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Cameron: Note that these are my personal notes and everything is very rough and unpolished.
If things are confusing or wrong, please ask me.

1 Motivating Example: The Selection Problem

We want to prove circuit size lower bounds. Eventually for neural circuits, but for today, just
consider feedforward networks with gates of the form φ(

∑
wixi − θ), where φ(·) : R → R is any

function. Think of φ(·) as being a sigmoid function or threshold function.
Very simple problem: Selection(x, y) = x(y) – the bit of x at the yth position, where y encodes

the index in binary. To get y to be binary if the gates output real numbers, allow it to have an
arbitrary threshold.

1.1 AND/OR Circuit Lower Bound

Theorem 1. Any AND/OR circuit requires Ω(n) gates to compute Selection.

Proof. Given any Selection circuit, after fixing the x inputs, you have a circuit that maps y ∈
{0, 1}logn to a bit. Any gate connected to any x input can only compute 2 functions of the y inputs
depending on if it is connected to no positive inputs or at least 1 positive input. But the circuit
needs to compute all possible binary functions on an input of size log n, depending on the x input.
There are 22

logn
= 2n such functions. So if m is the number of gates in the circuit, we must have

2m > 2n and hence m ≥ n.

Remark 2. Theorem 1 also holds for recurrent networks.

Remark 3. A similar argument can be made, for example, for sigmoid circuits with edge weights
and thresholds of bounded precision – say representable using b bits.

Proof. We can think of fixing the x inputs to the Selection circuit as just modifying the threshold
values for the sigmoid gates. If the edge weights and thresholds can be expressed using b bits, then
any summation < n of these weights can be expressed using logn+ b bits. So there are only 2logn+b

possible gates. So, a circuit with m gates can only compute 2(b logn)·m possible functions after the
x input is fixed. So we must have (b+ log n) ·m > n and so m = Ω(n/(log n+ b)).

Unfortunately for more complex gates, the simple reasoning above doesn’t extend. It fails even
for linear threshold gates with real values weights and biases. The key step we must make is to
figure out how to handle gates with infinite possible behaviors after fixing the x inputs. This is
going to be where VC dimension becomes useful.
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2 Intro to VC Dimension

VC ( Vapnik-Chervonenkis) dimension is a concept used primarily in learning theory, but also in
many areas to measure the complexity of classes of functions.

Let F be a set (possibly infinite) of functions f : X → {0, 1}.

Definition 4 (Shattering). F shatters A ⊆ X if for all possible functions g : A→ {0, 1}, there is
some f ∈ F such that f(a) = g(a) for every a ∈ A.

Definition 5 (VC Dimension). The VC Dimension of F , V C(F), is the maximum |A| such that
F shatters set A.

Example 6 (Half Spaces). Let X = R2 and Y = {0, 1}. If F is the set of all half spaces in the
plane, V C(F) = 3.

Proof. Any set of 3 noncolinear points in the plane is shattered by F . Further every set of 4 points
in the plane is not shattered by F . This requires considering 2 cases: 4 points whose convex hull
is a quadrilateral, and 4 points whose convex hull is a triangle with one point inside.

Remark 7. For X = Rd, VC dimension of half space is d+ 1.

3 Using VC Dimension to Bound Circuit Complexity

Here we are following the paper VC Dimension in Circuit Complexity, Koiran [Koi96].

3.1 A Fixed Selection Circuit as a Function Class

It is easy to see that a family of circuits defines a family of functions, and the VC dimension of
these function classes has been studied extensively. This is generally to try to show that certain
classes of circuits can’t compute certain functions, or more commonly, to give learning bounds for
neural networks. If the VC dimension of a classifier (e.g. a neural net) is bounded then you can
prove that after training on a certain number of example input points, the behavior of the net will
generalize well to future input points.

However, to give circuit size lower bounds for Selection, we are going to define a function class
based on a specific fixed circuit.

Definition 8. For any circuit N with n inputs talking values in A and 1 output taking values in
B, and any p < n, let Fp

N be defined as any function f : Ap → B given by fixing the values of the
last (n− p) inputs and considering the output of N as a function of the first p inputs.

Note that we already used this sort of ‘restriction’ method in our lower bound proofs in Section
1.1. One way you can think of Fp

N is as the class of functions computable using a fixed network
architecture with n−p programmable parameters – the n−p fixed inputs which change the behavior
of the circuit in some way.

Claim 9. If N solves the selection problem and p = n, then Fn
N is the set of all functions f :

{0, 1}logn → {0, 1}. Trivially, V C(FN ) =
∣∣{0, 1}logn∣∣ = n.
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3.2 Threshold Circuit Lower Bound for Selection

Theorem 10. Any linear threshold circuit requires Ω(n/ log n) gates to compute Selection.

Proof. This is because the VC dimension of a fixed circuit architecture with m threshold gates (and
programable thresholds) is ≤ m logm by [BH88].

We will now prove this fact.
We first give a sort of generalization of VC dimension, which measures the number of dichotomies

that a class of functions can induce over a set.

