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overview

Our Contributions:

• A near optimal low-rank approximation for any positive

semidefinite (PSD) matrix can be computed in sublinear time

(i.e. without reading the full matrix).

• Concrete: Significantly improves on previous, roughly linear

time approaches for general matrices, and bypasses a trivial

linear time lower bound for general matrices.

• High Level: Demonstrates that PSD structure can be exploited

in a much stronger way than previously known for low-rank

approximation. Opens the possibility of further advances in

algorithms for PSD matrices.
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low-rank matrix approximation

Low-rank approximation is one of the most widely used methods

for general matrix and data compression.
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low-rank matrix approximation

• Closely related to principal component analysis, spectral

embedding/clustering, and low-rank matrix completion.

• Used widely as a general pre-processing step for dimensionality

reduction and data denoising.

• Applications to clustering, topic modeling and latent semantic

analysis, recommendation systems, distribution learning, and

countless other problems.
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psd low-rank approximation

Many applications require low-rank approximation of positive

semidefinite (PSD) matrices.

A ∈ Rn×n with:

xTAx ≥ 0,∀x ∈ Rn.

• Includes graph Laplacians, Gram matrices and kernel matrices,

covariance matrices, Hessians for convex functions.

• In the multi-dimensional scaling literature, PSD low-rank

approximation is known as ‘strain minimization’.

• Completion of (nearly) low-rank PSD matrices is applied in

quantum state tomography and for global positioning using local

distances (i.e. triangulation).
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optimal low-rank approximation

An optimal low-rank approximation can be computed via the

singular value decomposition (SVD).

Ak = arg min
B:rank(B)=k

‖A− B‖F

=

√∑
i ,j

(Aij − Bij)2

• Unfortunately, computing the SVD takes O(nd2) time.
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input sparsity time low-rank approximation

• Traditionally, the power method of iterative Krylov subspace

methods which compute just the top k singular vectors of A are

used in lieu of a full SVD.

• Recent work on matrix sketching gives state-of-the-art runtimes.

Theorem (Clarkson, Woodruff ’13)

There is an algorithm which in O(nnz(A) + n · poly(k , 1/ε)) time

outputs N ∈ Rn×k ,M ∈ Rd×k satisfying with prob. 99/100:

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F .

• When k , 1/ε are not too large, runtime is linear in input size.

• Best known runtime for both general and PSD matrices.
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input sparsity time low-rank approximation

Clarkson and Woodruff work, along with most followup papers, is

based on the ‘sketch-and-solve’ paradigm.

Similar runtimes possible via leverage score based sampling

techniques.
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sublinear time low-rank approximation

Theorem (Main Result – Musco, Woodruff ‘17)

There is an algorithm running in Õ
(
nk2

ε4

)
time which, given PSD

A, outputs N,M ∈ Rn×k satisfying with probability 99/100:

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F .

• Compare to CW‘13 which takes O(nnz(A)) + n poly(k, 1/ε).

• If k, 1/ε are not too large compared to nnz(A), our runtime is

significantly sublinear in the size of A.

8



sublinear time low-rank approximation

Theorem (Main Result – Musco, Woodruff ‘17)

There is an algorithm running in Õ
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lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F

9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F

9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F

9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F

9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F

9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.

• Randomly place a single entry which dominates A’s Frobenius

norm.

• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules

out o(nnz(A)) time for weaker guarantees.

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F 9



lower bound for general matrices

For general matrices, Ω(nnz(A)) time is required.
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• Finding it with constant probability requires reading at least a

constant fraction of the non-zero entries in A.

• Lower bound holds for any approximation factor and even rules
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what about for psd matrices?

Observation: For PSD A, we have for any entry aij :

aij ≤ max(aii , ajj)

since otherwise (ei − ej)
TA(ei − ej) < 0, contradicting the

positive semidefinite requirement.

• So we can find any ‘hidden’ heavy entry by looking at its

corresponding diagonal entries.
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This ‘heavy diagonal’ fact is enough to break our lower bound for

general matrices.

Question: How can we exploit additional structure arising from

positive semidefiniteness to achieve sublinear runtime?
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every psd matrix is a gram matrix

Very Simple Fact: Every PSD matrix A ∈ Rn×n can be written

as BTB for some B ∈ Rn×n.

• B can be any matrix square root of A, e.g. if we let VΣVT be

the SVD of A, we can set B = Σ1/2VT .

• Letting b1, ...,bn be the columns of B, the entries of A contain

every pairwise dot product aij = bT
i bj .
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every psd matrix is a gram matrix

The fact that A is a Gram matrix places a variety of geometric

constraints on its entries.

• The heavy diagonal observation is just one example. By

Cauchy-Schwarz:

aij = bT
i bj ≤ ‖bi‖‖bj‖ =

√
aii · ajj ≤ max(aii , ajj).

