
input sparsity time low-rank approximation
via ridge leverage score sampling

Michael B. Cohen, Cameron Musco and Christopher Musco

Massachusetts Institute of Technology, EECS.
SODA 2017.

0



randomized numerical linear algebra

∙ Randomized methods such as importance sampling, linear
sketching, and stochastic gradient descent have led to
recent breakthroughs on very well studied problems. E.g.
least squares regression, low-rank approximation

∙ Supported by new results in random matrix theory and
understanding of how to use these results algorithmically.

∙ Closely tied to work on graph sparsification, fast laplacian
solvers, streaming algorithms, compressed sensing, etc.

1



randomized numerical linear algebra

∙ Randomized methods such as importance sampling, linear
sketching, and stochastic gradient descent have led to
recent breakthroughs on very well studied problems. E.g.
least squares regression, low-rank approximation

∙ Supported by new results in random matrix theory and
understanding of how to use these results algorithmically.

∙ Closely tied to work on graph sparsification, fast laplacian
solvers, streaming algorithms, compressed sensing, etc.

1



randomized numerical linear algebra

∙ Randomized methods such as importance sampling, linear
sketching, and stochastic gradient descent have led to
recent breakthroughs on very well studied problems. E.g.
least squares regression, low-rank approximation

∙ Supported by new results in random matrix theory and
understanding of how to use these results algorithmically.

∙ Closely tied to work on graph sparsification, fast laplacian
solvers, streaming algorithms, compressed sensing, etc.

1



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time

2



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time

2



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time

2



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time

2



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time

2



input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time 2



input sparsity time low-rank approximation

Set Q← top k left singular vectors of Ã.

∥A− QQTA∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F

3



input sparsity time low-rank approximation

Set Q← top k left singular vectors of Ã.

∥A− QQTA∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F

3



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.

∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.

∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.

4



main result

Main Result: Input sparsity time low-rank approximation
without sparse random projections.

∙ Column subset selection in single-pass streams.
∙ Linear time algorithms for Nyström kernel approximation
[Musco Musco ’16].

∙ Sublinear time, relative error algorithms for low-rank
approximation of PSD matrices [Musco Woodruff ’16]

5



main result

Main Result: Input sparsity time low-rank approximation
without sparse random projections.

∙ Column subset selection in single-pass streams.

∙ Linear time algorithms for Nyström kernel approximation
[Musco Musco ’16].

∙ Sublinear time, relative error algorithms for low-rank
approximation of PSD matrices [Musco Woodruff ’16]

5



main result

Main Result: Input sparsity time low-rank approximation
without sparse random projections.

∙ Column subset selection in single-pass streams.
∙ Linear time algorithms for Nyström kernel approximation
[Musco Musco ’16].

∙ Sublinear time, relative error algorithms for low-rank
approximation of PSD matrices [Musco Woodruff ’16]

5



main result

Main Result: Input sparsity time low-rank approximation
without sparse random projections.

∙ Column subset selection in single-pass streams.
∙ Linear time algorithms for Nyström kernel approximation
[Musco Musco ’16].

∙ Sublinear time, relative error algorithms for low-rank
approximation of PSD matrices [Musco Woodruff ’16]

5



dimensionality reduction via importance sampling

Extremely simple and efficient... once S is known.

6



dimensionality reduction via importance sampling

Extremely simple and efficient... once S is known.

6



dimensionality reduction via importance sampling

Extremely simple and efficient... once S is known.

6



low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



rest of talk

1. Brief discussion of techniques

2. Why care about sampling?

8



leverage score sampling

Leverage scores are the natural sampling probabilities for
relative error matrix approximation.

τ(ai) = aTi (AAT)−1ai.

Intuition: Measure uniqueness of column. τ(ai) = min ∥y∥22
such that Ay = ai.

Sampling Õ(rank(A)/ϵ2) columns by leverage scores gives
spectral approximation:

(1− ϵ)AAT ⪯ ÃÃT ⪯ (1+ ϵ)AAT.

9



leverage score sampling

Leverage scores are the natural sampling probabilities for
relative error matrix approximation.

τ(ai) = aTi (AAT)−1ai.

Intuition: Measure uniqueness of column. τ(ai) = min ∥y∥22
such that Ay = ai.

