## Uniform Sampling for Matrix Approximation

### Michael Cohen, Yin Tat Lee, **Cameron Musco**, Christopher Musco, Richard Peng, Aaron Sidford

Massachusetts Institute of Technology

November 20, 2014

### Goal

• Reduce large matrix **A** to some smaller matrix **Ã**. Use **Ã** to approximate solution to some problem - e.g. regression.

Main Result

- Simple and efficient *iterative sampling* algorithms for matrix approximation.
- Alternatives to Johnson-Lindenstrauss (random projection) type approaches

Main technique

• Understanding what information is preserved when we sample rows of matrix *uniformly at random* 

### Goal

• Reduce large matrix **A** to some smaller matrix **Ã**. Use **Ã** to approximate solution to some problem - e.g. regression.

### Main Result

- Simple and efficient *iterative sampling* algorithms for matrix approximation.
- Alternatives to Johnson-Lindenstrauss (random projection) type approaches

### Main technique

• Understanding what information is preserved when we sample rows of matrix *uniformly at random* 

### Goal

• Reduce large matrix **A** to some smaller matrix **Ã**. Use **Ã** to approximate solution to some problem - e.g. regression.

### Main Result

- Simple and efficient *iterative sampling* algorithms for matrix approximation.
- Alternatives to Johnson-Lindenstrauss (random projection) type approaches

### Main technique

• Understanding what information is preserved when we sample rows of matrix *uniformly at random* 

- Spectral Matrix Approximation
- 2 Leverage Score Sampling
- 3 Iterative Leverage Score Computation



### 2 Leverage Score Sampling

Iterative Leverage Score Computation







#### Goal

 $(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_{2}^{2} \leq \|\mathbf{\tilde{A}}\mathbf{x}\|_{2}^{2} \leq (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_{2}^{2}$ 



#### Goal

 $(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_{2}^{2} \leq \|\mathbf{\tilde{A}}\mathbf{x}\|_{2}^{2} \leq (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_{2}^{2}$ 

- Approximate linear algebra e.g. regression
- Preconditioning
- Spectral Graph Sparsification
- Etc...





### • Approximate linear algebra - e.g. regression

- Preconditioning
- Spectral Graph Sparsification
- Etc...





- Approximate linear algebra e.g. regression
- Preconditioning
- Spectral Graph Sparsification
- Etc...





- Approximate linear algebra e.g. regression
- Preconditioning
- Spectral Graph Sparsification
- Etc...





- Approximate linear algebra e.g. regression
- Preconditioning
- Spectral Graph Sparsification
- Etc...





$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

#### Solve:

$$Ax = b \Longrightarrow A^{\top}(Ax) = A^{\top}b$$

Set x to:

$$(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$$

#### **Problem:**

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

#### Solve:

$$Ax = b \Longrightarrow A^{\top}(Ax) = A^{\top}b$$

Set x to:

$$(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$$

#### **Problem:**

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

#### Solve:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longrightarrow \mathbf{A}^{\top}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b}$$

Set x to:

 $(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$ 

**Problem:** 

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

#### Solve:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longrightarrow \mathbf{A}^{\top}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b}$$

#### Set x to:

$$(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$$

**Problem:** 

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Solve:

$$Ax = b \Longrightarrow A^{\top}(Ax) = A^{\top}b$$

Set x to:

$$(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$$

#### **Problem:**

#### Solution:



#### Solution:



#### Solution:



#### Solution:



Or, use preconditioned iterative method:

$$\kappa\left((\widetilde{\mathbf{A}}^{ op}\widetilde{\mathbf{A}})^{-1}(\mathbf{A}^{ op}\mathbf{A})
ight)=O(1)$$

### All equivalent:

• Norm:

$$\|\mathbf{\tilde{A}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Ax}\|_2^2$$

• Quadratic Form:

$$\mathbf{x}^{\top} (\mathbf{\tilde{A}}^{\top} \mathbf{\tilde{A}}) \mathbf{x} = (1 \pm \epsilon) \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \mathbf{x}$$

• Loewner Ordering:

$$(1-\epsilon)\mathbf{A}^{\top}\mathbf{A} \preceq \tilde{\mathbf{A}}^{\top}\tilde{\mathbf{A}} \preceq (1+\epsilon)\mathbf{A}^{\top}\mathbf{A}$$

$$rac{1}{(1+\epsilon)} (\mathsf{A}^{ op} \mathsf{A})^{-1} \preceq ( ilde{\mathsf{A}}^{ op} ilde{\mathsf{A}})^{-1} \preceq rac{1}{(1-\epsilon)} (\mathsf{A}^{ op} \mathsf{A})^{-1}$$

### All equivalent:

• Norm:

$$\|\mathbf{\tilde{A}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Ax}\|_2^2$$

• Quadratic Form:

$$\mathbf{x}^{\top} (\mathbf{\tilde{A}}^{\top} \mathbf{\tilde{A}}) \mathbf{x} = (1 \pm \epsilon) \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \mathbf{x}$$

• Loewner Ordering:

$$(1-\epsilon)\mathbf{A}^{\top}\mathbf{A} \preceq \tilde{\mathbf{A}}^{\top}\tilde{\mathbf{A}} \preceq (1+\epsilon)\mathbf{A}^{\top}\mathbf{A}$$

$$rac{1}{(1+\epsilon)} (\mathsf{A}^{ op} \mathsf{A})^{-1} \preceq ( ilde{\mathsf{A}}^{ op} ilde{\mathsf{A}})^{-1} \preceq rac{1}{(1-\epsilon)} (\mathsf{A}^{ op} \mathsf{A})^{-1}$$

### All equivalent:

• Norm:

$$\|\mathbf{\tilde{A}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Ax}\|_2^2$$

• Quadratic Form:

$$\mathbf{x}^{ op} (\mathbf{\tilde{A}}^{ op} \mathbf{\tilde{A}}) \mathbf{x} = (1 \pm \epsilon) \mathbf{x}^{ op} (\mathbf{A}^{ op} \mathbf{A}) \mathbf{x}$$

