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1 Over Determined Systems - Linear Regression

• A is a data matrix. Many samples (rows), few parameters (columns).

• b is like your y values - the values you want to predict. x is the linear coefficients in the regression.

• Overdetermined system. Can’t exactly reconstruct b just from columns of A. But we want to find x
that recombines columns of A to get as close to b as possible. Assume for now the best case - the
columns of A are linearly independent.

A


x 
=

b


The Solution - Pseudoinverse

• We can use the pseudoinverse: A+ = (A>A)−1A>. x = A+b.

• The pseudoinverse takes vectors in the column space of A to vectors in the row space of
A. In this case, b might not actually be in the column space, so the pseudoinverse takes the projection
of b onto the column space to a vector x in the row space.

• Technically, x might not be in the row space, if the matrix doesn’t have full row rank. But remember:
‘in the row space’ means you are a linear combination of rows in A. You are not in the null space,
the set of x such that Ax = 0. If in the null space, your dot product with every row is 0 so you are
orthogonal to the row space. Any x can be written as a sum of its row space and null space components
xR + xN . And Ax = AxR +AxN = AxR. So, if we choose the minimum length x, it will have no null
space component, and will be in the row space of A.

There are multiple ways to arrive at the pseudoinverse:

Optimization Problem

min
x
‖b−Ax‖2 = min

x
(b−Ax)>(b−Ax)

min
x
‖b−Ax‖2 = min

x
b>b− 2x>A>b+ x>A>Ax

Optimized when gradient is 0. Remember, just treat matrices as numbers:

∇x = −2A>b+ 2A>Ax
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So need:

∇x = 0 = −2A>b+ 2A>Ax

2A>b = 2A>Ax

A>b = A>Ax

This is called the normal equations. And is solved with

x = (A>A)−1A>︸ ︷︷ ︸
A+

b

Projection Onto Column Space

• Just project b onto the column space of A to get bc and then solve Ax = bc.

• Get b’s similarity to each column vector by dotting it with each: A>b.

• Normalize weights by multiplying by (A>A)−1. So weight vector becomes: (A>A)−1A>b. Intuitively
you can see how this works by thinking about the case when b is a column vector. b = ci. Then we
want our weights vector to be ei. (A>A)−1ATA = I so (A>A)−1AT ci is just the ith column of I, aka
ei.

• Now actually use these weights to combine the columns of A to get bc. bc = A ∗ [(A>A)−1A>b] =
A(A>A)−1A>b

• Now we can actually solve:

Ax = bc

Ax = A(A>A)−1A>b

x = (A>A)−1A>︸ ︷︷ ︸
A+

b

Singular Value Decomposition

• Decompose A = UDV >

A
 =

U


D 
V 

• This is the ‘truncated SVD. In general U is m × m (m is height of A), and D is m × n. But since
we have rank of A at most n, the n + 1...m columns of u are just zero columns, and only the first n
diagonal entries of D are nonzero.

Ax = b

UDV >x = b

(V D−1U>)(UDV >)x = (V D−1U>)b

x = (V D−1U>)b
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since U and V are both orthogonal matrices.

• What exactly is (V D−1UT )? Well try the pseudoinverse:

(A>A)−1A> = (V DU>UDV >)−1(V DU>)

(A>A)−1A> = (V D−2V >)(V DU>)

(A>A)−1A> = V D−1U>

2 Under Determined Systems

• If A is short and fat or if A is tall but does not have full column rank. Then there are multiple x’s
such that Ax = b or that achieve min ‖b−Ax‖2.

• Then we want to solve for the x minimizing ‖x‖2. And yay. The pseudoinverse gives us exactly that
x.

Optimization with Lagrange Multipliers

• Take the simplest case first and the analog to linear regression - A is short and fat but has full row
rank. Use Lagrange multiplier to optimize.

min
x∈{x:Ax=b}

‖x‖2

min
x

max
λ
‖x‖2 + λ>(b−Ax)

Need to have ∇x = 2x−A>λ = 0 and ∇λ = b−Ax = 0 so x = A>λ/2

0 = b−AA>λ/2
λ = 2(AA>)−1b

so:

x = A>(AA>)−1︸ ︷︷ ︸
A+

b

Projection Onto Row Space

• We want a solution x in the row space of A. So simply right x as a combination of row vectors:
x = A>w.

Ax = b

A(ATw) = b

w = (AA>)−1b

x = A>w = A>(AA>)−1b

3 Under And Over Determined Systems - The Golden Goose

• A has neither full row rank nor full column rank. There is no exact solution to Ax = b, but there are
many optimal solutions.
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• Project b onto col(A): A = UDV >, where U provides an orthonormal basis for the column space
of A. So just project b onto columns of U . bP = Uw, where we can find the weights by dotting b
with each of the columns of U . So w = U>b. Since U is orthonormal, no need to normalize weights
- (U>U)−1 = I. (Remember, U is always tall and thin, or at best square, since we truncate it to
only have rank(A) columns. And since U has full column rank, U>U = I. So we now want to solve:
Ax = UU>b.

• Take x in rowspace of A: To minimize the norm of x choose an x such that x = A>c.

• Solve the new system using SVDs: Remember we are using the truncated SVD. D has all positive
diagonal entries so can be inverted, U is full column rank, and V is full row rank.

A(A>c) = UU>b

UDV >V DU>c = UU>b

UD2U>c = UU>b

c = (UD−2U>)UU>b

c = UD−2Ub

x = (V DU>)UD−2Ub

x = V D−1U︸ ︷︷ ︸
A+

b
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