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Abstract

Feature selection has become an essential tool in ma-
chine learning – by distilling data vectors to a small set
of informative dimensions, it is possible to significantly ac-
celerate learning algorithms and avoid overfitting. Feature
selection is especially important in computer vision, where
large image vectors are often combined with huge syntheti-
cally generated feature sets.

Inspired by recent theoretical work on dimensionality re-
duction for k-means clustering, we introduce an unsuper-
vised feature selection method and evaluate its performance
on fundamental vision tasks. Our approach is based on
a new measure for feature importance, ‘subspace scores’,
which we derive from statistical leverage scores. Sampling
by subspace scores is provably effective for k-means clus-
tering and low rank approximation – it can significantly re-
duce the number of features in a dataset before solving these
problems and still get nearly optimal results [11]. We ver-
ify this work by applying subspace sampling to clustering
handwritten digit and face datasets.

Additionally, we address a broader range of applications
by proposing subspace scores as a general purpose feature
selection tool for vision data, akin to Fisher [18] or Lapla-
cian scores [39]. We provide a theoretical justification for
subspace scores, in addition to experimental results. Evalu-
ation on a facial recognition task is promising: subspace
scoring significantly outperforms eigenface methods and
a variety of standard unsupervised feature selection algo-
rithms. In fact, it is nearly competitive with popular super-
vised methods for selection. These preliminary experimen-
tal results justify further exploration for vision applications.

1. Introduction
In modern machine learning tasks, the number of avail-

able data features is typically enormous – often larger than
the number of available data examples. While the ability
to collect and store rich data is essential for building ac-
curate models, features are usually polluted by noise and
redundancy, which can make it difficult to extract mean-
ingful information [10]. Extraneous features slow learning
algorithms and can lead to overfitting via the curse of di-
mensionality or increase the chance that certain optimiza-

tion algorithms get stuck at local minima [16].
Feature overload is especially problematic in computer

vision. Not only do images contain many pixels, each en-
capsulating several color values, but synthetic data con-
struction is common in computer vision. Feature generation
algorithms are used to extract highly non-linear structure
from pixels using, for example, Fourier information, Gabor
energy functions, SIFT features [31], or HOG features [14].
The potential number of features available for a given vision
problem is essentially unlimited [4].

1.1. Dimensionality Reduction

To cope with feature overload, dimensionality reduc-
tion has become an important tool in any machine learning
toolkit, including for vision applications. The goal is to sig-
nificantly reduce the number of features in a dataset before
running a learning algorithm. Ideally, eliminating features
only leads to a minor reduction in the algorithm’s effective-
ness or, by avoiding overfitting and local minima, actually
improves learning performance [10]. Dimensionality reduc-
tion breaks into two main categories [29]:

Feature Extraction A feature extraction algorithm gener-
ates a small set of new data features by transforming the
original data. Principle Component Analysis (PCA) is a
standard example of linear feature extraction, although non-
linear methods are common as well. The bag-of-words
model is especially popular in computer vision [13, 35].

Feature Selection A feature selection algorithm chooses
and possibly reweights a small set of original data features
based on some measure of importance, like feature variance,
Laplacian score, or Fisher score. Either the highest ranked
features are chosen or features are randomly sampled, with
probability proportional to importance.

Both types of dimensionality reduction are popular and
a variety of techniques have been studied theoretically and
empirically. Theoretical analysis is often inspired by ob-
served effectiveness in practice and, in turn, often inspires
new algorithms that work well experimentally.

1.2. Applications to Clustering

One area that has seen an especially fruitful interchange
between theory and practice is dimensionality reduction for
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clustering problems. The goal is to reduce the dimension
of data points significantly before clustering, hoping to ob-
tain a good partition in a fraction of the time. Research
has focused heavily on the ubiquitous k-means clustering
objective, an unsupervised learning technique included in a
recent list of ‘Top 10 Algorithms in Data Mining’ [38].