• Loewner Ordering:

$$(1-\epsilon)\mathbf{A}^{\top}\mathbf{A} \preceq \tilde{\mathbf{A}}^{\top}\tilde{\mathbf{A}} \preceq (1+\epsilon)\mathbf{A}^{\top}\mathbf{A}$$

$$\frac{1}{(1+\epsilon)} (\mathbf{A}^\top \mathbf{A})^{-1} \preceq (\tilde{\mathbf{A}}^\top \tilde{\mathbf{A}})^{-1} \preceq \frac{1}{(1-\epsilon)} (\mathbf{A}^\top \mathbf{A})^{-1}$$

### All equivalent:

• Norm:

$$\|\mathbf{\tilde{A}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Ax}\|_2^2$$

• Quadratic Form:

$$\mathbf{x}^{\top} (\tilde{\mathbf{A}}^{\top} \tilde{\mathbf{A}}) \mathbf{x} = (1 \pm \epsilon) \mathbf{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \mathbf{x}$$

• Loewner Ordering:

$$(1-\epsilon)\mathbf{A}^{ op}\mathbf{A} \preceq \mathbf{\tilde{A}}^{ op}\mathbf{\tilde{A}} \preceq (1+\epsilon)\mathbf{A}^{ op}\mathbf{A}$$

$$rac{1}{(1+\epsilon)} (\mathbf{A}^{ op} \mathbf{A})^{-1} \preceq ( ilde{\mathbf{A}}^{ op} ilde{\mathbf{A}})^{-1} \preceq rac{1}{(1-\epsilon)} (\mathbf{A}^{ op} \mathbf{A})^{-1}$$

### All equivalent:

• Norm:

$$\|\mathbf{\tilde{A}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Ax}\|_2^2$$

• Quadratic Form:

$$\mathbf{x}^{ op} (\mathbf{\tilde{A}}^{ op} \mathbf{\tilde{A}}) \mathbf{x} = (1 \pm \epsilon) \mathbf{x}^{ op} (\mathbf{A}^{ op} \mathbf{A}) \mathbf{x}$$

• Loewner Ordering:

$$(1-\epsilon)\mathbf{A}^{\top}\mathbf{A} \preceq \tilde{\mathbf{A}}^{\top}\tilde{\mathbf{A}} \preceq (1+\epsilon)\mathbf{A}^{\top}\mathbf{A}$$

$$rac{1}{(1+\epsilon)} (\mathbf{A}^{ op} \mathbf{A})^{-1} \preceq ( ilde{\mathbf{A}}^{ op} ilde{\mathbf{A}})^{-1} \preceq rac{1}{(1-\epsilon)} (\mathbf{A}^{ op} \mathbf{A})^{-1}$$

Just take a matrix square root of  $A^{\top}A$ !



 $\mathbf{U}^{\top}\mathbf{U} = \mathbf{A}^{\top}\mathbf{A} \Longrightarrow \|\mathbf{U}\mathbf{x}\|_2^2 = \|\mathbf{A}\mathbf{x}\|_2^2$ 

• Cholesky decomposition, SVD, etc. give  $\mathbf{U} \in \mathbb{R}^{d imes d}$ 

• Runs in something like  $O(nd^2)$  time.

Just take a matrix square root of  $A^{\top}A$ !



# $\mathbf{U}^\top \mathbf{U} = \mathbf{A}^\top \mathbf{A} \Longrightarrow \|\mathbf{U}\mathbf{x}\|_2^2 = \|\mathbf{A}\mathbf{x}\|_2^2$

Cholesky decomposition, SVD, etc. give U ∈ ℝ<sup>d×d</sup>
Runs in something like O(nd<sup>2</sup>) time.

Just take a matrix square root of  $A^{\top}A$ !



$$\mathbf{U}^{\top}\mathbf{U} = \mathbf{A}^{\top}\mathbf{A} \Longrightarrow \|\mathbf{U}\mathbf{x}\|_2^2 = \|\mathbf{A}\mathbf{x}\|_2^2$$

Cholesky decomposition, SVD, etc. give U ∈ ℝ<sup>d×d</sup>
Runs in something like O(nd<sup>2</sup>) time.

Just take a matrix square root of  $A^{T}A$ !



$$\mathbf{U}^{\top}\mathbf{U}=\mathbf{A}^{\top}\mathbf{A}\Longrightarrow\|\mathbf{U}\mathbf{x}\|_2^2=\|\mathbf{A}\mathbf{x}\|_2^2$$

- Cholesky decomposition, SVD, etc. give  $\mathbf{U} \in \mathbb{R}^{d imes d}$
- Runs in something like  $O(nd^2)$  time.

- Left multiply by sparse 'Johnson-Lindenstrauss matrix'.
- Can apply in  $O(nnz(\mathbf{A}))$  time.
- Reduce to  $O(d/\epsilon^2)$  dimensions.



- Left multiply by sparse 'Johnson-Lindenstrauss matrix'.
- Can apply in  $O(nnz(\mathbf{A}))$  time.
- Reduce to  $O(d/\epsilon^2)$  dimensions.



- Left multiply by sparse 'Johnson-Lindenstrauss matrix'.
- Can apply in  $O(nnz(\mathbf{A}))$  time.
- Reduce to  $O(d/\epsilon^2)$  dimensions.



- Left multiply by sparse 'Johnson-Lindenstrauss matrix'.
- Can apply in  $O(nnz(\mathbf{A}))$  time.
- Reduce to  $O(d/\epsilon^2)$  dimensions.


## How to Find one Faster?

• 'Squishes' together rows



# What if we want to preserve structure/sparsity?

#### **Use Row Sampling**



#### 1 Spectral Matrix Approximation

### 2 Leverage Score Sampling

3 Iterative Leverage Score Computation

#### 4 Coherence Reducing Reweighting

• Sample rows with probability proportional to *leverage scores*.



• Sample rows with probability proportional to *leverage scores*.