Another View: A contains a lot of information about the column

span of B in a very compressed form – with every pairwise dot

product stored as aij .
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factor matrix low-rank approximation

Question: Can we compute a low-rank approximation of B using

o(n2) column dot products? I.e. o(n2) accesses to A?

Why? B has the same (right) singular vectors as A, and its

singular values are closely related: σi (B) =
√
σi (A).

• So the top k singular vectors are the same for the two matrices.

An optimal low-rank approximation for B thus gives an optimal

low-rank approximation for A.

• Things will be messier once we introduce approximation.
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factor matrix low-rank approximation

More concretely, we want to compute some orthogonal span

Z ∈ Rn×k (i.e. with ZTZ = I) satisfying:

‖B− ZZTB‖F ≤ (1 + ε)‖B− Bk‖F

using a sublinear number of column dot products (i.e. accesses to

A = BTB.)

Aside: Computing a low-rank approximation of B is interesting in

its own right. When A is a kernel matrix, this is essentially the

problem of kernel PCA.

• Can also be used to accelerate kernel ridge regression, k-means

clustering, and CCA (Musco, Musco ’17).
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sparse witness of low-rank approximation

Theorem (Deshpande, Vempala ‘06)

For any B ∈ Rn×n, there exists a subset of 4k/ε+ 2k log(k + 1)

columns whose span contains Z ∈ Rn×k satisfying:

‖B− ZZTB‖F ≤ (1 + ε)‖B− Bk‖F

Observation: Given column subset, C can be computed using just

Õ(n · k/ε) column dot products (i.e. must compute (BS)TB).
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identifying the column subset

Additionally, a Õ(k2/ε) sized column subset can be found using an

intuitive adaptive sampling strategy.

• A number of alternatives using leverage scores, DPPs, or

deterministic potential function methods exist, but adaptive

sampling is the simplest.

Adaptive Sampling Column Subset Selection

Initially, start with an empty column subset S := {}.
For t = 1, ..., Õ(k2/ε)

Let PS be the projection onto the columns in S.

Add bi to S with probability ‖bi−PSbi‖2
‖B−PSB‖2F

.
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Let PS be the projection onto the columns in S.

bib
T
i

‖bi‖2

Add bi to S with probability ‖bi−PSbi‖2
‖B−PSB‖2F

.

19



identifying the column subset

Adaptive Sampling Column Subset Selection

Initially, start with an empty column subset S := {}.
For t = 1, ..., Õ(k2/ε)
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sublinear dot product algorithm

Theorem

There is an algorithm using Õ(n · k2/ε) column dot products (i.e.

accesses to A = BTB) which computes sampling matrix

S ∈ Rn×Õ(k2/ε) and C ∈ RÕ(k2/ε)×k such that Z = BSC satisfies

with probability 99/100:

‖B− ZZTB‖F ≤ (1 + ε)‖B− Bk‖F .

• I.e., a near optimal low-rank approximation can be found using

much less information about B’s column span than a full SVD.

• But what can we do with this result?
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boosting to a psd matrix approximation

As mentioned, if Z gave an optimal low-rank approximation

‖B− ZZTB‖F = ‖B− Bk‖F then it would immediately give an

optimal approximation for A = BTB.

BTZZTB

= (BTZZT )(ZZTB)

= BT
k Bk

= VΣ
1/2
k Σ

1/2
k VT

= Ak .

• Gives n · poly(k) time low-rank PSD matrix completion (i.e.

when ‖A− Ak‖F = 0).
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boosting to a psd matrix approximation

Given ZZTB we approximate A with BTZZTB.

BTZ can be computed efficiently without explicitly forming B.

• BTZ = BT (BSC) = ASC.

• n · poly(k , 1/ε) accesses to A and run time.
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boosting to a psd matrix approximation

What about when Z just gives a near-optimal approximation?

Lemma

If ‖B− ZZTB‖2F ≤
(

1 + ε3/2√
n

)
‖B− Bk‖2F where Z = BSC, then

for A = BTB:

‖A− BTZZTB‖2F ≤ (1 + ε)‖A− Ak‖2F .

This will give an low-rank approximation algorithm which accesses

just Õ
(

nk2

ε3/2/
√
n

)
= n3/2 · poly(k , 1/ε) entries of A.
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proof of boosting lemma

‖A− BTZZTB‖2F = ‖BT (I− ZZT )B‖2F

=
n−k∑
i=1

σ2i (BT (I− ZZT )B)

=
n−k∑
i=1

σ4i ((I− ZZT )B).

• Write (I− ZZT )B = UΣVT using the SVD and note that

BT (I− ZZT )B = BT (I− ZZT )(I− ZZT )B = VΣUTUΣVT =

VTΣ2V.