It has long been observed that k-means can be acceler-
ated by projecting data points to a small set of top principal
data components before clustering, without sacrificing qual-
ity. Typically, O(k) principal components are used, which
can be a substantial reduction since k, the number of target
clusters, is usually small. Inspired by this observation, sev-
eral theoretical results attempt to understand the connection
between k-means and PCA, noting that PCA can be charac-
terized as a relaxation of k-means clustering [40, 15].

This fact was applied rigorously to show that projecting
toO(k) principal components as a dimensionality reduction
step is guaranteed to give a good k-means clustering [17,
19]. In recent work, we tighten these results and, using the
same basic ideas, prove that several alternative reduction
techniques are also useful for k-means [11]. In particular,
inspired by preliminary results in [7], we introduce a feature
selection algorithm that chooses a subset of original data
features based on subspace scores ([11], Theorem 14). This
new measure of statistical importance is based on leverage
scores, an important concept from linear regression.

Subspace score sampling also applies to a general class
of constrained low rank approximation problems, which in-
cludes k-means clustering, unconstrained PCA, and several
other natural problems – provably good solutions are ob-
tainable even after significant dimensionality reduction.

1.3. Goals

However, the theoretical results in [11] remain untested
in practice, leading to several natural directions for future
experimental research. This paper seeks to initiate an inves-
tigation through canonical computer vision applications –
high dimensional image data is an ideal test bed for dimen-
sionality reduction algorithms. We ask two main questions:

1. Is subspace scoring effective for k-means in practice?

PCA and other methods evaluated theoretically in [11]
(e.g. Johnson-Lindenstrauss embedding [24]) have been
tested extensively [15, 20]. PCA in particular works
remarkably well, so we are interested in understanding
whether subspace scoring can give comparable results. Fea-
ture selection methods are often preferred in practice over
feature extraction because they maintain data interpretabil-
ity and can preserve important data structure (e.g. sparsity).
Selection also incurs a small space overhead, simply requir-
ing pointers into existing data matrices. For computer vi-
sion, which often relies on synthetic features, it can elimi-
nate the need to compute many features in the first place.

We give evidence towards an affirmative answer of Ques-
tion 1 in Section 3 through an application to handwritten
digit and face clustering. Subspace scoring shows promise
as the first provably accurate and practically effective fea-
ture selection method for k-means clustering.

2. Given their applicability to k-means and a variety of low
rank approximation problems, are subspace scores effective
for general purpose feature selection in vision?

Again, we focus on feature selection since Principal
Component Analysis and Johnson-Lindenstrauss methods
have been evaluated as general dimensionality reduction
tools. In the case of PCA, so called eigenspace methods are
fundamental for objection recognition [33], motion tracking
[5], image modeling [12], and face recognition [37].

Our work points to an affirmative answer to this second
question as well. In Section 4.1, we give new mathemat-
ical interpretation that suggests subspace scores may be a
valuable metric beyond their intended purpose for k-means
clustering. Additionally, in Section 4.2 we address Ques-
tion 2 experimentally via an application to facial recogni-
tion. When used as a dimensionality reduction technique
before nearest neighbor classification, subspace score sam-
pling significantly outperforms PCA (eigenfaces) and all
other unsupervised feature selection methods tested. Sub-
space scores are only outclassed by a supervised Fisher
score method and a supervised Laplacian score variant,
which both use label information to choose features.

2. Background
Before evaluating subspace scores in Sections 3 and 4, it

is helpful to give a brief introduction to the k-means clus-
tering problem and relevant dimensionality reduction tech-
niques, including our recent results in [11], which inspired
this study of subspace scores for vision.

2.1. k-means Clustering

Data clustering is one of the most common approaches to
unsupervised learning. Without access to label information,
clustering algorithms use some distance metric to partition
data points into groups that seem likely to share a common
label. In computer vision, clustering is used for image seg-
mentation, face detection, training bag-of-words classifiers,
and a variety of other common tasks [36].
k-means is a particularly natural clustering objective

function, although the name is sometimes used to reference
a common heuristic, Lloyd’s algorithm [30], for minimizing
the objective. We use the former meaning.