Leverage Score

$$au_i(\mathbf{A}) = \mathbf{a}_i^{\top} (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{a}_i$$



- Sample each row independently with  $p_i = O(\tau_i(\mathbf{A}) \log d/\epsilon^2)$ .
- $\sum_{i} \tau_i(\mathbf{A}) = d$  giving reduction to  $O(d \log d/\epsilon^2)$  rows.
- Straight-forward analysis with matrix Chernoff bounds.



- Sample each row independently with  $p_i = O(\tau_i(\mathbf{A}) \log d/\epsilon^2)$ .
- $\sum_{i} \tau_i(\mathbf{A}) = d$  giving reduction to  $O(d \log d/\epsilon^2)$  rows.
- Straight-forward analysis with matrix Chernoff bounds.



- Sample each row independently with  $p_i = O(\tau_i(\mathbf{A}) \log d/\epsilon^2)$ .
- $\sum_{i} \tau_i(\mathbf{A}) = d$  giving reduction to  $O(d \log d/\epsilon^2)$  rows.
- Straight-forward analysis with matrix Chernoff bounds.



• Statistics: Outlier detection



- Statistics: Outlier detection
- Spectral Graph Theory: Effective resistance, commute time



- Statistics: Outlier detection
- Spectral Graph Theory: Effective resistance, commute time
- Matrix Approximation: Row's importance in composing the quadratic form of A<sup>T</sup>A.



$$au_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i$$

$$au_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i$$

• Row norms of orthonormal basis for A's columns



$$au_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i$$

• Row norms of orthonormal basis for A's columns



• Correct 'scaling' to make matrix Chernoff bound work

$$au_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i$$

• Row norms of orthonormal basis for A's columns



- Correct 'scaling' to make matrix Chernoff bound work
- How easily a row can be reconstructed from other rows.

How easily a row can be reconstructed from other rows



• min  $\|\mathbf{x}\|_{2}^{2} = \tau_{i}(\mathbf{A}).$ 

- $\mathbf{a}_i$  has component orthogonal to all other rows:  $\mathbf{x} = \mathbf{e}_i$ ,  $\|\mathbf{x}\|_2 = 1$ .
- There are many rows pointing 'in the direction of' **a**<sub>i</sub>: **x** is well spread and has small norm.

How easily a row can be reconstructed from other rows



### • min $\|\mathbf{x}\|_{2}^{2} = \tau_{i}(\mathbf{A}).$

- $\mathbf{a}_i$  has component orthogonal to all other rows:  $\mathbf{x} = \mathbf{e}_i$ ,  $\|\mathbf{x}\|_2 = 1$ .
- There are many rows pointing 'in the direction of' **a**<sub>i</sub>: **x** is well spread and has small norm.

How easily a row can be reconstructed from other rows



• min  $\|\mathbf{x}\|_{2}^{2} = \tau_{i}(\mathbf{A}).$ 

•  $\mathbf{a}_i$  has component orthogonal to all other rows:  $\mathbf{x} = \mathbf{e}_i$ ,  $\|\mathbf{x}\|_2 = 1$ .

• There are many rows pointing 'in the direction of' **a**<sub>i</sub>: **x** is well spread and has small norm.

How easily a row can be reconstructed from other rows



• min  $\|\mathbf{x}\|_{2}^{2} = \tau_{i}(\mathbf{A}).$ 

- $\mathbf{a}_i$  has component orthogonal to all other rows:  $\mathbf{x} = \mathbf{e}_i$ ,  $\|\mathbf{x}\|_2 = 1$ .
- There are many rows pointing 'in the direction of' **a**<sub>i</sub>: **x** is well spread and has small norm.

How easily a row can be reconstructed from other rows



• 
$$\bar{\mathbf{x}} = [0, 0, \dots, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, \dots]$$
 works.  
•  $\tau_i(\mathbf{A}) \le \|\bar{\mathbf{x}}\|_2^2 = \frac{1}{4}.$ 

How easily a row can be reconstructed from other rows



• 
$$\mathbf{\bar{x}} = [0, 0, \dots, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, \dots]$$
 works.  
•  $\tau_i(\mathbf{A}) \le \|\mathbf{\bar{x}}\|_2^2 = \frac{1}{4}.$ 

How easily a row can be reconstructed from other rows



• 
$$\bar{\mathbf{x}} = [0, 0, \dots, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, \dots]$$
 works.  
•  $\tau_i(\mathbf{A}) \le \|\bar{\mathbf{x}}\|_2^2 = \frac{1}{4}.$ 

 $\min_{\{\mathbf{x} | \mathbf{x}^\top \mathbf{A} = \mathbf{a}_i^\top\}} \|\mathbf{x}\|_2^2$ 

To minimize, set

$$\mathbf{x}^{\top} = \mathbf{a}_i^{\top} (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top}$$

$$\|\mathbf{x}\|_2^2 = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i = \tau_i (\mathbf{A})$$

$$\min_{\{\mathbf{x} | \mathbf{x}^\top \mathbf{A} = \mathbf{a}_i^\top\}} \|\mathbf{x}\|_2^2$$

To minimize, set

$$\mathbf{x}^{\top} = \mathbf{a}_i^{\top} (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top}$$

$$\|\mathbf{x}\|_2^2 = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i = \tau_i (\mathbf{A})$$

$$\min_{\{\mathbf{x} | \mathbf{x}^\top \mathbf{A} = \mathbf{a}_i^\top\}} \|\mathbf{x}\|_2^2$$

To minimize, set

$$\mathbf{x}^{ op} = \mathbf{a}_i^{ op} (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op}$$

$$\|\mathbf{x}\|_2^2 = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i = \tau_i (\mathbf{A})$$

$$\min_{\{\mathbf{x} | \mathbf{x}^\top \mathbf{A} = \mathbf{a}_i^\top\}} \|\mathbf{x}\|_2^2$$

To minimize, set

$$\mathbf{x}^{ op} = \mathbf{a}_i^{ op} (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op}$$

$$\|\mathbf{x}\|_2^2 = \mathbf{a}_i^\top (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{a}_i = \tau_i(\mathbf{A})$$