• So the error on A is just a higher moment of the error on B:

‖B− ZZTB‖2F =
n−k∑
i=1

σ2i (B− ZZTB).
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proof of boosting lemma

‖A− BZZTB‖2F =
n−k∑
i=1

σ4i (B− ZZTB)

≤
n∑

i=k+2

σ4i (B) +

[
σ2k+1(B) +

ε3/2√
n
‖B− Bk‖2F

]2
Have: ‖B− ZZTB‖2F − ‖B− Bk‖2F ≤

ε3/2√
n
‖B− Bk‖2F
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n
‖B− Bk‖2F

]2

If σ2k+1(B) ≥
√

ε
n‖B− Bk‖2F then can bound as:

‖A− BTZZTB‖2F ≤
n∑

i=k+2

σ4i (B) + (1 + ε)2σ4k+1(B)

≤ (1 + ε)2
n∑

i=k+1

σ4i (B)

= (1 + ε)2
n∑

i=k+1

σ2i (A)

= (1 + 3ε)‖A− Ak‖2F .
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a first sublinear algorithm

Theorem (‘Slow’ Sublinear Time Low-Rank Approximation)

There is an algorithm which given PSD A ∈ Rn×n accesses

O
(
n3/2 · poly(k , 1/ε)

)
entries of the matrix and outputs

N,M ∈ Rn×k which satisfy with probability 99/100:

‖A−NMT‖F ≤ (1 + ε)‖A− Ak‖F .

• The algorithm can be shown to run in n1.69 · poly(k, 1/ε) time

using fast matrix multiplication.

• Our best algorithm accesses just Õ
(
nk
ε2.5

)
entries of A and runs

in Õ
(
nk2

ε4

)
time.

Query complexity is optimal up to a 1
ε1.5

factor.

How can we achieve this?
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(
nk
ε2.5

)
entries of A and runs

in Õ
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limitations of column sampling

Recall that our algorithm is based off adaptive sampling - we

iteratively select Õ(k2/ε) columns of B and project to them.

• Requires accessing the diagonal and Õ(
√
nk2) columns of A.

• If we take fewer columns, we can miss a
√
n ×
√
n block which

contains a constant fraction of A’s Frobenius norm.
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limitations of column sampling

• Probability that a column sample hits a single off diagonal entry

is O(1/
√
n).

• So Ω(
√
n) samples are required to find the block.
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limitations of column sampling

Highlights the difference between low-rank approximation of A and

its square root B.

• σ21(A) = n and ‖A− A1‖2F ≈ n. Even obtaining a

2-approximation to the best rank-1 approximation requires

finding the block.

• σ21(B) =
√
n and ‖B−B1‖2F ≈ n, so the block does not need to

be recovered to obtain a
(

1 + 1√
n

)
-optimal approximation.
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column and row sampling

Solution: Sample both rows and columns of A.

• Instead of adaptive sampling we use ridge leverage scores, which

can also be computed using an iterative sampling scheme

making Õ(nk) accesses to A (Musco, Musco ’17).

• Same intuition – select a diverse set of columns which span a

near-optimal low-rank approximation of the matrix. However

come with much stronger guarantees.

• Sample AS is a projection-cost-preserving sketch for A. For any

rank-k projection P,

‖AS− PAS‖2F = (1± ε)‖A− PA‖2F .
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final algorithm

Technical Challenge: Proving that S2AS1 is a projection-cost

preserving sketch of AS1.
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final algorithm

Recover low-rank approximation using projection-cost preserving

sketches.
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summary of main ideas

• View each entry of A as encoding a large amount of information

about its square root B. In particular aij = bT
i bj .

• Use this view to find a low-rank approximation to B using

sublinear accesses to A.

• Since B has the same singular vectors as A and

σi (B) =
√
σi (A), a low-rank approximation of B can used to

find one for A, albiet with a
√
n factor loss in quality.

• Obtain near-optimal complexity using ridge leverage scores to

sample both rows and columns of A.
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open questions

• What else can be done for PSD matrices? We give applications

to ridge regression, but what other linear algebraic problems

require a second look?
• Are there other natural classes of matrices that admit sublinear

time low-rank approximation?
• Starting points are matrices that break the Ω(nnz(A)) time lower

bound: e.g. binary matrices, diagonally dominant matrices.
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open questions

• What can we do when we have PSD matrices with additional

structure?

E.g. kernel matrices.

〈x, y〉 = e−‖x−y‖22

• Can apply our algorithm – accessing an entry of A is equivalent

to computing a single kernel dot product. But in some cases you

may be able to something smarter.

• Low-rank approximation of the square root kernel matrix (the

‘kernelized dataset’) is also interesting here.
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Thanks! Questions?
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