The goal is to partition data into k clusters that minimize
total intra-cluster variance. Suppose we wish to divide n
vectors in Rd, {a1, . . . ,an}, into clusters, {C1, . . . , Ck}.
Let C(aj) denote the cluster aj is assigned to. Let µi be
the centroid (i.e. average) of the vectors in Ci. Then, the
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optimal k-means clustering is given by

arg min
{C1,...,Ck}

 n∑
j=1

‖aj − µC(aj)‖
2
2

 .

In other words, we just compute the squared `2 distance
from every data vector to its cluster centroid. Our goal is
to minimize the sum of these distances. By rearranging our
summation, we see that this is equivalent to computing the
variance for each cluster and summing over all clusters:

arg min
{C1,...,Ck}

 k∑
i=1

∑
aj∈Ci

‖aj − µi‖22

 .

In general, this function is NP-hard to optimize [1]. Never-
theless, it can be solved effectively in practice using either
heuristic algorithms (e.g. Lloyd’s algorithm) or a variety of
provably good approximation algorithms [30, 25, 2, 22].

2.2. Dimensionality Reduction for k-means

Any of these algorithms can be accelerated by prepro-
cessing data to reduce the dimension of each point aj from
d to some d′ � d. Of course this can be done in a huge
variety of ways, so what do we mean for a dimensionality
reduction method to be provably good for k-means? De-
note our original data matrix, whose rows are the vectors
{a1, . . . ,an}, as A ∈ Rn×d. Denote the data matrix con-
taining our dimension reduced rows as Ã ∈ Rn×d′ . For any
clustering C, we will write the k-means cost for data matrix
A and clustering C = {C1, . . . , Ck} as Cost(C,A).

Suppose C∗ is the optimal clustering for A and C̃∗ is
the optimal clustering for Ã. One natural goal is to seek out
dimensionality reduction methods that guarantee

Cost(C̃∗,A) ≤ λ · Cost(C∗,A),

for some approximation factor λ. In other words, if we find
the optimal k-means clustering for our dimension reduced
data, it will be close to optimal for our original data. Since
k-means is rarely solved exactly, this guarantee is typically
strengthened so that any approximately optimal clustering
for Ã works as well. I.e. if we find some C̃ ′ such that
Cost(C̃ ′, Ã) ≤ α · Cost(C̃∗, Ã) for some α ≥ 1, then

Cost(C̃ ′,A) ≤ αλ · Cost(C ′,A).

Achieving α = 1 corresponds to exactly solving k-means
on Ã, recovering our original guarantee.

Several results achieve this sort of guarantee, starting
with [17], which shows that projecting A’s columns to their
top k principle directions is sufficient for an approximation
of λ = 2. This work was generalized in [19], which shows
that taking O(k/ε2) principle components is sufficient for

λ = 1+ ε. Bounds have also been shown for alternative di-
mensionality reduction methods, including feature selection
[7, 8, 6], but always with an approximation of λ > 2.

Recently, we improve on the PCA results, showing that
projecting to just dk/εe principal components suffices for
λ = 1 + ε. We also give improved error analysis for
Johnson-Lindenstrauss projections and feature selection –
subspace score sampling needs to select just O(k log k/ε2)
dimensions for a λ = 1 + ε approximation.

We should be careful to note that these bounds only pro-
vide an initial insight into the effectiveness of dimensional-
ity reduction for k-means. As mentioned, k-means is often
solved using a heuristic algorithm, which is vulnerable to
local minima. It is not clear how dimensionality reduction
effects the probability of reaching a global minimum. Ob-
jective function loss could be worse or better than predicted
depending on the heuristic used.

Additionally, it is important to remember that optimizing
the k-means objective is usually not the final goal of unsu-
pervised learning – the objective is simply a coarse mathe-
matical indicator of a partition’s quality. The ultimate test
for clustering is the quality of answer obtained for the prob-
lem k-means is being applied to, measured by classification
rate, segmentation accuracy, etc.

Nevertheless, a concrete theoretical goal is valuable in
roughly predicting the effectiveness of dimensionality re-
duction and, for feature selection, understanding what it
means to be ‘important’ for clustering.