#### Intepretation tells us:

- $\tau_i(\mathbf{A}) \leq 1$
- Adding rows to A can only decrease leverage scores of existing rows
- Removing rows can only increase leverage scores
- In fact always have:  $\sum_{i=1}^{n} \tau_i(\mathbf{A}) = d$  (Foster's Theorem)



#### Intepretation tells us:

- $au_i(\mathbf{A}) \leq 1$
- Adding rows to A can only decrease leverage scores of existing rows
- Removing rows can only increase leverage scores
- In fact always have:  $\sum_{i=1}^{n} \tau_i(\mathbf{A}) = d$  (Foster's Theorem)



#### Intepretation tells us:

•  $\tau_i(\mathbf{A}) \leq 1$ 

• Adding rows to A can only decrease leverage scores of existing rows

- Removing rows can only increase leverage scores
- In fact always have:  $\sum_{i=1}^{n} \tau_i(\mathbf{A}) = d$  (Foster's Theorem)



Intepretation tells us:

- $\tau_i(\mathbf{A}) \leq 1$
- Adding rows to A can only decrease leverage scores of existing rows
- Removing rows can only increase leverage scores
- In fact always have:  $\sum_{i=1}^{n} \tau_i(\mathbf{A}) = d$  (Foster's Theorem)



Intepretation tells us:

- $\tau_i(\mathbf{A}) \leq 1$
- Adding rows to A can only decrease leverage scores of existing rows
- Removing rows can only increase leverage scores
- In fact always have:  $\sum_{i=1}^{n} \tau_i(\mathbf{A}) = d$  (Foster's Theorem)

Great! Nicely interpretable scores that allow us to sample down A.



**Problem:** Computing leverage scores naively requires computing  $(\mathbf{A}^{\top}\mathbf{A})^{-1}$ .

Great! Nicely interpretable scores that allow us to sample down A.



**Problem:** Computing leverage scores naively requires computing  $(\mathbf{A}^{\top}\mathbf{A})^{-1}$ .

#### **Traditional Solution**

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{A}$  we have:

$$\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$$

• 
$$\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$$

• So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

But how to obtain a constant factor spectral approximation?

• Unfortunately, to compute even a constant factor spectral approximation still requires either leverage score estimates, a subspace embedding or a matrix square root.

#### **Traditional Solution**

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{A}$  we have:

# $\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$

- $\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$
- So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

But how to obtain a constant factor spectral approximation?

• Unfortunately, to compute even a constant factor spectral approximation still requires either leverage score estimates, a subspace embedding or a matrix square root.
- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{\mathbf{A}}$  we have:

# $\mathbf{a}_i^{ op} (\mathbf{\tilde{A}}^{ op} \mathbf{\tilde{A}})^{-1} \mathbf{a}_i \approx_c \mathbf{a}_i^{ op} (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{a}_i$

- $\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$
- So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

But how to obtain a constant factor spectral approximation?

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{\mathbf{A}}$  we have:

$$\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$$

• 
$$\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$$

• So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

But how to obtain a constant factor spectral approximation?

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{\mathbf{A}}$  we have:

$$\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$$

• 
$$\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum \mathbf{c} \cdot \tau_i(\mathbf{A}) = \mathbf{c} \sum \tau_i(\mathbf{A}) = \mathbf{c} \cdot \mathbf{d}.$$

• So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

But how to obtain a constant factor spectral approximation?

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{\mathbf{A}}$  we have:

$$\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$$

• 
$$\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$$

• So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

#### But how to obtain a constant factor spectral approximation?

- Overestimates are good enough. Just increases number of rows taken.
- Given a constant factor spectral approximation  $\tilde{\mathbf{A}}$  we have:

$$\mathbf{a}_i^ op (\mathbf{ ilde{A}}^ op \mathbf{ ilde{A}})^{-1} \mathbf{a}_i pprox_c \mathbf{a}_i^ op (\mathbf{A}^ op \mathbf{A})^{-1} \mathbf{a}_i$$

• 
$$\sum \tilde{\tau}_i(\mathbf{A}) \leq \sum c \cdot \tau_i(\mathbf{A}) = c \sum \tau_i(\mathbf{A}) = c \cdot d.$$

• So can still sample  $O(d \log d/\epsilon^2)$  rows using  $\tilde{\tau}_i(\mathbf{A})$ .

#### But how to obtain a constant factor spectral approximation?

#### $\bullet$ A spectral approximation $\tilde{\mathbf{A}}$ gives the for each guarantee:

$$ilde{ au}_i(\mathbf{A}) \leq m{c} \cdot au_i(\mathbf{A})$$

• This is stronger than we need though! We just need a bound on the sum:

$$\sum_{i} \tilde{\tau}_i(\mathbf{A}) \leq c \cdot d$$

• A spectral approximation  $\tilde{\mathbf{A}}$  gives the for each guarantee:

$$ilde{ au}_i(\mathbf{A}) \leq \mathbf{c} \cdot au_i(\mathbf{A})$$

• This is stronger than we need though! We just need a bound on the sum:

$$\sum_{i} \tilde{\tau}_i(\mathbf{A}) \leq c \cdot d$$

#### Spectral Matrix Approximation

2 Leverage Score Sampling

#### 3 Iterative Leverage Score Computation



- Want to find  $\tilde{\mathbf{A}}$  such that  $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{A}\mathbf{x}\|_2^2$ .
- Want to avoid JL Projection just use random row sampling
- Need a way to efficiently compute approximations  $\tilde{\tau}_i(\mathbf{A})$  such that  $\sum \tilde{\tau}_i(\mathbf{A}) = O(d)$
- Efficient:  $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  where R(d, d) is the cost of solving a  $d \times d$  regression problem.



