
et al '15,'17]. For any rank-k projection P,

|AS — PAS|2 = (14 )||A - PAJ2.
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FINAL ALGORITHM

Recover low-rank approximation using two-sided sampling and
projection-cost-preserving sketch property.

Vnk /€2

1/ 2
ridge leverage ridge leverage nk/e
sample sample
2
A ) AS1 —) .\/nk/s

input sparsity time
low-rank approximation

approximate approximate
regression regression Vnk / €2

< ZZ—k

17
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SUMMARY OF MAIN IDEAS

e View each entry of A as encoding a large amount of information
about its square root B. In particular a; = b/ b;.

e Use this view to find a low-rank approximation to B using
sublinear accesses to A.

e Since B has the same singular vectors as A and
ci(B) = y/oi(A), a low-rank approximation of B can used to
find one for A, albiet with a y/n factor loss in quality.

e Obtain near-optimal complexity using ridge leverage scores to
sample both rows and columns of A.
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require a second look?

o Are there other natural classes of matrices that admit sublinear
time low-rank approximation?

e Starting points are matrices that break the Q(nnz(A)) time lower
bound: e.g. binary matrices, diagonally dominant matrices.
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e What else can be done for PSD matrices? We give applications
to ridge regression, but what other linear algebraic problems
require a second look?

o Are there other natural classes of matrices that admit sublinear
time low-rank approximation?

e Starting points are matrices that break the Q(nnz(A)) time lower
bound: e.g. binary matrices, diagonally dominant matrices.
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e What can we do when we have PSD matrices with additional
structure? E.g. kernel matrices.
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Thanks! Questions?
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