2.3. Subspace Scores

Variations on subspace scores have been studied in the
theoretical computer science literature for a variety of prob-
lems including linear regression and matrix decomposition
[32, 28]. For k-means clustering, we formulate them as a
weighted sum of a feature’s rank-m leverage score, `, and
its residual score, r [11]. Recall that we seek to sample
columns from a data matrix A ∈ Rn×d. Let A = UΣV>

denote the singular value decomposition of A. U ∈ Rn×r
and V ∈ Rd×r have orthogonal columns (the left and
right singular vectors of A) and Σ ∈ Rr×r is a posi-
tive diagonal matrix containing the singular values of A,
σ1 ≥ σ2 ≥ ... ≥ σd, from top left to bottom right. If our
data is centered, the right singular vectors V are equivalent
to the principal components of our data. For example, if
each row of A held pixel values for a face image, then V’s
columns would give us pixels values for the eigenfaces of
A. Now, for a chosen rank parameter m, let V(m) be V
with all but its first m columns (the top m principal compo-
nents of A) zero’d out.

For weighting parameter γ, the subspace score of the ith
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column of A, Ai, is denoted vi and defined by:

vi = `i + γ · ri
= ‖V(m)>

i ‖22 + γ · ‖Ai −AiV
(m)V(m)>‖22.

`i = ‖V(m)>
i ‖22 is the rank-m leverage score of column

Ai, which measures how important the ith feature is in
composing the top m principal components of A. ri =
‖Ai−AiV

(m)V(m)>‖22 is the residual score of column Ai,
which measures the variance of the ith feature once the top
principle components are controlled for (projected out). For
provably good k-means approximation, we set m = 2k and
γ = k∑d

i=k σ
2
i

[11]. However, in general m and γ should be
considered free parameters. In Section 4.1 we give intuition
for why balancing a feature’s leverage score and residual
score gives an ideal measure for feature selection.

Subspace scores are simple and relatively fast to com-
pute. Algorithms for the singular value decomposition are
widely available and can be accelerated when we do not re-
quire a full SVD of A – for subspace score computation
we just need A’s top m singular vectors. For example, we
are able to quickly compute scores for all test problems us-
ing MATLAB’s svds() function, an implementation of
the Lanczos algorithm [26].

3. k-means Clustering Evaluation
Our first goal is to test subspace score feature selection

for clustering, comparing to PCA based methods, which
are popular in practice. We test on the USPS handwritten
digit database [23], which was downloaded from [34]. This
dataset contains 9298 16 × 16 pixel images of the ten nu-
merical digits, with roughly equal counts of each digit. A
sample set of images is included in Figure 1. We test clus-
tering with both the original image pixels (256 features) as
well as generated HOG descriptors (1764 features) obtain
using MATLAB’s extractHOGFeatures function.
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Figure 1: Selected images from the USPS handwritten digit
database.

For faces, we use the Extended Yale Face Database B,
which contains images of 38 subjects under various posi-

tion and lighting conditions [21, 27]. We only consider the
face-on position for each subject and remove images with
very poor illumination – i.e. average brightness much be-
low the average for the full data set. This leaves us with
1978 images in total, approximately 50 for each subject.

All images are centered, cropped, and normalized for
brightness. A sample of prepared images is included in Fig-
ure 2. Each image is 192×168 pixels, and so originally has
32256 features.
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Figure 2: Selected set of centered, cropped, and normalized
images from the Extended Yale Face Database B.

To compute subspace scores, we set m and γ as de-
scribed in Section 2.3. We sample features (i.e. pixels) with
probability proportional to their subspace scores, reweight-
ing selected features according to the inverse of these prob-
abilities. This ensures that the sampled image is equal to the
original in expectation.

For comparison, PCA feature reduction is implemented
by first computing the top singular vectors of our dataset
and projecting each data point onto these vectors.

We use MATLAB’s standard k-means implementation
for clustering, which uses Lloyd’s algorithm with the k-
means++ initialization rule [2]. This approach can get stuck
at a local minimum, but the initialization rule guarantees a
solution within a O(log k) factor of optimal. Since practi-
cal implementations of exact or (1 + ε) error approxima-
tion algorithms are not widely available, this algorithm is
used nearly universally in practice. For each test, we run k-
means++ with 5 different initializations and 300 iterations
of Llyod’s algorithm. In all tests the algorithm converged
before the final iteration. For handwritten digits there are 10
natural classes so we set k = 10. For faces, we set k = 38,
the number of subjects in the dataset.

