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overview

Our Contributions:

• A near optimal low-rank approximation for any positive

semidefinite (PSD) matrix can be computed in sublinear time

(i.e. without reading the full matrix).

• Concrete: Significantly improves on previous, roughly linear

time approaches for general matrices, and bypasses a trivial

linear time lower bound for general matrices.

• High Level: Demonstrates that PSD structure can be exploited

in a much stronger way than previously known for low-rank

approximation. Opens the possibility of further advances in

algorithms for PSD matrices.
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low-rank matrix approximation

Low-rank approximation is one of the most widely used methods

for general matrix and data compression.

• Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.

Important Special Case: A is positive semidefinite (PSD). I.e.

xTAx � 0, 8x 2 Rn

.• Includes graph Laplacians, Gram matrices and kernel matrices,

covariance matrices, Hessians for convex functions.
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optimal low-rank approximation

An optimal low-rank approximation can be computed via the

singular value decomposition (SVD).

Ak = argmin
B:rank(B)=k

kA� BkF

=

sX

i ,j

(Aij � Bij)2

• Unfortunately, computing the SVD takes O(nd2) time.
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input sparsity time low-rank approximation

Recent work on matrix sketching gives state-of-the-art runtimes

Theorem (Clarkson, Woodru↵ ’13)

There is an algorithm which in O(nnz(A) + n · poly(k , 1/✏)) time

outputs N 2 Rn⇥k ,M 2 Rd⇥k satisfying with prob. 99/100:

kA�NMTkF  (1 + ✏)kA� AkkF .

• When k , 1/✏ are not too large, runtime is linear in input size.

• Best known runtime for both general and PSD matrices.
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sublinear time low-rank approximation

Theorem (Main Result – Musco, Woodru↵ ‘17)

There is an algorithm running in Õ
⇣
nk2

✏4

⌘
time which, given PSD

A, outputs N,M 2 Rn⇥k satisfying with probability 99/100:

kA�NMTkF  (1 + ✏)kA� AkkF .

• Compare to CW‘13 which takes O(nnz(A)) + n · poly(k , 1/✏).
• If k , 1/✏ are not too large compared to nnz(A), our runtime is

significantly sublinear in the size of A.
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⇣
nk2

✏4

⌘
time which, given PSD

A, outputs N,M 2 Rn⇥k satisfying with probability 99/100:

kA�NMTkF  (1 + ✏)kA� AkkF .

• Compare to CW‘13 which takes O(nnz(A)) + n · poly(k , 1/✏).

• If k , 1/✏ are not too large compared to nnz(A), our runtime is

significantly sublinear in the size of A.

5



sublinear time low-rank approximation

Theorem (Main Result – Musco, Woodru↵ ‘17)

There is an algorithm running in Õ
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lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF

6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF

6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF

6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF

6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF

6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  (1 + ✏)kA� AkkF 6



lower bound for general matrices

For general matrices, ⌦(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

kA�NMTkF  kA� AkkF + ✏kAkF . 6



what about for psd matrices?

Observation: For PSD A, we have for any entry aij :

aij  max(aii , ajj)

since otherwise (ei � ej)TA(ei � ej) < 0.

• So we can find any ‘hidden’ heavy entry by looking at its

corresponding diagonal entries.

Question: How can we exploit additional structure arising from

positive semidefiniteness to achieve sublinear runtime?
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every psd matrix is a gram matrix

Very Simple Fact: Every PSD matrix A 2 Rn⇥n can be written

as BTB for some B 2 Rn⇥n.

• B can be any matrix square root of A, e.g. if we let V⌃VT be

the eigendecomposition of A, we can set B = ⌃1/2VT .

• Letting b1, ...,bn be the columns of B, the entries of A contain

every pairwise dot product aij = bTi bj .
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every psd matrix is a gram matrix

The fact that A is a Gram matrix places a variety of geometric

constraints on its entries.

