SUBLINEAR TIME LOW-RANK APPROXIMATION
OF POSITIVE SEMIDEFINITE MATRICES

Cameron Musco (MIT) and David P. Woodruff (CMU)

OVERVIEW

Our Contributions:

OVERVIEW

Our Contributions:

e A near optimal low-rank approximation for any positive
semidefinite (PSD) matrix can be computed
(i.e. without reading the full matrix).

OVERVIEW

Our Contributions:

o A near optimal low-rank approximation for any positive
semidefinite (PSD) matrix can be computed
(i.e. without reading the full matrix).

e Concrete: Significantly improves on previous, roughly linear
time approaches for general matrices, and bypasses a trivial
linear time lower bound for general matrices.

OVERVIEW

Our Contributions:

o A near optimal low-rank approximation for any positive
semidefinite (PSD) matrix can be computed
(i.e. without reading the full matrix).

e Concrete: Significantly improves on previous, roughly linear
time approaches for general matrices, and bypasses a trivial
linear time lower bound for general matrices.

e High Level: Demonstrates that PSD structure can be exploited
in @ much stronger way than previously known for low-rank
approximation. Opens the possibility of further advances in
algorithms for PSD matrices.

LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

nxd nxk kxd

LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

nxd nxk kxd

o Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.

LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

nxd nxk kxd

o Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.

Important Special Case: A is positive semidefinite (PSD). l.e.

x"Ax > 0,Vx € R"

LOW-RANK MATRIX APPROXIMATION

Low-rank approximation is one of the most widely used methods
for general matrix and data compression.

nxd nxk kxd

o Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.
Important Special Case: A is positive semidefinite (PSD). l.e.

x"Ax > 0,Vx € R"

® Includes graph Laplacians, Gram matrices and kernel matrices,
covariance matrices, Hessians for convex functions.

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors
03
03

A =1THEE | S | =

O4-1
04

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors

(5]
7]

O

Ax - Uy Dk Al

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors

(5]
7]

O

Ax - Uy Dk Al

Ar= argmin ||A—BJFr
B:rank(B)=k

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors
03
03
O

Ax - Uy Dk Al

A= argmin |A—BJf= Z(A'J — Bj)?
B:rank(B)=k o

OPTIMAL LOW-RANK APPROXIMATION

An optimal low-rank approximation can be computed via the
singular value decomposition (SVD).

nxd left singular vectors singular values right singular vectors
03
03
O

Ax - Uy Dk Al

A= argmin |A—BJf= Z(A'J — Bj)?
B:rank(B)=k o

e Unfortunately, computing the SVD takes O(nd?) time.

INPUT SPARSITY TIME LOW-RANK APPROXIMATION

Recent work on matrix sketching gives state-of-the-art runtimes

INPUT SPARSITY TIME LOW-RANK APPROXIMATION

Recent work on matrix sketching gives state-of-the-art runtimes
Theorem (Clarkson, Woodruff '13)

There is an algorithm which in O(nnz(A) + n - poly(k,1/¢)) time
outputs N € R"™* M ¢ RI*k satisfying with prob. 99/100:

IA = NMT[[F < (1+€)]|A — AxllF.

INPUT SPARSITY TIME LOW-RANK APPROXIMATION

Recent work on matrix sketching gives state-of-the-art runtimes
Theorem (Clarkson, Woodruff '13)

There is an algorithm which in O(nnz(A) + n - poly(k,1/¢)) time
outputs N € R"™* M ¢ RI*k satisfying with prob. 99/100:

IA = NMT[[F < (1+€)]|A — AxllF.

e When k,1/e are not too large, runtime is linear in input size.

INPUT SPARSITY TIME LOW-RANK APPROXIMATION

Recent work on matrix sketching gives state-of-the-art runtimes
Theorem (Clarkson, Woodruff '13)

There is an algorithm which in time
outputs N € R"™* M ¢ RI*k satisfying with prob. 99/100:

IA = NMT[[F < (1+€)]|A — AxllF.

e When k,1/¢ are not too large, runtime is

e Best known runtime for both general and PSD matrices.

SUBLINEAR TIME LOW-RANK APPROXIMATION

Theorem (Main Result — Musco, Woodruff ‘17)

There is an algorithm running in time which, given

A, outputs N, M € R"™¥¥ satisfying with probability 99/100:

IA = NMT|[F < (1+€)[|A — AxllF.

SUBLINEAR TIME LOW-RANK APPROXIMATION

Theorem (Main Result — Musco, Woodruff ‘17)

There is an algorithm running in time which, given

A, outputs N, M € R"™¥¥ satisfying with probability 99/100:

IA = NMT|[F < (1+€)[|A — AxllF.

e Compare to CW'13 which takes O(nnz(A)) + n - poly(k, 1/¢).