Sampling Õ(rank(A)/ϵ2) columns by leverage scores gives
spectral approximation:

(1− ϵ)AAT ⪯ ÃÃT ⪯ (1+ ϵ)AAT.

9



leverage score sampling

Leverage scores are the natural sampling probabilities for
relative error matrix approximation.

τ(ai) = aTi (AAT)−1ai.

Intuition: Measure uniqueness of column. τ(ai) = min ∥y∥22
such that Ay = ai.

Sampling Õ(rank(A)/ϵ2) columns by leverage scores gives
spectral approximation:

(1− ϵ)AAT ⪯ ÃÃT ⪯ (1+ ϵ)AAT.

9



leverage score sampling

Leverage scores are the natural sampling probabilities for
relative error matrix approximation.

τ(ai) = aTi (AAT)−1ai.

Intuition: Measure uniqueness of column. τ(ai) = min ∥y∥22
such that Ay = ai.

Sampling Õ(rank(A)/ϵ2) columns by leverage scores gives
spectral approximation:

(1− ϵ)AAT ⪯ ÃÃT ⪯ (1+ ϵ)AAT.

9



leverage score computation

Naively, applying (AAT)−1 to compute aTi (AAT)−1ai is expensive.

∙ But leverage scores are robust. E.g. uniformly sampling 1/2
the columns of A will not change leverage scores too much
on average.

∙ Leads to O(nnz(A)) time recursive sampling algorithm for
leverage score approximation [Cohen, Lee, Musco, Musco,
Peng, Sidford ’15].

∙ Input sparsity time regression without sparse projections.

10



leverage score computation

Naively, applying (AAT)−1 to compute aTi (AAT)−1ai is expensive.

∙ But leverage scores are robust. E.g. uniformly sampling 1/2
the columns of A will not change leverage scores too much
on average.

∙ Leads to O(nnz(A)) time recursive sampling algorithm for
leverage score approximation [Cohen, Lee, Musco, Musco,
Peng, Sidford ’15].

∙ Input sparsity time regression without sparse projections.

10



leverage score computation

Naively, applying (AAT)−1 to compute aTi (AAT)−1ai is expensive.

∙ But leverage scores are robust. E.g. uniformly sampling 1/2
the columns of A will not change leverage scores too much
on average.

∙ Leads to O(nnz(A)) time recursive sampling algorithm for
leverage score approximation [Cohen, Lee, Musco, Musco,
Peng, Sidford ’15].

∙ Input sparsity time regression without sparse projections.

10



leverage score computation

Naively, applying (AAT)−1 to compute aTi (AAT)−1ai is expensive.

∙ But leverage scores are robust. E.g. uniformly sampling 1/2
the columns of A will not change leverage scores too much
on average.

∙ Leads to O(nnz(A)) time recursive sampling algorithm for
leverage score approximation [Cohen, Lee, Musco, Musco,
Peng, Sidford ’15].

∙ Input sparsity time regression without sparse projections.

10



low-rank leverage scores

“Subspace Scores” [Drineas, Mahoney, Muthukrishnan ’08],
[Sarló ’06]:

τ(ai) = ai(AAT)+ai

∙ Gives additional error depending on ∥A− Ak∥2F =⇒ good
enough for near optimal low-rank approximation.

11



low-rank leverage scores

“Subspace Scores” [Drineas, Mahoney, Muthukrishnan ’08],
[Sarló ’06]:

τk(ai) = ai(AkATk)+ai

where Ak = argminB| rank(B)=k ∥A− B∥2F.

∙ Gives additional error depending on ∥A− Ak∥2F =⇒ good
enough for near optimal low-rank approximation.

11



low-rank leverage scores

“Subspace Scores” [Drineas, Mahoney, Muthukrishnan ’08],
[Sarló ’06]:

τk(ai) = ai(AkATk)+ai

where Ak = argminB| rank(B)=k ∥A− B∥2F.

∙ Gives additional error depending on ∥A− Ak∥2F =⇒ good
enough for near optimal low-rank approximation.

11



low-rank leverage scores

Computing Subspace Scores:

τk(ai) = ai(AkATk)+ai

∙ Suffices to replace Ak with any near-optimal low-rank
approximation Ãk.

∙ But this is what we want to compute in the first place! Hence
all nnz(A) time sampling algorithms rely critically on sparse
random projections.