- Want to find  $\tilde{\mathbf{A}}$  such that  $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{A}\mathbf{x}\|_2^2$ .
- Want to avoid JL Projection just use random row sampling
- Need a way to efficiently compute approximations  $\tilde{\tau}_i(\mathbf{A})$  such that  $\sum \tilde{\tau}_i(\mathbf{A}) = O(d)$
- Efficient:  $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  where R(d, d) is the cost of solving a  $d \times d$  regression problem.



- Want to find  $\tilde{\mathbf{A}}$  such that  $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{A}\mathbf{x}\|_2^2$ .
- Want to avoid JL Projection just use random row sampling
- Need a way to efficiently compute approximations  $\tilde{\tau}_i(\mathbf{A})$  such that  $\sum \tilde{\tau}_i(\mathbf{A}) = O(d)$
- Efficient:  $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  where R(d, d) is the cost of solving a  $d \times d$  regression problem.



- Want to find  $\tilde{\mathbf{A}}$  such that  $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{A}\mathbf{x}\|_2^2$ .
- Want to avoid JL Projection just use random row sampling
- Need a way to efficiently compute approximations  $\tilde{\tau}_i(\mathbf{A})$  such that  $\sum \tilde{\tau}_i(\mathbf{A}) = O(d)$
- Efficient:  $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  where R(d, d) is the cost of solving a  $d \times d$  regression problem.



- Want to find  $\tilde{\mathbf{A}}$  such that  $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{A}\mathbf{x}\|_2^2$ .
- Want to avoid JL Projection just use random row sampling
- Need a way to efficiently compute approximations  $\tilde{\tau}_i(\mathbf{A})$  such that  $\sum \tilde{\tau}_i(\mathbf{A}) = O(d)$
- Efficient:  $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  where R(d, d) is the cost of solving a  $d \times d$  regression problem.



.

 In practice, data is typically *incoherent* - no row has a high leverage score. [Kumar, Mohri, Talwalkar '12], [Avron, Maymounkov, Toledo '10].

 $\forall i \quad \tau_i(\mathbf{A}) \leq O(d/n)$ 

.

 In practice, data is typically *incoherent* - no row has a high leverage score. [Kumar, Mohri, Talwalkar '12], [Avron, Maymounkov, Toledo '10].

$$orall i \quad au_i(\mathbf{A}) \leq O(d/n)$$

 In this case, we can uniformly sample O(d log d) rows to obtain a spectral approximation.

.

 In practice, data is typically *incoherent* - no row has a high leverage score. [Kumar, Mohri, Talwalkar '12], [Avron, Maymounkov, Toledo '10].

$$orall i \quad au_i(\mathbf{A}) \leq O(d/n)$$

 In this case, we can uniformly sample O(d log d) rows to obtain a spectral approximation.

$$\sum_{i} \tilde{\tau}_{i}(\mathbf{A}) = O\left(\frac{d}{n}\right) \cdot n = O(d)$$

 In practice, data is typically *incoherent* - no row has a high leverage score. [Kumar, Mohri, Talwalkar '12], [Avron, Maymounkov, Toledo '10].

$$orall i \ au_i(\mathbf{A}) \leq O(d/n)$$

 In this case, we can uniformly sample O(d log d) rows to obtain a spectral approximation.

$$\sum_{i} \tilde{\tau}_{i}(\mathbf{A}) = O\left(\frac{d}{n}\right) \cdot n = O(d)$$



No guarantees on what uniform sampling does on general matrices.



No guarantees on what uniform sampling does on general matrices.



• For 
$$x = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
,  $\|\mathbf{A}\mathbf{x}\|_2^2 = 1$ , but with good probability,  $\|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 = 0$ .

No guarantees on what uniform sampling does on general matrices.



• For 
$$x = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
,  $\|\mathbf{A}\mathbf{x}\|_2^2 = 1$ , but with good probability,  $\|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 = 0$ .  
• Can we still use uniform sampling in some way?

One simple idea for an algorithm:

One simple idea for an algorithm:

• Uniformly sample  $O(d \log d)$  rows of **A** to obtain **A**<sub>u</sub>



#### One simple idea for an algorithm:

- **1** Uniformly sample  $O(d \log d)$  rows of **A** to obtain **A**<sub>u</sub>
- **2** Compute  $(\mathbf{A}_{u}^{\top}\mathbf{A}_{u})^{-1}$ , and use it to estimate leverage scores of **A**



#### One simple idea for an algorithm:

- Uniformly sample  $O(d \log d)$  rows of **A** to obtain **A**<sub>u</sub>
- **2** Compute  $(\mathbf{A}_u^{\top} \mathbf{A}_u)^{-1}$ , and use it to estimate leverage scores of **A**
- Sample rows of A using these estimated leverage scores to obtain A which spectrally approximates A.



#### One simple idea for an algorithm:

- Uniformly sample  $O(d \log d)$  rows of **A** to obtain **A**<sub>u</sub>
- **2** Compute  $(\mathbf{A}_u^{\top} \mathbf{A}_u)^{-1}$ , and use it to estimate leverage scores of **A**
- Sample rows of A using these estimated leverage scores to obtain A which spectrally approximates A.



We want to bound how large  $\tilde{A}$  must be.

#### Theorem

Let  $\mathbf{A}_u$  be obtained from uniformly sampling m rows of  $\mathbf{A}$ . Let  $\mathbf{A}_{u\cup i}$  be  $\mathbf{A}_u$  with  $\mathbf{a}_i$  appended if not already included.  $\tilde{\tau}_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}_{u\cup i}^\top \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_i$ .

 $ilde{ au}_i(\mathbf{A}) \geq au_i(\mathbf{A})$ 

$$\mathbb{E}\sum_{i}\tilde{\tau}_{i}(\mathbf{A})\leq\frac{nd}{m}$$

#### Theorem

Let  $\mathbf{A}_u$  be obtained from uniformly sampling m rows of  $\mathbf{A}$ . Let  $\mathbf{A}_{u\cup i}$  be  $\mathbf{A}_u$  with  $\mathbf{a}_i$  appended if not already included.  $\tilde{\tau}_i(\mathbf{A}) = \mathbf{a}_i^\top (\mathbf{A}_{u\cup i}^\top \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_i$ .