SUBLINEAR TIME LOW-RANK APPROXIMATION

Theorem (Main Result — Musco, Woodruff ‘17)

There is an algorithm running in time which, given

A, outputs N, M € R"™¥¥ satisfying with probability 99/100:

IA = NMT|[F < (1+€)[|A — AxllF.

e Compare to CW'13 which takes O(nnz(A)) +

SUBLINEAR TIME LOW-RANK APPROXIMATION

Theorem (Main Result — Musco, Woodruff ‘17)

There is an algorithm running in time which, given

A, outputs N, M € R"™¥¥ satisfying with probability 99/100:

IA = NMT|[F < (1+€)[|A — AxllF.

e Compare to CW'13 which takes O(nnz(A)) +

e If k,1/e are not too large compared to nnz(A), our runtime is
significantly sublinear in the size of A.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

/ single large entry a;

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

e Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A.

/ single large entry a;

]
A

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

e Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A.

/ single large entry a;

]
A

e Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

e Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A.

/ single large entry a;

]
A

e Lower bound holds for any approximation factor and even rules
out o(nnz(A)) time for weaker guarantees.
IA = NMT[[F < (1+€)[|A Al 6

LOWER BOUND FOR GENERAL MATRICES

For general matrices, Q(nnz(A)) time is required.

e Randomly place a single entry which dominates A’s Frobenius
norm.

e Finding it with constant probability requires reading at least a
constant fraction of the non-zero entries in A.

/ single large entry a;

]
A

e Lower bound holds for any approximation factor and even rules
out o(nnz(A)) time for weaker guarantees.
IA = NMT[[f < [|A — Ayl[F + e[| A]lF. 6

WHAT ABOUT FOR PSD MATRICES?

Observation: For PSD A, we have for any entry a;;:
a,-j < max(a,-,-,ajj)

since otherwise (e; — ej)TA(ei —e;) <0.

WHAT ABOUT FOR PSD MATRICES?

Observation: For PSD A, we have for any entry a;;:
a,-j < max(a,-,-,ajj)
since otherwise (e; — e;) T A(e; — e;) < 0.

e So we can find any ‘hidden’ heavy entry by looking at its
corresponding diagonal entries.

WHAT ABOUT FOR PSD MATRICES?

Observation: For PSD A, we have for any entry a;;:
a,-j < max(a,-,-,ajj)
since otherwise (e; — e;) T A(e; — e;) < 0.

e So we can find any ‘hidden’ heavy entry by looking at its
corresponding diagonal entries.

Question: How can we exploit additional structure arising from
positive semidefiniteness to achieve sublinear runtime?

EVERY PSD MATRIX IS A GRAM MATRIX

Very Simple Fact: Every PSD matrix A € R"" can be written
as BT B for some B € R™".

EVERY PSD MATRIX IS A GRAM MATRIX

Very Simple Fact: Every PSD matrix A € R"" can be written
as BT B for some B € R™".

e B can be any matrix square root of A, e.g. if we let VIV be
the eigendecomposition of A, we can set B = X1/2V T,

EVERY PSD MATRIX IS A GRAM MATRIX

Very Simple Fact: Every PSD matrix A € R"" can be written
as BT B for some B € R™".

e B can be any matrix square root of A, e.g. if we let VIV be
the eigendecomposition of A, we can set B = X1/2V T,

e Letting by, ...,b, be the columns of B, the entries of A contain

every pairwise dot product a;; = b,Tbj-

BT B = A

EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is a Gram matrix places a variety of geometric
constraints on its entries.

EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is a Gram matrix places a variety of
on its entries.

e The heavy diagonal observation is just one example. By
Cauchy-Schwarz:

ajj =b;b; <

(b/b;) - (b]b;) = /aj-aj < max(aj, aj).

EVERY PSD MATRIX IS A GRAM MATRIX

The fact that A is a Gram matrix places a variety of
on its entries.

e The heavy diagonal observation is just one example. By
Cauchy-Schwarz:

ajj =b;b; <

(b/b;) - (b]b;) = /aj-aj < max(aj, aj).

Another View: A contains a lot of information about the column
span of B in a very compressed form — with every pairwise dot
product stored as aj;.

FACTOR MATRIX LOW-RANK APPROXIMATION

Question: Can we compute a low-rank approximation of B using
o(n?) column dot products? l.e. o(n?) accesses to A?

10

FACTOR MATRIX LOW-RANK APPROXIMATION

Question: Can we compute a low-rank approximation of B using
o(n?) column dot products? l.e. o(n?) accesses to A?

