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randomized numerical linear algebra

∙ Randomized methods such as importance sampling, linear
sketching, and stochastic gradient descent have led to
recent breakthroughs on very well studied problems. E.g.
least squares regression, low-rank approximation

∙ Supported by new results in random matrix theory and
understanding of how to use these results algorithmically.

∙ Closely tied to work on graph sparsification, fast laplacian
solvers, streaming algorithms, compressed sensing, etc.
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input sparsity time algorithms

[Clarkson Woodruff STOC ’13]: Sparse Random Projections

∙ Solution for Ã⇒ approximate solution for A for problems
like linear system solving, low-rank approximation, etc.

∙ O(nnz(A)) to compute AΠ plus lower order terms = input
sparsity time
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input sparsity time low-rank approximation

Set Q← top k left singular vectors of Ã.

∥A− QQTA∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F
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input sparsity time low-rank approximation

Runtime:

∙ Π only has O(1) non-zeros per column.
∙ O(nnz(A)) time to compute Ã = AΠ.
∙ O(nk2/ϵ4) time to compute Ã’s top singular vectors

Total: O(nnz(A)) + n · poly(k, 1/ϵ)︸ ︷︷ ︸
lower order

∙ Many improvements. See [Avron Clarkson Woodruff ’16] for
best low order terms.

∙ Compare with Õ(nnz(A) · k/√ϵ) for iterative methods.
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main result

Main Result: Input sparsity time low-rank approximation
without sparse random projections.

∙ Column subset selection in single-pass streams.
∙ Linear time algorithms for Nyström kernel approximation
[Musco Musco ’16].

∙ Sublinear time, relative error algorithms for low-rank
approximation of PSD matrices [Musco Woodruff ’16]
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dimensionality reduction via importance sampling

Extremely simple and efficient... once S is known.
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low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



low-rank approximation via importance sampling

Variations on statistical leverage scores give a sketch Ã that is
sufficient for near-optimal low-rank approximation.

But computing these scores seems as hard as low-rank
approximation itself.

7



rest of talk

1. Brief discussion of techniques

2. Why care about sampling?
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leverage score sampling

Leverage scores are the natural sampling probabilities for
relative error matrix approximation.

τ(ai) = aTi (AAT)−1ai.

Intuition: Measure uniqueness of column. τ(ai) = min ∥y∥22
such that Ay = ai.

Sampling Õ(rank(A)/ϵ2) columns by leverage scores gives
spectral approximation:

(1− ϵ)AAT ⪯ ÃÃT ⪯ (1+ ϵ)AAT.
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leverage score computation

Naively, applying (AAT)−1 to compute aTi (AAT)−1ai is expensive.

∙ But leverage scores are robust. E.g. uniformly sampling 1/2
the columns of A will not change leverage scores too much
on average.

∙ Leads to O(nnz(A)) time recursive sampling algorithm for
leverage score approximation [Cohen, Lee, Musco, Musco,
Peng, Sidford ’15].

∙ Input sparsity time regression without sparse projections.
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low-rank leverage scores

“Subspace Scores” [Drineas, Mahoney, Muthukrishnan ’08],
[Sarló ’06]:

τ(ai) = ai(AAT)+ai

∙ Gives additional error depending on ∥A− Ak∥2F =⇒ good
enough for near optimal low-rank approximation.
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low-rank leverage scores

Computing Subspace Scores:

τk(ai) = ai(AkATk)+ai

∙ Suffices to replace Ak with any near-optimal low-rank
approximation Ãk.

∙ But this is what we want to compute in the first place! Hence
all nnz(A) time sampling algorithms rely critically on sparse
random projections.

∙ Further, subspace scores are unstable. Ak (an even an
approximation to it) can change completely due to small
perturbations in A. Hard to make recursive sampling
approaches work.
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ridge leverage scores

Key Idea:

Truncation⇒ Regularization

where λ =
∥A−Ak∥2F

k . [Alaoui Mahoney ’16]

∙ Ridge ‘washes out’ rather than completely removes
contributions from small singular directions.

∙ These are just the standard leverage scores of [A,
√
λI]!

Computable using the recursive sampling algorithms of
[CLMMPS ’15].
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technical approach

Standard arguements show that sampling Õ(k/ϵ2) columns by
their ridge leverage scores gives an approximation:

(1− ϵ)AAT − ϵλI ⪯ ÃÃT ⪯ (1+ ϵ)AAT + ϵλI.

∙ We show that this is enough for Ã′s top singular vector space
to approximate that of A.

∙ Specifically, show Ã is a good projection-cost-preserving
sketch of A [Cohen Elder Musco Musco Persu ’15].

∙ Also achieve near optimal column subset selection via a
connection between ridge scores and adaptive sampling
[Deshpande Rademacher Vempala Wang ’06].
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final result

Low-Rank Approximation via Ridge Leverage Scores: Sampling
A using the leverage scores of (A+ λI) give near optimal sized
sketches for low-rank approximation.

∙ Scores can be computed in input sparsity time via iterative
approximation algorithms.

Corollary: O(nnz(A)) + poly(k, ϵ) time to compute B̃ with:

∥A− B̃∥2F ≤ (1+ ϵ) min
B| rank(B)=k

∥A− B∥2F
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why sampling?

Why do we care about avoiding sparse random projections in
the first place?
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why sampling?

Original Motivation: Match O(nnz(A)) time random projection
algorithms for matrix preconditioning and over-constrained
linear regression.

∙ Li Miller Peng ’13
∙ Cohen Lee Musco Musco Peng Sidford ’15.
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why sampling?

Reason #1: Sampling Preserves Structure and Sparsity.

Original Data General Sketch Column Sample

Even when A is sparse, Ã = AΠ will be dense. Limits
compression for very sparse matrices.
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why sampling?

Reason #1: Sampling Preserves Structure and Sparsity

Results for regression used in new work on sparsifying and
solving Laplacian and SDD systems:

∙ Lee, Peng, Spielman ’15.
∙ Kyng, Lee, Peng, Sachdeva, Spielman ’16
∙ Jindal, Kolev ’16
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why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



why sampling?

Reason #2: Sampling works in settings where random
projection does not apply.

In this paper: Applications to single-pass streaming algorithms
for the column subset selection problem.

In follow up work:

∙ [Musco Musco ’16]: Linear time kernel matrix approximation.
∙ [Musco Woodruff ’16]: Sublinear time relative-error low-rank
approximation of PSD matrices.

20



sampling for kernels

Ki,j = k(ai, aj), K = ϕ(A)Tϕ(A)

∙ Working with full n× n kernel matrix often prohibitive.
Low-rank approximation is important for efficient kernel
ridge regression, kernel PCA, kernel k-means clustering, etc.

∙ Sketching K directly requires Ω(n2) kernel evaluations.
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recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.
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we set A = K1/2 so AAT = K.

∙ Lets us find a low-rank approximation for K1/2 without
constructing all of K.

22



recursive sampling

How can we avoid this using sampling?

∙ O(nk) dot products per level⇒ Õ(nk) kernel evaluations if
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conclusions
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Open Questions:

∙ Empirical evaluation, especially for kernel applications.
∙ Other methods of achieving input sparsity time?
Deterministic?

∙ Further applications?
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