Definition 11. For a class of functions F : X → {0, 1}, let ∆F (z) is the maximum over sets A
with |A| = z of ∆F (A), which is the number of different ways that A can be partitioned (the number
of dichotomies induced) using the function.

Note that V C(F) is the maximum z with ∆F (z) = 2z.

Theorem 12 (Theorem 1 of [BH88]). Let F be the class of functions computed by a fixed feedforward
architecture with m nodes, where each node vi can be chosen to compute any function in the class
Fi. Then ∆F (x) ≤

∏m
i=1 ∆Fi(x).

Applying Theorem 12 to a fixed threshold circuit architecture with programmable thresholds
gives ∆Fi(z) = z, since for z inputs, there are z possible functions that can computed by varying
the threshold of the circuit (note that as edge weights are fixed, any input is just mapped to a
single real number which is thresholded by vi).

So ∆F (z) ≤ zm. Thus, V C(F) is the largest z with zm ≥ 2z so m log z ≥ z so z/ log z ≤ m.
Setting z = m logm gives z/ log z = m logm/(logm+ log logm) ≈2 m. So this gives the VC bound
used in Theorem 10.

Proof of Theorem 12. This is pretty straightforward. Order the nodes v1, v2, ....vm such that vi
only receives input from vj with j ≤ i. Then fixing a function on v1 fixes the inputs seen by v2.

Fixing the function on v2 then fixes the inputs seen by v3 etc. So since there are
∏M

i=1 ∆Fi(z) ways

to fix all the functions successively like this, we have ∆F (z) ≤
∏M

i=1 ∆Fi(z).

Theorem 13. Any recurrent linear threshold circuit requires t · m = Ω(n/ log n) where t is the
runtime and m is the number of gates.

Proof. By unrolling the circuit to be feedforward. A lot of these unrolling bounds, while seemingly
very naive are actually close to tight. See [KS98].

Remark 14. We can match Theorem 13 up to log n factors using a circuit with Õ(
√
n) gates and

running in time Õ(
√
n).

Remark 15. We haven’t really used the full power of VC dimension yet. You probably could have
thought of the linear threshold bound pretty easily without the VC formalism. But the point is
that this bound is for gates with infinite possible behaviors (or really exponential if you consider
all possible thresholds induced by fixing some subset of the inputs). So it is doing something more
powerful than our bounds for gate sets with very limited numbers of possible behaviors.
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3.3 Sigmoidal VC Dimension Bound for Selection

Theorem 16 ([KM97]). Let F be the set of all functions computed by a fixed architecture of m
sigmoidal gates with p programable parameters. V C(F) = O(m2p2).

Corollary 17. Any sigmoidal circuit requires Ω(n1/4) gates to compute Selection.

Proof. If there is a circuit N that computes selection, with m gates, then it has at most m gates
connected to the n bits corresponding to x. The connections effectively change the thresholds
of these gates, and then apply a function to just x. So we have a circuit with m gates and m
programable parameters (the thresholds which are modified by the input connections. We thus
have n = V C(FN ) ≤ m2p2 = m4 and hence m ≥ n1/4.

3.4 Piecewise Rational Lower Bound

Theorem 18. Any circuit consisting of piecewise rational function gates requires Ω(
√
n) gates to

compute Selection. This is matched by a simple circuit using the linear softstep.

Proof. This is by the VC dimension bound of m2 given in [GJ95]. It is open if this VC dimension
upper bound can be matched for sigmoidal and other exponential networks.

Theorem 19. The VC dimension of the concept class computed by a fixed gate with polynomial
activation functions and m free parameters is ≤ m2.

This proof follows from a bound of Warren ’68:

Theorem 20. If P = {p1, ...pm} is a set of polynomials of degree ≤ d in n variables, with m ≥ n
the number of consistent sign assignments to P is ≤ (cdm/n)n for some constant c.

Let v be the VC dimension of the concept class over a fixed polynomial network with m program-
able parameters. Consider the set of shattered inputs a1, ..., av. By fixing each of those inputs,
we get v different polynomial functions over m variables. To shatter A, this set of v different
polynomials must take 2v different sign assignments. So we have by the theorem above:

(cdv/m)m ≥ 2v

Now d, if each gate has constant degree is O(1)m since there are m gates so their composition has
degree at most O(1)m. So logging both sizes we have: v ≤ m log(d) +m log(v/m). Which basically
gives v ≤ m2.

4 Open Questions

• Bounds on sigmoidal or polynomial gates for recurrent networks? Matching circuit construc-
tions?

• Bounds for stochastic or spiking networks, which don’t fit as cleanly into VC dimension model.
How do we deal with stochastic functions?

• How can these techniques be used in continuous time, spiking networks? It is said that
changing the time delay on synapses has much more ‘power’ than changing synapse weights.
Can this be seen in VC bounds?

• Rule out simulation results via VC dimension bounds, or else use simulation to extend bounds
to other network types.
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