 $ilde{ au}_i(\mathbf{A}) \geq au_i(\mathbf{A})$ 

$$\mathbb{E}\sum_{i}\tilde{\tau}_{i}(\mathbf{A})\leq\frac{nd}{m}$$



#### Theorem

Let  $\mathbf{A}_u$  be obtained from uniformly sampling m rows of  $\mathbf{A}$ . Let  $\mathbf{A}_{u\cup i}$  be  $\mathbf{A}_u$  with  $\mathbf{a}_i$  appended if not already included.  $\tilde{\tau}_i(\mathbf{A}) = \mathbf{a}_i^{\top} (\mathbf{A}_{u\cup i}^{\top} \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_i$ .

 $ilde{ au}_i(\mathbf{A}) \geq au_i(\mathbf{A})$ 

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$

#### Note:

Sherman-Morrison gives equation to compute  $\tilde{\tau}_i(\mathbf{A})$  from  $\mathbf{a}_i^{\top}(\mathbf{A}_u^{\top}\mathbf{A}_u)^{-1}\mathbf{a}_i$ 

$$ilde{ au}_i(\mathbf{A}) = egin{cases} \mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i & ext{if } \mathbf{a}_i \in \mathbf{A}_u \ rac{1}{1 + rac{1}{\mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i}} & ext{o.w.} \end{cases}$$

What does this bound give us?

$$\mathbb{E}\sum_{i}\tilde{\tau}_{i}(\mathbf{A})\leq\frac{nd}{m}$$

What does this bound give us?

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$

What does this bound give us?

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$



What does this bound give us?

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$



What does this bound give us?

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$



What does this bound give us?

$$\mathbb{E}\sum_{i} ilde{ au}_{i}(\mathbf{A})\leq rac{nd}{m}$$

Set  $m = \frac{n}{2}$ . Then:  $\mathbb{E} \sum_{i} \tilde{\tau}_{i}(\mathbf{A}) \leq 2d$ .



• Reminiscent of the MST algorithm from [Karger, Klein, Tarjan '95].



Immediately yields a recursive algorithm for obtaining  $\tilde{A}$ .

- **()** Recursively obtain constant factor spectral approximation to  $A_2$ .
- 2 Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- Is these approximate scores to obtain  $\tilde{A}$ . (With any  $(1 \pm \epsilon)$  multiplicative error you want).



Immediately yields a recursive algorithm for obtaining  $\tilde{A}$ .

- Recursively obtain constant factor spectral approximation to A<sub>2</sub>.
- **2** Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- (a) Use these approximate scores to obtain  $\tilde{A}$ . (With any  $(1 \pm \epsilon)$  multiplicative error you want).


- **()** Recursively obtain constant factor spectral approximation to  $A_2$ .
- 2 Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- Subset the set of the set of



- **()** Recursively obtain constant factor spectral approximation to  $A_2$ .
- 2 Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- 3 Use these approximate scores to obtain  $\tilde{A}$ . (With any  $(1 \pm \epsilon)$  multiplicative error you want).



- **(**) Recursively obtain constant factor spectral approximation to  $A_2$ .
- **2** Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- Substitution of the second second



- **()** Recursively obtain constant factor spectral approximation to  $A_2$ .
- **2** Use this to approximate  $\tilde{\tau}_i(\mathbf{A})$ .
- **③** Use these approximate scores to obtain  $\tilde{\mathbf{A}}$ . (With any  $(1 \pm \epsilon)$  multiplicative error you want).

- Obtain spectral approximation to **A** with arbitrary error.
- Avoid JL projecting and densifying **A**.
- $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  time.

- Obtain spectral approximation to A with arbitrary error.
- Avoid JL projecting and densifying **A**.
- $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  time.

- Obtain spectral approximation to A with arbitrary error.
- Avoid JL projecting and densifying **A**.
- $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  time.

- Obtain spectral approximation to A with arbitrary error.
- Avoid JL projecting and densifying **A**.
- $\tilde{O}(nnz(\mathbf{A}) + R(d, d))$  time.

#### Theorem

Let  $\mathbf{A}_u$  be obtained from uniformly sampling m rows of  $\mathbf{A}$ . Let  $\mathbf{A}_{u\cup i}$  be  $\mathbf{A}_u$  with  $\mathbf{a}_i$  appended if not already included.  $\tilde{\tau}_i(\mathbf{A}) = \mathbf{a}_i^{\top} (\mathbf{A}_{u\cup i}^{\top} \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_i$ .

$$ilde{ au}_i(\mathbf{A}) \ge au_i(\mathbf{A})$$
 (1)

$$\mathbb{E}\sum_{i}\tilde{\tau}_{i}(\mathbf{A}) \leq \frac{nd}{m}$$
(2)

#### Theorem

Let  $\mathbf{A}_u$  be obtained from uniformly sampling m rows of  $\mathbf{A}$ . Let  $\mathbf{A}_{u\cup i}$  be  $\mathbf{A}_u$  with  $\mathbf{a}_i$  appended if not already included.  $\tilde{\tau}_i(\mathbf{A}) = \mathbf{a}_i^{\top} (\mathbf{A}_{u\cup i}^{\top} \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_i$ .

$$ilde{ au}_i(\mathbf{A}) \ge au_i(\mathbf{A})$$
 (1)

$$\mathbb{E}\sum_{i}\tilde{\tau}_{i}(\mathbf{A})\leq\frac{nd}{m}$$
(2)

• (1) follows from the fact that removing rows of **A** can only increase leverage scores.



$$\mathop{\mathbb{E}}_{u}\sum_{i}\tilde{\tau}_{i}(\mathbf{A})\leq\frac{nd}{m}$$

٠

$$\mathop{\mathbb{E}}_{u}\sum_{i} ilde{ au_{i}}(\mathbf{A})\leq rac{nd}{m}$$

• Consider choosing a uniform random row **a**<sub>j</sub>.

$$\mathbb{E}_{u}\sum_{j} ilde{ au}_{i}(\mathbf{A})=n\cdot\mathbb{E}_{u,j} ilde{ au}_{j}(\mathbf{A})$$















• Further, expectation of this process is *exactly* the same as expected leverage score if we sample *m* rows, and then compute the leverage score of a random one.