• The heavy diagonal observation is just one example. By

Cauchy-Schwarz:

aij = bTi bj 
q
(bTi bi ) · (bTj bj) =

p
aii · ajj  max(aii , ajj).

Another View: A contains a lot of information about the column

span of B in a very compressed form – with every pairwise dot

product stored as aij .
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factor matrix low-rank approximation

Question: Can we compute a low-rank approximation of B using

o(n2) column dot products? I.e. o(n2) accesses to A?

Why? B has the same (right) singular vectors as A, and its

singular values are closely related: �i (B) =
p

�i (A).

• So the top k singular vectors are the same for the two matrices.

An optimal low-rank approximation for B thus gives an optimal

low-rank approximation for A.

• Things will be messier once we introduce approximation, but

this simple idea will lead to a sublinear time algorithm for A.
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low-rank approximation via adaptive sampling

Theorem (Deshpande, Vempala ‘06)

For any B 2 Rn⇥n, there exists a subset of Õ(k2/✏) columns

whose span contains Z 2 Rn⇥k satisfying:

kB� ZZTBkF  (1 + ✏)kB� BkkF

Adaptive Sampling

Initially, start with an empty column subset S := {}.
For t = 1, ..., Õ(k2/✏)

Let PS be the projection onto the columns in S.
Add bi to S with probability kbi�PSbik2Pn

i=1 kbi�PSbik2 .
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sublinear dot product algorithm

Theorem (Factor Matrix Low-Rank Approximation)

There is an algorithm using Õ(nk2/✏) accesses to A = BTB which

computes Z 2 Rn⇥k satisfying with probability 99/100:

kB� ZZTBkF  (1 + ✏)kB� BkkF .

• How does this translate to low-rank approximation of A itself?
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boosting to a psd matrix approximation

Lemma

If kB� ZZTBk2F 
⇣
1 + ✏3/2p

n

⌘
kB� Bkk2F , then for A = BTB:

kA� BTZZTBk2F  (1 + ✏)kA� Akk2F .

• This gives a low-rank approximation algorithm which accesses

just Õ
⇣

nk2

✏3/2/
p
n

⌘
= n3/2 · poly(k , 1/✏) entries of A.
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limitations of column sampling

Recall that our algorithm accesses the diagonal of A along with

Õ(k2/✏) columns.

• If we take fewer columns, we can miss a
p
n ⇥

p
n block which

contains a constant fraction of A’s Frobenius norm.
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column and row sampling

Solution: Sample both rows and columns of A.

• Instead of adaptive sampling we use ridge leverage scores, which

can also be computed using an iterative sampling scheme

making Õ(nk) accesses to A (Musco, Musco ’17).

• Same intuition – select a diverse set of columns which span a

near-optimal low-rank approximation of the matrix.

• Sample AS is a projection-cost-preserving sketch for A [Cohen

et al ’15,’17]. For any rank-k projection P,

kAS� PASk2F = (1± ✏)kA� PAk2F .
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final algorithm

Recover low-rank approximation using two-sided sampling and

projection-cost-preserving sketch property.
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summary of main ideas

• View each entry of A as encoding a large amount of information

about its square root B. In particular aij = bTi bj .

• Use this view to find a low-rank approximation to B using

sublinear accesses to A.

• Since B has the same singular vectors as A and

�i (B) =
p
�i (A), a low-rank approximation of B can used to

find one for A, albiet with a
p
n factor loss in quality.

• Obtain near-optimal complexity using ridge leverage scores to

sample both rows and columns of A.
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open questions

• What else can be done for PSD matrices? We give applications

to ridge regression, but what other linear algebraic problems

require a second look?
• Are there other natural classes of matrices that admit sublinear
time low-rank approximation?
• Starting points are matrices that break the ⌦(nnz(A)) time lower

bound: e.g. binary matrices, diagonally dominant matrices.

• What can we do when we have PSD matrices with additional

structure? E.g. kernel matrices.
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Thanks! Questions?
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