3.1. Results

Our results are included in Figures 3, 4, and 5 for hand-
written digits, handwritten digit HOG features, and faces.
After computing a baseline k-means objective value using
all data features, we test the value obtained by minimiz-
ing k-means using dimension reduced data in a variety of
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smaller dimensions.
PCA feature reduction is extremely effective. For all

datasets, fewer than 10 principal components give nearly
optimal clusters. This result may seem surprising – in gen-
eral, a (1+ε) approximately optimal clustering requires pro-
jection to dk/εe principal components. However, as noted
in [11], many fewer principal components are required if
the principal components of our data matrix decay quickly.
As shown in Figure 6, this is indeed the case for all datasets
tested. Although consisting of many features, our data is
“close” to low dimensional since it can be well approxi-
mated by just a few principal components.

Although it underperforms PCA, subspace score sam-
pling is also quite effective. We see close to optimal perfor-
mance after sampling approximately 100 features. While
unimpressive for the standard handwritten digit dataset
(which has just 256 features originally), this reduction is
substantial for the HOG dataset (1764 original features) and
face images (32256 original features).

The cost function for figures Figures 3, 4, and 5 is the
standard k-means squared Euclidean distance cost. Using
available labels, we were also able to compute a supervised
objective value, penalizing points that appear in the same
cluster but have different ground truth labels. PCA and sub-
space score sampling both performed well under this met-
ric, indicating that these methods are effective for optimiz-
ing our underlying objective, in addition to the surrogate
k-means object. Note that for handwritten digits, HOG fea-
tures significantly improved performance when measured
with ground truth labels. This seemed to come at the cost of
a larger feature set. However, using feature reduction, we
are able to eliminate this cost.

0 20 40 60 80 100 120 140 160 180 200

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

x 10
5

Number of Features

k
−

M
e

a
n

s
 C

o
s
t

 

 

PCA Reduction

Full Data Set

 Subspace Score Sampling

Figure 3: Effect of feature reduction on k-means clustering
for handwritten digits. Original feature set: 256 pixels.

4. Subspace Scoring for Face Recognition
Since they give theoretically justified and empirically

confirmed approximation results for k-means, it is natural
to ask if subspace scores are more widely applicable to fea-
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Figure 4: Effect of feature reduction on k-means cluster-
ing for handwritten digits. Original feature set: 1764 HOG
features.
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Figure 5: Effect of feature reduction on k-means clustering
for face images. Original feature set: 32256 pixels.

ture selection in machine vision. In this section, we provide
theoretical and experimental evidence to suggest they are.

4.1. Mathematical Intuition

Recall that the subspace score for the ith column (feature)
of a data matrix A is computed as:

vi = `i + γ · ri
= ‖V(m)>

i ‖22 + γ · ‖Ai −AiV
(m)V(m)>‖22.

The columns of V(m) are the top m singular vectors of
A – i.e. its top principal components for mean centered
data. Thus, the ith row of V(m), V

(m)>
i contains the value

of the ith feature in each of the top m principal components
of A. By computing the squared norm of this row, the ith

leverage score `i sums the ‘importance’ that a given feature
plays in the top principal components of our data matrix.

On the other hand, ri measures the variance of a fea-
ture outside of the top m principal components. We be-
gin by subtracting AiV

(m)V(m)> from our feature vector
Ai, which computes the component of the ith feature out-
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(a) USPS digit images.
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(b) USPS digit HOG features
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(c) Yale face images

Figure 6: All datasets exhibit rapid spectral decay, indicat-
ing that they are well approximated by few prinicipal com-
ponents. This helps explain the strong performance of PCA
based feature extraction for k-means clustering.

side of the span of our top principal directions. Evaluat-
ing ‖Ai −AiV

(m)V(m)>‖22 computes the variance of that
component.