∙ Further, subspace scores are unstable. Ak (an even an
approximation to it) can change completely due to small
perturbations in A. Hard to make recursive sampling
approaches work.

12



low-rank leverage scores

Computing Subspace Scores:

τk(ai) = ai(AkATk)+ai

∙ Suffices to replace Ak with any near-optimal low-rank
approximation Ãk.

∙ But this is what we want to compute in the first place! Hence
all nnz(A) time sampling algorithms rely critically on sparse
random projections.

∙ Further, subspace scores are unstable. Ak (an even an
approximation to it) can change completely due to small
perturbations in A. Hard to make recursive sampling
approaches work.

12



low-rank leverage scores

Computing Subspace Scores:

τk(ai) = ai(AkATk)+ai

∙ Suffices to replace Ak with any near-optimal low-rank
approximation Ãk.

∙ But this is what we want to compute in the first place! Hence
all nnz(A) time sampling algorithms rely critically on sparse
random projections.

∙ Further, subspace scores are unstable. Ak (an even an
approximation to it) can change completely due to small
perturbations in A. Hard to make recursive sampling
approaches work.

12



low-rank leverage scores

Computing Subspace Scores:

τk(ai) = ai(AkATk)+ai

∙ Suffices to replace Ak with any near-optimal low-rank
approximation Ãk.

∙ But this is what we want to compute in the first place! Hence
all nnz(A) time sampling algorithms rely critically on sparse
random projections.

∙ Further, subspace scores are unstable. Ak (an even an
approximation to it) can change completely due to small
perturbations in A. Hard to make recursive sampling
approaches work.

12



ridge leverage scores

Key Idea:

Truncation⇒ Regularization

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

τk(ai) = ai(AkATk)+ai

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

τk(ai) = ai(AAT + λI)+ai

where λ =
∥A−Ak∥2F

k .

[Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

τk(ai) = ai(AAT + λI)+ai

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

τk(ai) = ai(AAT + λI)+ai

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



ridge leverage scores

Key Idea: Truncation⇒ Regularization

τk(ai) = ai(AAT + λI)+ai

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].

13



technical approach

Standard arguements show that sampling Õ(k/ϵ2) columns by
their ridge leverage scores gives an approximation:

(1− ϵ)AAT − ϵλI ⪯ ÃÃT ⪯ (1+ ϵ)AAT + ϵλI.

∙ We show that this is enough for Ã′s top singular vector space
to approximate that of A.

∙ Specifically, show Ã is a good projection-cost-preserving
sketch of A [Cohen Elder Musco Musco Persu ’15].

∙ Also achieve near optimal column subset selection via a
connection between ridge scores and adaptive sampling
[Deshpande Rademacher Vempala Wang ’06].

14



technical approach

Standard arguements show that sampling Õ(k/ϵ2) columns by
their ridge leverage scores gives an approximation:

(1− ϵ)AAT − ϵλI ⪯ ÃÃT ⪯ (1+ ϵ)AAT + ϵλI.

∙ We show that this is enough for Ã′s top singular vector space
to approximate that of A.

∙ Specifically, show Ã is a good projection-cost-preserving
sketch of A [Cohen Elder Musco Musco Persu ’15].

∙ Also achieve near optimal column subset selection via a
connection between ridge scores and adaptive sampling
[Deshpande Rademacher Vempala Wang ’06].

14



technical approach

Standard arguements show that sampling Õ(k/ϵ2) columns by
their ridge leverage scores gives an approximation:

(1− ϵ)AAT − ϵλI ⪯ ÃÃT ⪯ (1+ ϵ)AAT + ϵλI.

∙ We show that this is enough for Ã′s top singular vector space
to approximate that of A.

∙ Specifically, show Ã is a good projection-cost-preserving
sketch of A [Cohen Elder Musco Musco Persu ’15].

∙ Also achieve near optimal column subset selection via a
connection between ridge scores and adaptive sampling
[Deshpande Rademacher Vempala Wang ’06].

14



technical approach

Standard arguements show that sampling Õ(k/ϵ2) columns by
their ridge leverage scores gives an approximation:

(1− ϵ)AAT − ϵλI ⪯ ÃÃT ⪯ (1+ ϵ)AAT + ϵλI.

∙ We show that this is enough for Ã′s top singular vector space
to approximate that of A.

∙ Specifically, show Ã is a good projection-cost-preserving
sketch of A [Cohen Elder Musco Musco Persu ’15].