Why? B has the same (right) singular vectors as A, and its
singular values are closely related: ¢;(B) = \/o;(A).

10

FACTOR MATRIX LOW-RANK APPROXIMATION

Question: Can we compute a low-rank approximation of B using
o(n?) column dot products? l.e. o(n?) accesses to A?

Why? B has the same (right) singular vectors as A, and its
singular values are closely related: ¢;(B) = \/o;(A).

e So the top k singular vectors are the same for the two matrices.
An low-rank approximation for B thus gives an optimal

low-rank approximation for A.

10

FACTOR MATRIX LOW-RANK APPROXIMATION

Question: Can we compute a low-rank approximation of B using
o(n?) column dot products? l.e. o(n?) accesses to A?

Why? B has the same (right) singular vectors as A, and its
singular values are closely related: ¢;(B) = \/o;(A).

e So the top k singular vectors are the same for the two matrices.
An low-rank approximation for B thus gives an optimal

low-rank approximation for A.

e Things will be messier once we introduce approximation, but

10

LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

11

LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"™ ", there exists a subset of O(k”/¢) columns
whose span contains Z € R"k satisfying:

IB—2ZTB||r < (1+¢)|B — Bylr

11

LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"*", there exists a subset of columns
whose span contains Z € R"k satisfying:

IB—2ZZ"B|lr < (1+¢)|B —Bullr

Adaptive Sampling
Initially, start with an empty column subset S := {}.
For t =1,..., O(k%/¢)
Let Ps be the projection onto the columns in S.
. f i |[bi—Psb;®
Add b; to S with probability S [b/—Psbi]?"

1

11

LOW-RANK APPROXIMATION VIA ADAPTIVE SAMPLING

Theorem (Deshpande, Vempala ‘06)

For any B € R"*", there exists a subset of columns
whose span contains Z € R"k satisfying:

IB—2ZTB||r < (1+¢)|B — Bylr

Adaptive Sampling
Initially, start with an empty column subset S := {}.
For t =1,..., O(k%/¢)
Let Ps be the projection onto the columns in S.
Add b; to S with probability

11

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

B b

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t =1,..., O(k?/¢)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., O(kz/e)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., 5(k2/e)

Let Ps be the projection onto the columns in S.
Add b; to S with probability

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability "%
£ai=1 ! SH

B

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability "%
£ai=1 ! SH

B

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability . "2
AZfi=il ! SH

B

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability %

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

Add b; to S with probability %

12

ADAPTIVE SAMPLING

Adaptive Sampling

Initially, start with an empty column subset S := {}.
Fort=1,..., é(kz/e)

Let Ps be the projection onto the columns in S.

1 il b;—Psb; ‘2
Add b; to S with probability =5 o
A=l / SYi

B

12

SUBLINEAR DOT PRODUCT ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using which
computes Z € R™k satisfying with probability 99/100:

IB—ZZ"B||r < (1+¢)|B — Byl|F.

13

SUBLINEAR DOT PRODUCT ALGORITHM

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using which
computes Z € R™k satisfying with probability 99/100:
|B—2Z27B|r < (1+¢)[B - Byllr.

e How does this translate to low-rank approximation of A itself?

13

BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If|B—2ZZTB|2 < (

3/2

1+ <2)||B ~ Byll3, then for A=BTB:

|A—BTZZTB|} < (1+¢)|A— A}

14

BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If||B—2ZZ7B|2 < (3/2) IB—By||2 , then for A = BTB:

IA=BTZZTB| < (1+)| A - Az

14

BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If||B — 2ZTB|2 < (1 + 3—/2) IB—By||2 , then for A = BTB:

IA — ASCSTAT|[Z < (1+¢)[|A — A2

14

BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If||B — 2ZTB|2 < (1 + 3—/2) IB—By||2 , then for A = BTB:

IA — ASCSTAT|[Z < (1+¢)[|A — A2

e This gives a low-rank approximation algorithm which accesses
0 =2 2
just O (54575 =

14

BOOSTING TO A PSD MATRIX APPROXIMATION

Lemma

If||B—2ZZ7B|2 < (3/2) IB—By||2 , then for A = BTB:
IA —ASCSTAT|7 < (1 +€)l|A — AxZ.
e This gives a low-rank approximation algorithm which accesses
0 =2 2
just O (47) =
nk

e Our best algorithm accesses just 0) (625) entries of A and runs

in O (24) time.

14

LIMITATIONS OF COLUMN SAMPLING

Recall that our algorithm accesses the diagonal of A along with
O(k?/€) columns.

15

LIMITATIONS OF COLUMN SAMPLING

Recall that our algorithm accesses the diagonal of A along with
O(k?\/n) columns.