• Further, expectation of this process is *exactly* the same as expected leverage score if we sample *m* rows, and then compute the leverage score of a random one.



• Further, expectation of this process is *exactly* the same as expected leverage score if we sample *m* rows, and then compute the leverage score of a random one.

• Remember, 
$$\sum_i \tau_i(\mathbf{A}_u) = d$$
.

- *m* rows, so expected score of randomly chosen row is  $\frac{d}{m}$ .
- $\mathbb{E}_j \tilde{\tau}_j(\mathbf{A}) = \frac{d}{m}$
- $\mathbb{E}_u \sum_i \tilde{\tau}_i(\mathbf{A}) = \frac{nd}{m}$ .



• Remember,  $\sum_i \tau_i(\mathbf{A}_u) = d$ .

- *m* rows, so expected score of randomly chosen row is  $\frac{d}{m}$ .
- $\mathbb{E}_j \tilde{\tau}_j(\mathbf{A}) = \frac{d}{m}$
- $\mathbb{E}_u \sum_i \tilde{\tau}_i(\mathbf{A}) = \frac{nd}{m}$ .



- Remember,  $\sum_i \tau_i(\mathbf{A}_u) = d$ .
- *m* rows, so expected score of randomly chosen row is  $\frac{d}{m}$ .
- $\mathbb{E}_j \tilde{\tau}_j(\mathbf{A}) = \frac{d}{m}$ •  $\mathbb{E}_u \sum_i \tilde{\tau}_i(\mathbf{A}) = \frac{nd}{m}$ .



• Remember, 
$$\sum_i \tau_i(\mathbf{A}_u) = d$$
.

- *m* rows, so expected score of randomly chosen row is  $\frac{d}{m}$ .
- $\mathbb{E}_j \tilde{\tau}_j(\mathbf{A}) = \frac{d}{m}$

•  $\mathbb{E}_u \sum_i \tilde{\tau}_i(\mathbf{A}) = \frac{nd}{m}$ .



• Remember, 
$$\sum_i \tau_i(\mathbf{A}_u) = d$$
.

- *m* rows, so expected score of randomly chosen row is  $\frac{d}{m}$ .
- $\mathbb{E}_j \, \tilde{\tau}_j(\mathbf{A}) = \frac{d}{m}$
- $\mathbb{E}_u \sum_i \tilde{\tau}_i(\mathbf{A}) = \frac{nd}{m}$ .



#### What did this theorem just tell us?

- $\mathbb{E}\sum_{i} \tilde{\tau}_{i}(\mathbf{A}) = \mathbb{E}\sum_{i} \mathbf{a}_{i}^{\top} (\mathbf{A}_{u\cup i}^{\top} \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_{i}$  is bounded. And this is all we need!
- Recall that uniform sampling from **A** does *not* give us a spectral approximation.
- We cannot bound  $\mathbf{a}_i^{\top} (\mathbf{A}_u^{\top} \mathbf{A}_u)^{-1} \mathbf{a}_i$ .

#### What did this theorem just tell us?

- E∑<sub>i</sub> τ̃<sub>i</sub>(A) = E∑<sub>i</sub> a<sup>T</sup><sub>i</sub>(A<sup>T</sup><sub>u∪i</sub>A<sub>u∪i</sub>)<sup>-1</sup>a<sub>i</sub> is bounded. And this is all we need!
- Recall that uniform sampling from **A** does *not* give us a spectral approximation.
- We cannot bound  $\mathbf{a}_i^{\top} (\mathbf{A}_u^{\top} \mathbf{A}_u)^{-1} \mathbf{a}_i$ .

#### What did this theorem just tell us?

- $\mathbb{E}\sum_{i} \tilde{\tau}_{i}(\mathbf{A}) = \mathbb{E}\sum_{i} \mathbf{a}_{i}^{\top} (\mathbf{A}_{u\cup i}^{\top} \mathbf{A}_{u\cup i})^{-1} \mathbf{a}_{i}$  is bounded. And this is all we need!
- Recall that uniform sampling from **A** does *not* give us a spectral approximation.
- We cannot bound  $\mathbf{a}_i^{\top} (\mathbf{A}_u^{\top} \mathbf{A}_u)^{-1} \mathbf{a}_i$ .

- 1 Spectral Matrix Approximation
  - 2 Leverage Score Sampling
- 3 Iterative Leverage Score Computation



**Reminder:** If our data is *incoherent*, then all leverage scores are small O(d/n) and we can uniformly sample rows and obtain a small spectral approximation.

**Reminder:** If our data is *incoherent*, then all leverage scores are small O(d/n) and we can uniformly sample rows and obtain a small spectral approximation.

We show: Even if our matrix is not incoherent, it is 'close' to some incoherent matrix.

**Reminder:** If our data is *incoherent*, then all leverage scores are small O(d/n) and we can uniformly sample rows and obtain a small spectral approximation.

We show: Even if our matrix is not incoherent, it is 'close' to some incoherent matrix.



What do we mean by close?

#### What do we mean by close?

• We can reweight  $d/\alpha$  rows of **A** to obtain **A**' with  $\tau_i(\mathbf{A}') \leq \alpha$  for all *i*.

#### What do we mean by close?

- We can reweight  $d/\alpha$  rows of **A** to obtain **A**' with  $\tau_i(\mathbf{A}') \leq \alpha$  for all *i*.
- Can reweight n/2 rows so that  $\tau_i$  is bounded by 2d/n
#### What do we mean by close?