∙ Also achieve near optimal column subset selection via a
connection between ridge scores and adaptive sampling
[Deshpande Rademacher Vempala Wang ’06].

14



final result

Low-Rank Approximation via Ridge Leverage Scores: Sampling
A using the leverage scores of (A+ λI) give near optimal sized
sketches for low-rank approximation.

∙ Scores can be computed in input sparsity time via iterative
approximation algorithms.

Corollary: O(nnz(A)) + poly(k, ϵ) time to compute B̃ with:

∥A− B̃∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F

15



final result

Low-Rank Approximation via Ridge Leverage Scores: Sampling
A using the leverage scores of (A+ λI) give near optimal sized
sketches for low-rank approximation.

∙ Scores can be computed in input sparsity time via iterative
approximation algorithms.

Corollary: O(nnz(A)) + poly(k, ϵ) time to compute B̃ with:

∥A− B̃∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F

15



final result

Low-Rank Approximation via Ridge Leverage Scores: Sampling
A using the leverage scores of (A+ λI) give near optimal sized
sketches for low-rank approximation.

∙ Scores can be computed in input sparsity time via iterative
approximation algorithms.

Corollary: O(nnz(A)) + poly(k, ϵ) time to compute B̃ with:

∥A− B̃∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F

15



why sampling?

Why do we care about avoiding sparse random projections in
the first place?

16



why sampling?

Original Motivation: Match O(nnz(A)) time random projection
algorithms for matrix preconditioning and over-constrained
linear regression.

∙ Li Miller Peng ’13
∙ Cohen Lee Musco Musco Peng Sidford ’15.

17



why sampling?

Reason #1: Sampling Preserves Structure and Sparsity.

Original Data General Sketch Column Sample

Even when A is sparse, Ã = AΠ will be dense. Limits
compression for very sparse matrices.

18



why sampling?

Reason #1: Sampling Preserves Structure and Sparsity.

Original Data General Sketch Column Sample

Even when A is sparse, Ã = AΠ will be dense. Limits
compression for very sparse matrices.

18



why sampling?

Reason #1: Sampling Preserves Structure and Sparsity.

Original Data General Sketch Column Sample

Even when A is sparse, Ã = AΠ will be dense. Limits
compression for very sparse matrices.

18



why sampling?

Reason #1: Sampling Preserves Structure and Sparsity

Results for regression used in new work on sparsifying and
solving Laplacian and SDD systems:

∙ Lee, Peng, Spielman ’15.
∙ Kyng, Lee, Peng, Sachdeva, Spielman ’16
∙ Jindal, Kolev ’16

19



why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



sampling for kernels

Ki,j = k(ai, aj), K = ϕ(A)Tϕ(A)

∙ Working with full n× n kernel matrix often prohibitive.
Low-rank approximation is important for efficient kernel
ridge regression, kernel PCA, kernel k-means clustering, etc.

∙ Sketching K directly requires Ω(n2) kernel evaluations.

21



sampling for kernels

Ki,j = k(ai, aj), K = ϕ(A)Tϕ(A)

∙ Working with full n× n kernel matrix often prohibitive.
Low-rank approximation is important for efficient kernel
ridge regression, kernel PCA, kernel k-means clustering, etc.

∙ Sketching K directly requires Ω(n2) kernel evaluations.

21



sampling for kernels

Ki,j = k(ai, aj), K = ϕ(A)Tϕ(A)

∙ Working with full n× n kernel matrix often prohibitive.
Low-rank approximation is important for efficient kernel
ridge regression, kernel PCA, kernel k-means clustering, etc.

∙ Sketching K directly requires Ω(n2) kernel evaluations.
21



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K. 22



conclusions

Summary: Input sparsity time linear algebra is not just about
sparse random embeddings. Results can also achieved via
leverage score sampling.

Open Questions:

∙ Empirical evaluation, especially for kernel applications.
∙ Other methods of achieving input sparsity time?
Deterministic?

∙ Further applications?

23



conclusions

Summary: Input sparsity time linear algebra is not just about
sparse random embeddings. Results can also achieved via
leverage score sampling.

Open Questions:

∙ Empirical evaluation, especially for kernel applications.
∙ Other methods of achieving input sparsity time?
Deterministic?

∙ Further applications?

23