Generally, projecting onto the largest principal directions
preserves global patterns in images (the rows of A) – this
largely explains why PCA is such an effective dimension-
ality reduction tool. The leverage score component of our
subspace score ensures that we select pixels important to
global variation. On the other hand, the residual score cap-
tures pixels that have high local variance. Even if these
features do not participate in global patterns, they may be
important in classification, clustering, and other tasks. γ
balances the weight we place on global vs. local pixel im-
portance, while m parameterizes the intrinsic dimensional-
ity of our ‘global variation’.

It is important to note that subspace scores go beyond
computing a weighted sum of feature variance in the top
principal directions and variance outside of the top direc-
tions. If this were the case, our feature score would be:

‖AiV
(m)V(m)>‖22 + γ · ‖Ai −AiV

(m)V(m)>‖22
= ‖ΣV

(m)>
i ‖22 + γ · ‖Ai −AiV

(m)V(m)>‖22.

The equality follows from writing A = UΣV> via the sin-
gular value decomposition and noting that multiplying by U
does not effect norm since it’s an orthonormal matrix. If γ
was set to 1, this would exactly equal ‖Ai‖22, the variance
of feature i.

Instead, subspace scores normalize the top principal
components by eliminating Σ before computing `i =

‖V(m)>
i ‖22. This observation leads to some additional in-

tuition. Typically top principal directions are believed to
capture true data variance, while lower principal compo-
nents are suspected to be polluted by noise. If we knew
our features contained only informative data, normalization
would be essential. Otherwise, valuable discerning infor-
mation could be washed out by very high variance in a few
directions – this is especially an issue with quickly decaying
principal components, like those shown in Figure 6.

On the other hand, in the presence of noise, we may not
want to consider smaller principal directions, which we sus-
pect may not be informative at all. Subspace scores balance
this trade off by applying selective normalization. Setting
m is an attempt to guess the cut off between data directions
and noise directions. By not excluding everything below the
cut off entirely, our r term adds robustness.

4.2. Experimental Evaluation

With intuition that subspace scores give a useful mea-
sure of feature importance, we test their effectiveness a well
known application of dimensionality reduction in vision –
facial recognition [37]. Typically, a set of training faces are
projected onto their largest principal components, which are
known as eigenfaces. To identify a new face, the face image
is first projected onto these eigenfaces before classification
– for example we might simply find the nearest neighbor of
the dimension reduced vector in the training set.

Projection onto few top principal components can signif-
icantly accelerate image classification. It may also serve as
an implicit denoising operation by dropping contributions
from small data directions. However, our experiments do
not indicate that this effect is significant – a nearest neigh-
bor classifier that uses full face images always outperforms
PCA reduced data, albeit at additional runtime cost. This
observation matches results from prior work [3].

Instead of applying PCA, we can modify the eigen-
face method by using feature selection to choose a small
subset of pixels for use in classification. At first glance,
this method may seem naive, as selecting individual pix-
els could eliminate information present in correlations be-
tween neighboring pixels. However, given a proper impor-
tance measure, pixel selection can significantly outperform
the eigenface method as well as classification using all im-
age features [39]. Feature selection also avoids a projection
step during classification, which is required by the eigen-
face method, so it helps further accelerate face recognition.

We test whether subspace scores give a good enough
measure of feature importance to see these benefits.

4.3. Setup

We begin by establishing a baseline via the standard
eigenface method as well full feature classification. Again
using the Extended Yale Face Database B, we select 20%
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of our data to serve as a training set, with the rest used
for testing. We use an SVD to compute eigenfaces for the
mean centered training set. Every test and training image
is projected onto the top k eigenfaces before running near-
est neighbor classification. Classification rates for different
values of k, along with the rate obtained without dimension-
ality reduction are included in Figure 7.
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Figure 7: Classification rate using nearest neighbor classi-
fier after projection onto top k eigenfaces.

As the number of eigenfaces increases, classification rate
approaches performance for the full feature set (i.e. unmod-
ified images), as expected. The best classification rate is not
especially high – nearest neighbor classification is a simple
approach and we apply it with little image preprocessing
(brightness normalization, centering, and cropping). Never-
theless, this approach will be sufficient for comparing fea-
ture reduction methods.