15

LIMITATIONS OF COLUMN SAMPLING

Recall that our algorithm accesses the diagonal of A along with
O(k?\/n) columns.

n12

15

LIMITATIONS OF COLUMN SAMPLING

Recall that our algorithm accesses the diagonal of A along with
O(k?\/n) columns.

n1/2
——

n1’2‘[

e If we take fewer columns, we can miss a /n X y/n block which
contains a constant fraction of A’'s Frobenius norm.

15

COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A.

16

COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A.

o Instead of adaptive sampling we use , which
can also be computed using an iterative sampling scheme
making O(nk) accesses to A (Musco, Musco '17).

16

COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A.

o Instead of adaptive sampling we use , which
can also be computed using an iterative sampling scheme
making O(nk) accesses to A (Musco, Musco '17).

e Same intuition — select a diverse set of columns which span a
near-optimal low-rank approximation of the matrix.

16

COLUMN AND ROW SAMPLING

Solution: Sample both rows and columns of A.

o Instead of adaptive sampling we use , which
can also be computed using an iterative sampling scheme
making O(nk) accesses to A (Musco, Musco '17).

e Same intuition — select a diverse set of columns which span a
near-optimal low-rank approximation of the matrix.

e Sample AS is a for A [Cohen
et al '15,'17]. For any rank-k projection P,

|AS — PAS|2 = (14)||A - PAJ2.

16

FINAL ALGORITHM

Recover low-rank approximation using two-sided sampling and
projection-cost-preserving sketch property.

17

FINAL ALGORITHM

Recover low-rank approximation using two-sided sampling and

projection-cost-preserving sketch property.

ridge leverage
sample

Vnk /€2

AS1 ——)

ik /e?

ridge leverage
sample

Vnk/e?

17

FINAL ALGORITHM

Recover low-rank approximation using two-sided sampling and
projection-cost-preserving sketch property.

Vnk /€2

1/ 2
ridge leverage ridge leverage nk/e
sample sample
2
A) AS1 —) .\/nk/s

input sparsity time
low-rank approximation

approximate approximate
regression regression Vnk / €2

< ZZ—k

17

SUMMARY OF MAIN IDEAS

e View each entry of A as encoding a large amount of information
about its square root B. In particular a; = b/ b;.

18

SUMMARY OF MAIN IDEAS

e View each entry of A as encoding a large amount of information
about its square root B. In particular a; = b/ b;.

e Use this view to find a low-rank approximation to B using
sublinear accesses to A.

18

SUMMARY OF MAIN IDEAS

e View each entry of A as encoding a large amount of information
about its square root B. In particular a; = b/ b;.

e Use this view to find a low-rank approximation to B using
sublinear accesses to A.

e Since B has the same singular vectors as A and
ci(B) = y/oi(A), a low-rank approximation of B can used to
find one for A, albiet with a y/n factor loss in quality.

18

SUMMARY OF MAIN IDEAS

e View each entry of A as encoding a large amount of information
about its square root B. In particular a; = b/ b;.

e Use this view to find a low-rank approximation to B using
sublinear accesses to A.

e Since B has the same singular vectors as A and
ci(B) = y/oi(A), a low-rank approximation of B can used to
find one for A, albiet with a y/n factor loss in quality.

e Obtain near-optimal complexity using ridge leverage scores to
sample both rows and columns of A.

18

OPEN QUESTIONS

19

OPEN QUESTIONS

e What else can be done for PSD matrices? We give applications
to ridge regression, but what other linear algebraic problems
require a second look?

19

OPEN QUESTIONS

e What else can be done for PSD matrices? We give applications
to ridge regression, but what other linear algebraic problems

require a second look?
e Are there other natural classes of matrices that admit sublinear
time low-rank approximation?

19

OPEN QUESTIONS

e What else can be done for PSD matrices? We give applications
to ridge regression, but what other linear algebraic problems
require a second look?

o Are there other natural classes of matrices that admit sublinear
time low-rank approximation?

e Starting points are matrices that break the Q(nnz(A)) time lower
bound: e.g. binary matrices, diagonally dominant matrices.

1
1 1
1 1

1
1

11
1 11

1
1
1
1

19

OPEN QUESTIONS

e What else can be done for PSD matrices? We give applications
to ridge regression, but what other linear algebraic problems
require a second look?

o Are there other natural classes of matrices that admit sublinear
time low-rank approximation?

e Starting points are matrices that break the Q(nnz(A)) time lower
bound: e.g. binary matrices, diagonally dominant matrices.

1
111
101

11
1 11

1
1
1
1

e What can we do when we have PSD matrices with additional
structure? E.g. kernel matrices.

19

Thanks! Questions?

20

