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Overview

Goal

Reduce large matrix A to some smaller matrix Ã. Use Ã to
approximate solution to some problem - e.g. regression.

Main Result

Simple and efficient iterative sampling algorithms for matrix
approximation.

Alternatives to Johnson-Lindenstrauss (random projection) type
approaches

Main technique

Understanding what information is preserved when we sample rows of
matrix uniformly at random
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Regression

Goal:

min
x
‖Ax− b‖22

Solve:

Ax = b =⇒ A>(Ax) = A>b

Set x to:

(A>A)−1A>b

Problem:
A is very tall. Too slow to compute A>A.
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‖Ãx− b̃‖22



Regression

Solution:

Or, use preconditioned iterative method:

κ
(

(Ã>Ã)−1(A>A)
)

= O(1)

.
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How to Find a Spectral Approximation?

Just take a matrix square root of A>A!

U>U = A>A =⇒ ‖Ux‖22 = ‖Ax‖22

Cholesky decomposition, SVD, etc. give U ∈ Rd×d

Runs in something like O(nd2) time.
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Use Subspace Embeddings [Sarlos ‘06], [Nelson, Nguyen ‘13], [Clarkson,
Woodruff ‘13], [Mahoney, Meng ‘13]

Left multiply by sparse ‘Johnson-Lindenstrauss matrix’.

Can apply in O(nnz(A)) time.

Reduce to O(d/ε2) dimensions.
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What if we want to preserve structure/sparsity?

Use Row Sampling
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How easily a row can be reconstructed from other rows.
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In fact always have:
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i=1 τi (A) = d (Foster’s Theorem)
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Computing Leverage Scores

Traditional Solution

Overestimates are good enough. Just increases number of rows taken.

Given a constant factor spectral approximation Ã we have:

a>i (Ã>Ã)−1ai ≈c a>i (A>A)−1ai

∑
τ̃i (A) ≤

∑
c · τi (A) = c

∑
τi (A) = c · d .

So can still sample O(d log d/ε2) rows using τ̃i (A).

But how to obtain a constant factor spectral approximation?

Unfortunately, to compute even a constant factor spectral
approximation still requires either leverage score estimates, a subspace
embedding or a matrix square root.
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Iterative Leverage Score Computation

Review of what our goal is:

Want to find Ã such that ‖Ãx‖22 ≈ε ‖Ax‖22.

Want to avoid JL Projection - just use random row sampling

Need a way to efficiently compute approximations τ̃i (A) such that∑
τ̃i (A) = O(d)

Efficient: Õ(nnz(A) + R(d , d)) where R(d , d) is the cost of solving a
d × d regression problem.
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Want to avoid JL Projection - just use random row sampling

Need a way to efficiently compute approximations τ̃i (A) such that∑
τ̃i (A) = O(d)
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Uniform Row Sampling

In practice, data is typically incoherent - no row has a high leverage
score. [Kumar, Mohri, Talwalkar ‘12], [Avron, Maymounkov, Toledo
‘10].

∀i τi (A) ≤ O(d/n)

.

In this case, we can uniformly sample O(d log d) rows to obtain a
spectral approximation.∑

i

τ̃i (A) = O

(
d

n

)
· n = O(d)
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For x =
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, ‖Ax‖22 = 1, but with good probability, ‖Ãx‖22 = 0.

Can we still use uniform sampling in some way?
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Uniform Row Sampling

One simple idea for an algorithm:
1 Uniformly sample O(d log d) rows of A to obtain Au

2 Compute (A>u Au)−1, and use it to estimate leverage scores of A

3 Sample rows of A using these estimated leverage scores to obtain Ã
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Uniform Row Sampling

Theorem
Let Au be obtained from uniformly sampling m rows of A. Let Au∪i be Au with
ai appended if not already included. τ̃i (A) = a>i (A>u∪iAu∪i )

−1ai .

τ̃i (A) ≥ τi (A)

E
∑
i

τ̃i (A) ≤ nd

m

Note:
Sherman-Morrison gives equation to compute τ̃i (A) from a>i (A>u Au)−1ai

τ̃i (A) =

a>i (A>u Au)−1ai if ai ∈ Au

1
1+ 1

a>
i

(A>u Au )−1ai
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multiplicative error you want).



Iterative Leverage Score Computation

Immediately yields a recursive algorithm for obtaining Ã.
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Avoid JL projecting and densifying A.
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(1) follows from the fact that removing rows of A can only increase
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Recall that uniform sampling from A does not give us a spectral
approximation.

We cannot bound a>i (A>u Au)−1ai .
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other rows

At any step, every row that has been reweighted has leverage score
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Conclusion

Take away:

Very simple analysis shows how leverage scores can be approximated
with uniform sampling.

Simple iterative spectral approximation algorithms matching state of
the art runtimes follow.

Open Questions:

Analogous algorithms for low rank approximation?

For other types of regression?

Generally, our result shows that it is possible to go beyond relative
condition number (spectral approximation) invariants for iterative
algorithms. Can this type of analysis be useful elsewhere?

Thanks! Questions?
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