4.4. Comparision of Feature Selection Methods

Next we compare a variety of feature selection meth-
ods, including subspace scoring, to the baseline. The tested
methods are all based on scoring image pixels:

Uniform scores: All pixels are scored equally and sampled
uniformly at random. This method provides a reference for
other selection techniques – it seems unlikely to outperform
nearest neighbor classification with complete images.

Data variance: After normalizing brightness across the
training set, we set each pixel’s score to its variance across
the images. This is a simple, common approach to scoring.

Laplacian scores [39]: A common feature selection tech-
nique based on the eigenvectors of a similarity graph for the
training data. We use a 5-nearest neighbor graph based on
Euclidean distance to compute scores, adapting code avail-
able at [9].

Supervised Laplacian scores: Here the similarity graph
contains an edge between any two training images with the
same label (i.e. are pictures of the same individual).

Fisher scores: Another common supervised technique
[18]. Higher scores are given to features that have small
within-class variance in comparison to their total variance.

We expect the last two feature selection methods to prove
more powerful than subspace scores and other unsupervised
approaches, which do not incorporate label information.

For intuition, all scores are visualized in Figure 8, with
lighter pixels corresponding to higher scores. Despite being
unsupervised, our subspace scores closely match the super-
vised Laplacian and Fisher scores, a promising observation.
Interestingly, unsupervised Laplacian scores produce a very
different image – pixels in important areas near the eyes and
mouth are actually weighted down. Adjusting the underly-
ing similarity matrix did not change the result substantially
and, predictably, unsupervised Laplacian scores proved in-
effective in our experiments.
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(f) Subspace Score, m = 40

Figure 8: Different feature scoring methods. Lighter pixels
indicate higher feature score.

4.5. Recognition Results

Face recognition results for sampling by importance
score are included in Figure 9. We compute two different
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sets of subspace scores, one with m = 10 and the other
with m = 40. In both cases γ is set so that

∑
i `i is ap-

proximately equal to
∑
i γ · ri. Equalizing the total weight

of our leverage scores and residual scores gave good perfor-
mance in general. A more nuanced understanding of how to
choose m and γ is an interesting question for future study.
For both settings of m, subspace scores perform very well,
outperforming the baseline method, uniform sampling, data
variance, and unsupervised Laplacian scores.

In Figure 10, we also include results for selecting top
scoring features instead of sampling with probability pro-
portional to score. As more pixels are selected, performance
typically increases to a point, after which it converges back
to the baseline rate. For all methods, we obtained higher
peak performance using pixel selection rather than sam-
pling. This is somewhat in opposition to theoretical results,
where sampling is always required, and understanding why
selection is better in practice is also an interesting question.

Overall, subspace scores seem a promising choice for
feature selection. They appear to capture much of the same
information as supervised Fisher and Laplacian scores,
without relying on labeling information. While labels were
available for our application, in semi-supervised or unsu-
pervised applications, this may not be the case.
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Figure 9: Classification rate for different selection methods.
Pixels are sampled with rate proportional to feature score.

5. Conclusion
Our preliminary investigation justifies further investiga-

tion of subspace scores. To the best of our knowledge, these
scores are the first measure of importance to successfully in-
terpolate between the data normalization approach of lever-
age scores, which has been essential to work on linear re-
gression, and standard measures of data variance.

As future work, we would like to confirm the effective-
ness of subspace scoring on a much wider range of vision
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Figure 10: Classification rate for different selection meth-
ods. Pixels are chosen in order of decreasing feature score.

tasks, ideally where unsupervised selection is the only op-
tion. In doing so, we hope to gain a better understanding of
how to appropriately set parameters m and γ and how sam-
pling performs in comparison to highest score selection.

Finally, given the perspective described in Section 4.1,
we might hope to explore alternative selective normaliza-
tion functions for computing data variance. While the func-
tion underlying subspace scores comes directly from the-
oretical analysis of k-means, smoother approaches may
be better for practical applications. For example, instead
of normalizing all top principal components completely, a
more gradual normalization factor may be preferable.
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