- We can reweight  $d/\alpha$  rows of **A** to obtain **A**' with  $\tau_i(\mathbf{A}') \leq \alpha$  for all *i*.
- Can reweight n/2 rows so that  $\tau_i$  is bounded by 2d/n



• Uniform sample *m* rows of **A** and set  $\tilde{\tau}_i(\mathbf{A}) = \max\{\mathbf{a}_i^\top (\mathbf{A}_i^\top \mathbf{A}_{ii})^{-1} \mathbf{a}_i, 1\}.$ 

- Uniform sample *m* rows of **A** and set  $\tilde{\tau}_i(\mathbf{A}) = \max{\{\mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i, 1\}}.$
- This sampling does a good job of approximating **A**'.

- Uniform sample *m* rows of **A** and set  $\tilde{\tau}_i(\mathbf{A}) = \max{\{\mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i, 1\}}.$
- This sampling does a good job of approximating **A**'.
- Gives good estimates for leverage scores of the that are not reweighted.

- Uniform sample *m* rows of **A** and set  $\tilde{\tau}_i(\mathbf{A}) = \max{\{\mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i, 1\}}.$
- This sampling does a good job of approximating **A**'.
- Gives good estimates for leverage scores of the that are not reweighted.
- Few rows are reweighted, so overall we are able to significantly reduce matrix size.

- Uniform sample *m* rows of **A** and set  $\tilde{\tau}_i(\mathbf{A}) = \max{\{\mathbf{a}_i^\top (\mathbf{A}_u^\top \mathbf{A}_u)^{-1} \mathbf{a}_i, 1\}}.$
- This sampling does a good job of approximating **A**'.
- Gives good estimates for leverage scores of the that are not reweighted.
- Few rows are reweighted, so overall we are able to significantly reduce matrix size.
- Don't need to actually compute W. Just existence is enough.

How to prove existence of reweighting?

How to prove existence of reweighting?

• 
$$\sum_i \tau_i(\mathbf{A}) = d$$
 so at most  $d/\alpha$  rows with  $\tau_i(\mathbf{A}) \ge \alpha$ .

How to prove existence of reweighting?

• 
$$\sum_i \tau_i(\mathbf{A}) = d$$
 so at most  $d/\alpha$  rows with  $\tau_i(\mathbf{A}) \ge \alpha$ .

• Can we just delete them?



**Not quite.** Deleting some rows may cause leverage scores of other rows to increase.

**Not quite.** Deleting some rows may cause leverage scores of other rows to increase.

| 2 <sup>100</sup> 0 0 0 |
|------------------------|
| 2 <sup>99</sup> 0 0 0  |
| 2 <sup>98</sup> 0 0 0  |
| ÷                      |
| 100 0                  |
|                        |
|                        |
|                        |
|                        |

Alternative idea

#### Alternative idea

Occupie Cycle through rows

#### Alternative idea

- Occupie Cycle through rows
- **2** Each time you see a row with  $\tau_i(\mathbf{A}) \ge \alpha$  cut its weight so that  $\tau_i(\mathbf{A}) = \alpha$

#### Alternative idea

- Cycle through rows
- **2** Each time you see a row with  $\tau_i(\mathbf{A}) \ge \alpha$  cut its weight so that  $\tau_i(\mathbf{A}) = \alpha$
- 8 Repeat

#### Alternative idea

- Cycle through rows
- **2** Each time you see a row with  $\tau_i(\mathbf{A}) \ge \alpha$  cut its weight so that  $\tau_i(\mathbf{A}) = \alpha$

8 Repeat



#### Alternative idea

- Cycle through rows
- 2 Each time you see a row with  $\tau_i(\mathbf{A}) \ge \alpha$  cut its weight so that  $\tau_i(\mathbf{A}) = \alpha$
- 8 Repeat



#### Alternative idea

- Cycle through rows
- **2** Each time you see a row with  $\tau_i(\mathbf{A}) \ge \alpha$  cut its weight so that  $\tau_i(\mathbf{A}) = \alpha$
- 8 Repeat





• Decreasing the weight of a row will only increase the leverage score of other rows



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.



- Decreasing the weight of a row will only increase the leverage score of other rows
- At any step, *every* row that has been reweighted has leverage score  $\geq \alpha$  so at most  $d/\alpha$  reweighted rows.









### But does this reweighting process converge?

 $\bullet$  Rows that keep violating constraint will have weight cut to  $\approx$  0.

- $\bullet$  Rows that keep violating constraint will have weight cut to  $\approx 0.$
- Can remove them without significantly effecting leverage scores of other rows.

- $\bullet$  Rows that keep violating constraint will have weight cut to  $\approx 0.$
- Can remove them without significantly effecting leverage scores of other rows.



- $\bullet$  Rows that keep violating constraint will have weight cut to  $\approx 0.$
- Can remove them without significantly effecting leverage scores of other rows.



- Rows that keep violating constraint will have weight cut to  $\approx$  0.
- Can remove them without significantly effecting leverage scores of other rows.
- So overall, reweighting  $d/\alpha$  rows is enough to cut all leverage scores below  $\alpha$ .


# Conclusion

### Take away:

- Very simple analysis shows how leverage scores can be approximated with uniform sampling.
- Simple iterative spectral approximation algorithms matching state of the art runtimes follow.

# Conclusion

### Take away:

- Very simple analysis shows how leverage scores can be approximated with uniform sampling.
- Simple iterative spectral approximation algorithms matching state of the art runtimes follow.

#### **Open Questions:**

- Analogous algorithms for low rank approximation?
- For other types of regression?
- Generally, our result shows that it is possible to go beyond relative condition number (spectral approximation) invariants for iterative algorithms. Can this type of analysis be useful elsewhere?

# Conclusion

### Take away:

- Very simple analysis shows how leverage scores can be approximated with uniform sampling.
- Simple iterative spectral approximation algorithms matching state of the art runtimes follow.

#### **Open Questions:**

- Analogous algorithms for low rank approximation?
- For other types of regression?
- Generally, our result shows that it is possible to go beyond relative condition number (spectral approximation) invariants for iterative algorithms. Can this type of analysis be useful elsewhere?

Thanks! Questions?